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Motivation

Optimization of supervised machine learning parameters (model
optimization)

How to set the parameters of a machine learning (ML) process?

@ Trial and error (hand-tuning, often done, but probably not the best
solution)

@ Local search (many existing heuristics, but might get stuck in local
optima)

o Global optimization (can be expensive, seldom done)

v
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Tuned Data Mining in R

Konen et al. [Kon11] developed the Tuned Data Mining in R (TDMR)?
software framework for easily setting up machine learning experiments:
@ Methods for continuous optimization (supporting o —
Box-constraints):
o Covariance Matrix Adaptation Evolution Strategy

(CMA-ES) [HOO01],
o Direct search algorithms (Kolda et al. [KLTO03])

o Efficient global optimization (EGO) [JSW98]

o Sequential Parameter Optimization (SPO)
[BBLPO5], combines classical design of
experiments [Fis36] with design and analysis of
computer experiments (DACE) [SWMW89]

"http://cran.r-project.org/web/packages/TDMR/index . html
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Efficient Global Optimization (EGO)

@ EGO algorithms like SPO perform the main part of the optimization
on the cheap surrogate function and evaluate only some points on the
expensive real function to refine the surrogate:

Optional User Input,
\ Create initial design \ eg.

[ Add specific points to design
(expert knowledge)

[ Evaluate design on target function |

_ - ~ Check output, remove
\ Build surrogate model | outliers

¥
[ Exploit model: choose new design |

no

( Report + End )

@ Konen et al. [KKFT11] compared optimization techniques for ML,
where SPO with Kriging performed best
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Surrogate Models: Kriging

o Kriging was developed by Matheron [Mat63] and named after the
mining engineer D.G. Krige [Kri51]

@ The idea is to model the responses y(X) creating a surrogate function
$(X) based on Gaussian processes.

@ We differ between interpolating (left) and non-interpolating (right)
DACE models with nugget term:

- measured response
|—true function

+ measured response
~—true function

@ The nugget term avoids the exact interpolation of the observations.
The influence of outliers is relaxed and a smoother model can be
computed [Wagl0].
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Landscape Analysis

In the benchmark by Konen et al. [KKF*11] SPO with Kriging performed
best, but how good are the Kriging landscapes actually?

Q-1 How exact are Kriging metamodels?

Q-2 Are the landscapes accurate in all regions of the search space?

Q-3 Which effect has the choice of the Kriging method (interpolating vs.
non-interpolating Kriging)?

= We analyze the underlying fitness landscapes obtained during the
optimization

The main challenge: considerable amount of noise in objective function for
most supervised machine learning tasks
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Landscape Analysis

Kriging landscapes of interpolating Kriging metamodels without nugget
estimation:

COST

T T T
0.0 0.2 0.4 0.6 08 1.0
GAMMA

@ Latin hypercube design (LHD) with interpolating Kriging (no nugget
effect)
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Landscape Analysis

Kriging landscapes of interpolating Kriging metamodels without nugget
estimation:

COST

@ SPO and interpolating Kriging (no nugget effect)
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Landscape Analysis

Kriging landscapes of interpolating Kriging metamodels without nugget
estimation:

COST

@ Depending on the distribution of the design points, interpolating
Kriging models can be misleading in certain regions! (Q-1, Q-2)
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Interpolating Kriging metamodels

We show how additional design points deteriorate the fit:
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Figure: Estimated landscape after 10 objective function evaluations.
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Interpolating Kriging metamodels

We show how additional design points deteriorate the fit:

COST

Figure: Estimated landscape after 20 objective function evaluations.
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Interpolating Kriging metamodels

We show how additional design points deteriorate the fit:

COST

Figure: Estimated landscape after 30 objective function evaluations.
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Interpolating Kriging metamodels

We show how additional design points deteriorate the fit:
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Figure: Estimated landscape after 40 objective function evaluations.
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Interpolating Kriging metamodels

We show how additional design points deteriorate the fit:
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Figure: Estimated landscape after 50 objective function evaluations.
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Interpolating Kriging metamodels

We show how additional design points deteriorate the fit:

COST

Figure: Estimated landscape after 60 objective function evaluations.
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Interpolating Kriging metamodels

We show how additional design points deteriorate the fit:

COST

Figure: Estimated landscape after 90 objective function evaluations.
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Interpolating Kriging metamodels

We show how additional design points deteriorate the fit:

COST

Figure: Estimated landscape after 120 objective function evaluations.
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Interpolating Kriging metamodels

We show how additional design points deteriorate the fit:

COST

Figure: Estimated landscape after 150 objective function evaluations.
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How (sometimes) wrong minima are detected

The greedy infill strategy of SPO together with a noisy objective function
(small correlation lengths) and a too small initial design can lead to
premature convergence of the search and deceptive landscapes:
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Figure: More realistic LHD (left) and SPO-approximated (right) landscapes for
the same problem (ionosphere) with interpolating Kriging model.
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Non-interpolating Kriging metamodels

Now, using a non-interpolating Kriging method with nugget effect we get
a much better estimate than with standard interpolating Kriging (Q-3):
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Non-interpolating Kriging metamodels

Now, using a non-interpolating Kriging method with nugget effect we get
a much better estimate than with standard interpolating Kriging (Q-3):
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Figure: Estimated landscape after 10 objective function evaluations.
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Non-interpolating Kriging metamodels

Now, using a non-interpolating Kriging method with nugget effect we get
a much better estimate than with standard interpolating Kriging (Q-3):
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Figure: Estimated landscape after 20 objective function evaluations.
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Non-interpolating Kriging metamodels

Now, using a non-interpolating Kriging method with nugget effect we get
a much better estimate than with standard interpolating Kriging (Q-3):
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Figure: Estimated landscape after 30 objective function evaluations.
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Non-interpolating Kriging metamodels

Now, using a non-interpolating Kriging method with nugget effect we get
a much better estimate than with standard interpolating Kriging (Q-3):

COST

0.0 0.2 0.4 0.6 08 1.0
GAMMA

Figure: Estimated landscape after 40 objective function evaluations.

Patrick Koch (CUAS) Landscape Analysis 1 September 2012 10 /15



Non-interpolating Kriging metamodels

Now, using a non-interpolating Kriging method with nugget effect we get
a much better estimate than with standard interpolating Kriging (Q-3):

COST

00 02 04 06 08 10
GAMMA

Figure: Estimated landscape after 50 objective function evaluations.
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Non-interpolating Kriging metamodels

Now, using a non-interpolating Kriging method with nugget effect we get
a much better estimate than with standard interpolating Kriging (Q-3):
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Figure: Estimated landscape after 60 objective function evaluations.
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Non-interpolating Kriging metamodels

Now, using a non-interpolating Kriging method with nugget effect we get
a much better estimate than with standard interpolating Kriging (Q-3):
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Figure: Estimated landscape after 90 objective function evaluations.
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Non-interpolating Kriging metamodels

Now, using a non-interpolating Kriging method with nugget effect we get
a much better estimate than with standard interpolating Kriging (Q-3):
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Figure: Estimated landscape after 120 objective function evaluations.
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Non-interpolating Kriging metamodels

Now, using a non-interpolating Kriging method with nugget effect we get
a much better estimate than with standard interpolating Kriging (Q-3):
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Figure: Estimated landscape after 150 objective function evaluations.
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Exploration vs. Exploitation

In our experiments a very greedy infill strategy was used to generate
new points

More exploration is necessary, respecting the uncertainties of the
model

o State-of-the-Art is to maximize the Expected Improvement (El)
[SWJ98]:

EI(R) = (v — (%)) B(u()) + 3(F)(u(R)), u(7) = L —( Xf)(f) (1)

o Unfortunately, non-interpolating Kriging models can't use this
directly!

(%4
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Expected Improvement for Noisy Observations

Forrester et al. [FKB06] proposed a technique called Re-interpolating
Kriging, making it possible to use El together with noisy observations:

@ Build a non-interpolating Kriging model based on the noisy
observations

Create a large design of new design points
Apply the model to these points

Use the predictions of (3) to compute a new interpolating Kriging
model

2]
o
o
o

Maximize El as usual using the interpolating Kriging model.
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@ We performed a parameter tuning for ML parameters using Efficient
Global Optimization (here: SPO)

o Kriging metamodels were earlier considered to be the best ones, but
the Kriging variant must be chosen carefully and should be able to
handle noisy landscapes!

o Additional nugget estimation resulted in better approximations of the
real landscapes. This is caused by the biased distribution of sequential
design points, leading to too small correlation lengths of the model
predictions.

o Expected Improvement (EI) as infill criterion can enable more
exploration, Forrester's Re-interpolating technique makes the use of
El possible also for noisy optimization problems
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@ Comparison of EGO variants like interpolating, non-interpolating and
El-based EGO to get a better idea of the model quality for ML tasks

@ Taking into account Forrester's Re-interpolation technique to handle
noisy observations

@ Perform repeated evaluations of similar design points. Instead of
aggregating the points as was done before, the variance information
can be used by the Kriging models, improving the estimated nugget
size

@ Optimal computing budget allocation by Chen [CDCY97] is a
possibility to adapt the number of repetitions automatically.
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Thanks for your attention!

Any questions?
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