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The age of machines

“As soon as an Analytical Engine exists, it will necessarily guide the future
course of the science. Whenever any result is sought by its aid, the question
will then arise – by what course of calculation can these results be arrived at
by the machine in the shortest time?”

(Charles Babbage, 1864)
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The age of computation

“The maths[!] that computers use to
decide stuff [is] infiltrating every aspect
of our lives.”

I financial markets

I social interactions

I cultural preferences

I artistic production

I . . .
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Performance matters ...

I computation speed (time is money!)

I energy consumption (battery life, ...)

I quality of results (cost, profit, weight, ...)

... increasingly:

I globalised markets

I just-in-time production & services

I tighter resource constraints
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Example: Resource allocation

I resources > demands  many solutions, easy to find

economically wasteful
 reduction of resources / increase of demand

I resources < demands  no solution, easy to demonstrate

lost market opportunity, strain within organisation
 increase of resources / reduction of demand

I resources ≈ demands
 difficult to find solution / show infeasibility
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This talk:

new approach to software development, leveraging . . .

I human creativity

I optimisation & machine learning

I large amounts of computation / data
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Key idea:

I program  (large) space of programs

I encourage software developers to
I avoid premature commitment to design choices
I seek & maintain design alternatives

I automatically find performance-optimising designs
for given use context(s)

⇒ Programming by Optimisation (PbO)
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Outline

1. Introduction

2. Vision & promise of PbO

3. Design space specification

4. Design optimisation

5. Cost & concerns

6. The road ahead – towards main-stream use of PbO
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Example: SAT-based software verification

Hutter, Babić, HH, Hu (2007)

I Goal: Solve SAT-encoded software verification problems
Goal: as fast as possible

I new DPLL-style SAT solver Spear (by Domagoj Babić)

= highly parameterised heuristic algorithm
= (26 parameters, ≈ 8.3 × 1017 configurations)

I manual configuration by algorithm designer

I automated configuration using ParamILS, a generic
algorithm configuration procedure
Hutter, HH, Stützle (2007)
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Spear: Performance on software verification benchmarks

solver num. solved mean run-time

MiniSAT 2.0 302/302 161.3 CPU sec

Spear original 298/302 787.1 CPU sec
Spear generic. opt. config. 302/302 35.9 CPU sec
Spear specific. opt. config. 302/302 1.5 CPU sec

I ≈ 500-fold speedup through use automated algorithm
configuration procedure (ParamILS)

I new state of the art
(winner of 2007 SMT Competition, QF BV category)
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Software development in the PbO paradigm

use context

PbO-<L>
source(s)

parametric
<L>

 source(s)

instantiated
<L>

 source(s)

deployed
executable

design
space

description

   PbO-<L>
   weaver

PbO 
design

optimiser

benchmark
inputs
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Levels of PbO:

Level 4: Make no design choice prematurely that
cannot be justified compellingly.

Level 3: Strive to provide design choices and
alternatives.

Level 2: Keep and expose design choices considered
during software development.

Level 1: Expose design choices hardwired into
existing code (magic constants, hidden
parameters, abandoned design alternatives).

Level 0: Optimise settings of parameters exposed
by existing software.
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Success in optimising speed:

Application, Design choices Speedup PbO level

SAT-based software verification (Spear), 41
Hutter, Babić, HH, Hu (2007)

4.5–500 × 2–3

AI Planning (LPG), 62
Vallati, Fawcett, Gerevini, HH, Saetti (2011)

3–118 × 1

Mixed integer programming (CPLEX), 76
Hutter, HH, Leyton-Brown (2010)

2–52 × 0

... and solution quality:

University timetabling, 18 design choices, PbO level 2–3
 new state of the art; UBC exam scheduling
Fawcett, Chiarandini, HH (2009)

Machine learning / Classification, 803 design choices, PbO level 0–1
 outperforms specialised model selection & hyper-parameter optimisation
 methods from machine learning
Thornton, Hutter, HH, Leyton-Brown (2012)
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Mixed Integer Programming (MIP)
Hutter, HH, Leyton-Brown, Stützle (2009); Hutter, HH, Leyton-Brown (2010)

I MIP is widely used for modelling optimisation problems

I MIP solvers play an important role for solving broad range of
real-world problems

CPLEX:

I prominent and widely used commercial MIP solver

I exact solver, based on sophisticated branch & cut algorithm
and numerous heuristics

I 159 parameters, 81 directly control search process
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“A great deal of algorithmic development effort has been devoted to
establishing default ILOG CPLEX parameter settings that achieve good
performance on a wide variety of MIP models.”

[CPLEX 12.1 user manual, p. 478]

Automatically Configuring CPLEX:

I starting point: factory default settings

I 63 parameters (some with ‘AUTO’ settings)

I 1.38× 1037 configurations

I configurator: FocusedILS 2.3 (Hutter et al. 2009)

I performance objective: minimal mean run-time

I configuration time: 10× 2 CPU days
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CPLEX on various MIPS benchmarks

Benchmark Default performance Optimised performance Speedup

[CPU sec] [CPU sec] factor

BCOL/Conic.sch 5.37 2.35 (2.4 ± 0.29) 2.2

BCOL/CLS 712 23.4 (327 ± 860) 30.4

BCOL/MIK 64.8 1.19 (301 ± 948) 54.4

CATS/Regions200 72 10.5 (11.4 ± 0.9) 6.8

RNA-QP 969 525 (827 ± 306) 1.8

Benchmark Default performance Optimised performance Speedup

[CPU sec] [CPU sec] factor

BCOL/Conic.sch 5.37 2.35 (2.4 ± 0.29) 2.2

BCOL/CLS 712 23.4 (327 ± 860) 30.4

BCOL/MIK 64.8 1.19 (301 ± 948) 54.4

CATS/Regions200 72 10.5 (11.4 ± 0.9) 6.8

RNA-QP 969 525 (827 ± 306) 1.8

(Timed-out runs are counted as 10 × cutoff time.)
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CPLEX on BCOL/CLS
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CPLEX on BCOL/Conic.sch
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Planning
Vallati, Fawcett, HH, Gerevini, Saetti (2011)

I classical, well-studied AI challenge

I many variations, domains (explicitly specified)

LPG:

I state-of-the-art, versatile system for plan generation,
plan repair and incremental planning for PDDL2.2 domains

I based on stochastic local search over partial plans

I 62 parameters, over 6.5× 1017 configurations
4 of these previously “magic constants”,
50 hidden (= undocumented)

I automated configuration using FocusedILS 2.3 (as for CPLEX)
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LPG on various planning domains

Domain Default performance Optimised performance

[CPU sec] (% solved) [CPU sec] (% solved)

Blocksworld 105.3 (98.8%) 4.29 (100%)

Depots 78.1 (90.3%) 5.7 (98.5%)

Gold-miner 94.4 (90.5%) 1.6 (100%)

Matching-BW 93.8 (15.8%) 5.6 (97.8%)

N-Puzzle 321 (85%) 31.2 (86.8%)

Rovers 72.2 (100%) 21.2 (100%)

Satellite 64 (100%) 1.3 (100%)

Sokoban 24.6 (75.8%) 1.19 (96.5%)

Zenotravel 103.7 (100%) 11.1 (100%)

Run-time cutoff for evaluation: 600 CPU sec
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Post-Enrolment Course Timetabling
Chiarandini, Fawcett, HH (2008); Fawcett, HH, Chiarandini (in preparation)

Setting:

I students enroll in courses

I courses are assigned to rooms and time slots,
subject to hard constraints

I preferences are represented by soft constraints

Our solver:

I modular multiphase stochastic local search algorithm

I hard constraint solver: finds feasible course schedules

I soft constraint solver: optimise schedule (maintaining
feasibility)
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Solver #1:

I developed over ca. 1 month

I starting point: Chiarandini et al. (2003)

I soft constraint solver unchanged

I automatically configured hard constraint solver

Design space for hard constraint solver:

I parameterised combination of constructive search, tabu
search, diversification strategy

I 7 parameters, 50 400 configurations

Automated configuration process:

I configurator: FocusedILS 2.3 (Hutter et al. 2009)

I performance objective: solution quality after 300 CPU sec
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2nd International Timetabling Competition (ITC), Track 2
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Solver #2:

I developed over ca. 6 months

I starting point: solver #1

I automatically configured hard & soft constraint solvers

Design space for soft constraint solver:

I highly parameterised simulated annealing algorithm

I 11 parameters, 2.7× 109 configurations
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High-level structure of timetabling solver

An Automatically Configured Modular Algorithm

for Post Enrollment Course Timetabling

Chris Fawcett, Holger H. Hoos
Department of Computer Science

University of British Columbia

Marco Chiarandini
Department of Mathematics and Computer Science

University of Southern Denmark

Course and examination timetabling is a resource-constrained scheduling problem
encountered by universities and other educational institutions, involving scheduling a set of
events into given rooms and timeslots. The resulting schedule is subject to various feasibility
constraints and preferences derived from the availability of rooms, student enrollment in the
events, and precedence relations between events. While the feasibility constraints must be
strictly satisfied, creating a satisfaction problem, preferences should not be violated whenever
possible, which gives rise to an optimisation problem.

We have developed a new state-of-the-art solver for a particular version of this problem,
presented in track two of the Second International Timetabling Competition held in early 2008.
Our main contribution lies in the novel automated approach used for designing our new
solver, as well as the resulting solver itself. This automatically-configured solver represents a
substantial improvement over the previous best algorithm for the problem. 

As presented in track two of the Second International Timetabling Competition, the Post
Enrollment Course Timetabling Problem is defined by:

- 45 timeslots, corresponding to five days with nine one-hour timeslots per day.

- A set of rooms, each with a given seating capacity.

- A set of events, each of which is to be assigned a timeslot and room.

- A set of room features that are satisfied by rooms and required by events, such as a
whiteboard or video projector.

- A set of students, each needing to attend a subset of the events.

- A set of available timeslots for each event.

- A set of precedences between events, each of the form “Event A must be scheduled in an
earlier timeslot than Event B”.

There are five hard constraints defining the feasibility of event assignments:

- No student can attend two events in the same timeslot.

- Only one event can be scheduled into a given room in a single timeslot.

- The room an event is assigned to must be large enough to accomodate all students, and
must satisfy all of the room features required by the event.

- Events must be assigned to one of its available timeslots.

- Precedences between events must be respected.

Solvers are permitted to leave some events unscheduled in order to satisfy these hard
constraints. Such schedules are defined to be valid, but only schedules where all events are
assigned can be feasible. In addition to the hard constraints, there are three soft constraints (or
preferences) used to differentiate feasible schedules:

- Students prefer not to have an event scheduled in the last timeslot of a day.

- Students prefer not to attend three or more events in successive timeslots.

- Students prefer not to have only one event on a given day.

We define the distance to feasibility of a valid schedule to be the number of students attending
events that are unscheduled. To break ties (or for feasible schedules), the soft constraint
violations is the total number of broken soft constraints in the schedule.

In recent years there has been a considerable amount of methodological research devoted to the
issue of tuning the parameters of optimisation algorithms, especially for heuristic algorithms.
Contrary to the traditional approach of trying to minimise the number of user-configurable
algorithm parameters, in the presence of new tools for automated configuration it is becoming
clear that developers should parameterise as much of their algorithm functionality as possible!

Our approach is to extend this reasoning, and to use these powerful automated algorithm
configuration tools to search for a performance-optimised design within a very large space of
candidate solvers. Some examples of the design choices that can be left open are:

- Which diversification strategies to use, and at what times

- Which search type to use (i.e. between iterated local search, tabu search, and simulated
annealing)

- Should a greedy construction be used to generate an initial solution, or should a random
starting point be used?

- Which neighbourhoods and local moves should be used during search?

This approach allows a developer to concentrate on implementing as many modular components
as possible, without the tedious overhead of determining how best to connect them together. Out
of the available procedures for automated algorithm configuration we selected FocusedILS, as it is
the only procedure we are aware of that has been demonstrated to be effective in dealing with
very large, discrete design spaces.

The design space of algorithms for the problem considered in this work is defined by a modular
solver framework based on stochastic local search (SLS) methods, and builds on several ideas
from the timetabling and graph colouring literature, as well as work done for the first
international timetabling competition held in 2003.

This framework currently contains 18
configuration parameters and design choices,
allowing for on the order of 1013 possible
unique algorithm instantiations. The
backbone of this framework is the idea that
one should first solve the feasibility problem,
and then tackle the optimisation problem by
restricting the subsequent search to moves
between feasible timetables. Tabu search is
used to tackle the feasibility problem, with
various configuration options for
initialisation and diversification, while
several options are available for optimisation
of the soft constraints. The configured solver
uses simulated annealing with additive
reheating as a diversification strategy.

We are currently working with the classroom services department at the University of British
Columbia, in order to generate each semester’s exam schedule at the Vancouver campus. This
problem is approximately two orders of magnitude more difficult than the benchmark instances
currently available, so this is certain to be an exciting project.

Additionally, we are working to make our solver framework even more general, and we will be
attempting to automatically configure additional solvers for the problems of the other two tracks
of the 2008 timetabling competition. These problems are quite different in flavor than the version
presented in this work, and examining the differences in the generated solvers will hopefully
yield interesting results.

Based on the multi-phase architecture underlying our
solver, we applied FocusedILS to first configure the
parameters and behaviour of the hard constraint solver
and then to configure the parameters and behaviour of
the soft constraint solver.

Algorithm configuration and analysis was performed
using multiple independent runs of FocusedILS on a
cluster of identical machines running SUSE linux 10.1,
each with a dual-core Intel Xeon 3.2Ghz CPU with a
cache size of 2MB per core. In total, 360 CPU hours
were used for configuration, with an algorithm runtime
cutoff of 600 CPU seconds. Of the 24 available competition benchmark instances for this
problem, the sixteen “public” instances were used for configuration while the eight “private”

instances were reserved for testing
purposes. 

Using 100 runs on each of these 24
instances, each 600 CPU seconds in
length, our configured solver achieves
better median soft constraint violation
values than any other finalist from the
compeition. Additionally, we also beat the
top-ranked solver of Cambazard et al.
using the rank-based metric used in the
competition. As can be seen in the figures,
this clearly represents a substantial
performance improvement compared to
the previous state of the art.

Get the newest version of FocusedILS:

http://www.cs.ubc.ca/labs/beta/Projects/ParamILS

References:
1. Lewis, R., Paechter, B., and McCollum, B. (2007). Post enrolment based course timetabling: A description of the problem model
used for track two of the second international timetabling competition. Cardiff Working Papers in Accounting and Finance A2007-3,
Cardiff Business School, Cardiff University.
2. Hoos, H. H. (2008). Computer-aided design of high-performance algorithms. Technical Report TR-2008-16, University of British
Columbia, Department of Computer Science.
3. Hutter, F., Hoos, H. H., and Stützle, T. (2007). Automatic algorithm configuration based on local search. In Proc. of the Twenty-
Second Conference on Artificial Intelligence (AAAI ‘07), pages 1152-1157.

Start - Common initial state
GI - Greedy Initialisation
TS - Tabu search for hard constraints
DIV1 - Diversification by removing some events
DIV2 - Diversification via soft constraint solver
N1 - Two-exchange neighbourhood
N2 - One-exchange neighbourhood
N3 - Swap-time-slots neighbourhood
N4 - Kempe chains neighbourhood
Tinit - Temperature initialisation via sampling
SA - Simulated annealing using N1 and N3
Cool - Geometric cooling
Heat - Additive reheating after idle iterations
End - Finish, after cutoff or optimality
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Introduction

Post Enrollment Course Timetabling

3 Our Automated Design Approach

Modular Solver Framework

Experimental Design and Results

Future Research Directions

Parameter Name Type Default Domain Values
numConstructionSolutions Hard 10 {1, 5, 10, 25, 50, 100}
hardTSTabuDelta Hard 2.0 {1.0, 1.2, 1.5, 2.0, 2.5, 3.0}
maxNonImprovingIterations Hard 10000 {1, 10, 50, 100, 500, 1000, 5000,

10000, 100000, 1000000}
hardTSIdleItersMultiplier Hard 50 {1, 2, 5, 10, 25, 50, 75, 100}
resetHowManyAfterImprovement Hard disabled {enabled, disabled}
howManyIncrement Hard 2 {1, 2, 3, 4, 5, 6, 7, 10, 15, 20}
howManyModulus Hard 0.2 {0.01, 0.02, 0.05, 0.1, 0.2, 0.3,

0.4, 0.5}
saAlpha Soft 0.99 {0.90, 0.91, 0.92, 0.93, 0.94,

0.95, 0.96, 0.97, 0.98, 0.99, 1.0}
saIniTempFactor Soft 0.40 {0.20, 0.40, 0.60, 0.80, 1.00, 1.20,

1.40, 1.60, 1.80, 2.00, 2.20, 2.40,
2.60, 3.00, 3.25, 3.50, 3.75, 4.00,
4.25, 4.50}

saSamplesForInitialTemperature Soft 100 {1, 10, 50, 100, 150, 200}
saIterationCutoffCooling Soft 50 {1, 10, 50, 100, 1000, 3000, 5000,

7000, 9000, 11000, 13000, 15000,
17000, 19000, 21000, 23000,
25000, 27000, 29000, 31000,
33000, 35000, 37000, 39000,
41000, 43000, 45000}

saIdleIterationCutoffReheating Soft 25 {1, 2, 5, 10, 15, 20, 25, 30, 35,
40, 45, 50, 55, 60, 65, 70, 75}

saStagnationStrategy Soft reheat additive {reheat additive, re-
heat geometric, no reheating}

saAdditiveBeta Soft 0.50 {0.1, 0.25, 0.50, 0.75, 1.0, 1.25,
1.50, 1.75, 2.00, 2.25}

saGeometricBeta Soft N/A {0.01, 0.05, 0.10, 0.20, 0.50, 0.70,
0.90, 1.00}

saSTSSelectionProbability Soft 0.1 {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 1.0}

stsIdleCountForEarlyExit Soft 1.0 {0.001, 0.005, 0.01, 0.05, 0.10,
0.25, 0.50, 0.75, 1.0}

twoexIdleCountForEarlyExit Soft 1.0 {0.001, 0.005, 0.01, 0.05, 0.10,
0.25, 0.50, 0.75, 1.0}
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This is a scatter plot comparing the soft constraint solver
performance of our configured solver with the competition-
winning solver of Cambazard et al. Our solver is superior for all
but three instances, in some cases outperforming the solver of
Cambazard et al. by an order of magnitude or more.

This figure shows the relative performance of our solver against the solvers of
the other four competition finalists. Ten runs were performed on each of the 24
instances for each solver, on our hardware with a runtime cutoff of 600 CPU
seconds, and the resulting solutions were placed into rank order.

The eighteen exposed parameters in the current version of our solver. “Hard” and
“Soft” indicate which phase of the solver the parameter affects. The parameter
values of the final solver configuration are indicated in bold.

A generalised local search machine (GLSM) representation of our configured solver. GLSMs offer a convenient
formal framework for representing stochastic local search methods as a combination of independent components
linked by conditional or probabilistic transitions. For more information see Chapter 3 of Stochastic Local Search:
Foundations and Applications, by Holger H. Hoos and Thomas Stützle.
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Solver #2:

I developed over ca. 6 months

I starting point: solver #1

I automatically configured hard & soft constraint solvers

Design space for soft constraint solver:

I highly parameterised simulated annealing algorithm

I 11 parameters, 2.7× 109 configurations

Automated configuration process:

I configurator: FocusedILS 2.4 (new version, multiple stages)

I multiple performance objectives
(final stage: solution quality after 600 CPU sec)
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2-way race against ITC Track 2 winner

Rank

Cambazard et al.

Our Solver

5 10 15 20

Aggregate

I solver #2 wins beats ITC winner on 20 out of 24 competition instances

I application to university-wide exam scheduling at UBC
(≈ 1650 exams, 44 000 students)
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Automated Selection and Hyper-Parameter
Optimization of Classification Algorithms
Thornton, Hutter, HH, Leyton-Brown (2012)

Fundamental problem:

Which of many available algorithms (models) applicable to
given machine learning problem to use, and with which
hyper-parameter settings?

Example: WEKA contains 47 classification algorithms
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Our solution, Auto-WEKA

I select between the 47 algorithms using a top-level
categorical choice

I consider hyper-parameters for each algorithm

I solve resulting algorithm configuration problem using
general-purpose configurator SMAC

I first time joint algorithm/model selection +
hyperparameter-optimisation problem is solved

Automated configuration process:

I configurator: SMAC

I performance objective: cross-validated mean error rate

I time budget: 4× 10 000CPUsec
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Selected results (median error rate over 25 runs)

Dataset #Instances #Features #Classes Best Def. TPE Auto-WEKA

WDBC 569 30 2 3.53 3.53 2.94

Hill-Valley 606 101 2 7.73 6.08 0.55

Arcene 900 10 000 2 8.33 5.00 8.33

Semeion 1593 256 10 8.18 7.87 7.87

Car 1728 6 4 0.77 0.39 0

KR-vs-KP 3196 37 2 0.73 0.84 0.31

Waveform 5000 40 3 14.33 14.53 14.20

Gisette 7000 5000 2 2.81 2.62 2.29

Further details: http://arxiv.org/abs/1208.3719
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PbO enables . . .

I performance optimisation for different use contexts
(some details later)

I adaptation to changing use contexts
(see, e.g., life-long learning – Thrun 1996)

I self-adaptation while solving given problem instance
(e.g., Battiti et al. 2008; Carchrae & Beck 2005; Da Costa et al. 2008)

I automated generation of instance-based solver selectors
(e.g., SATzilla – Leyton-Brown et al. 2003, Xu et al. 2008;

Hydra – Xu et al. 2010; ISAC – Kadioglu et al. 2010)

I automated generation of parallel solver portfolios
(e.g., Huberman et al. 1997; Gomes & Selman 2001;

Schneider et al. 2012)
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Design space specification

Option 1: use language-specific mechanisms

I command-line parameters

I conditional execution

I conditional compilation (ifdef)

Option 2: generic programming language extension

Dedicated support for . . .

I exposing parameters

I specifying alternative blocks of code

Holger Hoos: Programming by Optimisation 31



Advantages of generic language extension:

I reduced overhead for programmer

I clean separation of design choices from other code

I dedicated PbO support in software development environments

Key idea:

I augmented sources: PbO-Java = Java + PbO constructs, . . .

I tool to compile down into target language: weaver
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use context

PbO-<L>
source(s)

parametric
<L>

 source(s)

instantiated
<L>

 source(s)

deployed
executable

design
space

description

   PbO-<L>
   weaver

PbO 
design

optimiser

benchmark
input
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Exposing parameters

...

numerator -= (int) (numerator / (adjfactor+1) * 1.4);

... ...

##PARAM(float multiplier=1.4)

numerator -= (int) (numerator / (adjfactor+1) * ##multiplier);

...

I parameter declarations can appear at arbitrary places
(before or after first use of parameter)

I access to parameters is read-only (values can only be
set/changed via command-line or config file)
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Specifying design alternatives

I Choice: set of interchangeable fragments of code
that represent design alternatives (instances of choice)

I Choice point:
location in a program at which a choice is available

##BEGIN CHOICE preProcessing

<block 1>

##END CHOICE preProcessing
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Specifying design alternatives

I Choice: set of interchangeable fragments of code
that represent design alternatives (instances of choice)

I Choice point:
location in a program at which a choice is available

##BEGIN CHOICE preProcessing=standard

<block S>

##END CHOICE preProcessing

##BEGIN CHOICE preProcessing=enhanced

<block E>

##END CHOICE preProcessing
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Specifying design alternatives

I Choice: set of interchangeable fragments of code
that represent design alternatives (instances of choice)

I Choice point:
location in a program at which a choice is available

##BEGIN CHOICE preProcessing

<block 1>

##END CHOICE preProcessing

...

##BEGIN CHOICE preProcessing

<block 2>

##END CHOICE preProcessing
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Specifying design alternatives

I Choice: set of interchangeable fragments of code
that represent design alternatives (instances of choice)

I Choice point:
location in a program at which a choice is available

##BEGIN CHOICE preProcessing

<block 1a>

##BEGIN CHOICE extraPreProcessing

<block 2>

##END CHOICE extraPreProcessing

<block 1b>

##END CHOICE preProcessing
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The Weaver

transforms PbO-<L> code into <L> code
(<L> = Java, C++, . . . )

I parametric mode:

I expose parameters

I make choices accessible via (conditional, categorical)
parameters

I (partial) instantiation mode:

I hardwire (some) parameters into code
(expose others)

I hardwire (some) choices into code
(make others accessible via parameters)
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Design optimisation

Simplest case: Configuration / tuning

I Standard optimisation techniques
(e.g., CMA-ES – Hansen & Ostermeier 01; MADS – Audet & Orban 06)

I Advanced sampling methods
(e.g., REVAC, REVAC++ – Nannen & Eiben 06–09)

I Racing
(e.g., F-Race – Birattari, Stützle, Paquete, Varrentrapp 02;

Iterative F-Race – Balaprakash, Birattari, Stützle 07)

I Model-free search
(e.g., ParamILS – Hutter, HH, Stützle 07;

Hutter, HH, Leyton-Brown, Stützle 09)

I Sequential model-based optimisation
(e.g., SPO – Bartz-Beielstein 06; SMAC – Hutter, HH, Leyton-Brown 11–12)
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Racing (for Algorithm Selection)

algorithms

(Initialisation)
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Racing (for Algorithm Selection)
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Racing (for Algorithm Selection)

3 4 5





 



 

algorithms

problem
instances1 2

(Initialisation)

Holger Hoos: Programming by Optimisation 41



Racing (for Algorithm Selection)

3 4 5





 



algorithms

problem
instances

 

1 2

(Initialisation)

Holger Hoos: Programming by Optimisation 41



Racing (for Algorithm Selection)
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Racing (for Algorithm Selection)
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Racing (for Algorithm Selection)
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F-Race (Birattari, Stützle, Paquete, Varrentrapp 2002)

I inspired by methods for model selection methods
in machine learning
(Maron & Moore 1994; Moore & Lee 1994)

I sequentially evaluate algorithms/configuration,
in each iteration, perform one new run per
algorithm/configuration

I eliminate poorly performing algorithms/configurations
as soon as sufficient evidence is gathered against them

I use Friedman test to detect poorly performing
algorithms/configurations
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Iterat{ive,ed} F-Race (Balaprakash, Birattari, Stützle 2007)

Problem: When using F-Race for algorithm configuration,
Problem: number of initial configurations considered
Problem: is severely limited.

Solution:

I perform multiple iterations of F-Race on limited set of
configurations

I sample candidate configurations based on probabilistic model
(independent normal distributions centred on surviving
configurations)

I gradually reduce variance over iterations (volume reduction)

 good results for

– MAX-MIN Ant System for the TSP (6 parameters)

– simulated annealing for stochastic vehicle routing (4 parameters)

– estimation-based local search for PTSP (3 parameters)
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Iterated Local Search

(Initialisation)
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Iterated Local Search

(Initialisation)
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Iterated Local Search

(Local Search)
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Iterated Local Search

(Local Search)
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Iterated Local Search

(Perturbation)
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Iterated Local Search
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Iterated Local Search

(Local Search)
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Iterated Local Search

(Local Search)
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Iterated Local Search

?

Selection (using Acceptance Criterion)
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Iterated Local Search

(Perturbation)
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ParamILS

I iterated local search in configuration space

I initialisation: pick best of default + R random configurations

I subsidiary local search: iterative first improvement,
change one parameter in each step

I perturbation: change s randomly chosen parameters

I acceptance criterion: always select better configuration

I number of runs per configuration increases over time;
ensure that incumbent always has same number of runs
as challengers
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Sequential Model-based Optimisation
e.g., Jones (1998), Bartz-Beielstein (2006)

I Key idea:
use predictive performance model (response surface model) to
find good configurations

I perform runs for selected configurations (initial design)
and fit model (e.g., noise-free Gaussian process model)

I iteratively select promising configuration,
perform run and update model
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Sequential Model-based Optimisation

parameter response

(Initialisation)
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Sequential Model-based Optimisation

parameter response

measured

(Initialisation)

Holger Hoos: Programming by Optimisation 47



Sequential Model-based Optimisation

parameter response
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(Initialisation)
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Sequential Model-based Optimisation

parameter response

model

predicted best

measured

(Initialisation)

Holger Hoos: Programming by Optimisation 47



Sequential Model-based Optimisation

parameter response

model

predicted best

measured

(Initialisation)

Holger Hoos: Programming by Optimisation 47



Sequential Model-based Optimisation

parameter response

model

measured

(Initialisation)

Holger Hoos: Programming by Optimisation 47



Sequential Model-based Optimisation

parameter response

model

predicted best

measured

(Initialisation)

Holger Hoos: Programming by Optimisation 47



Sequential Model-based Optimisation

parameter response

model

measured

(Initialisation)

Holger Hoos: Programming by Optimisation 47



Sequential Model-based Optimisation
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Sequential Model-based Optimisation

parameter response

model
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Sequential Model-based Optimisation

parameter response

model

predicted best

measured

new incumbent found!

(Initialisation)
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Sequential Model-based Algorithm Configuration (SMAC)
Hutter, HH, Leyton-Brown (2011)

I uses random forest model to predict performance
of parameter configurations

I predictions based on algorithm parameters and instance
features, aggregated across instances

I finds promising configurations based on expected improvement
criterion, using multi-start local search and random sampling

I initialisation with single configuration
(algorithm default or randomly chosen)
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Parallel algorithm portfolios

Key idea:

Exploit complementary strengths by running multiple algorithms
(or instances of a randomised algorithm) concurrently.
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Parallel Algorithm Portfolios
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Parallel algorithm portfolios

Key idea:

Exploit complementary strengths by running multiple algorithms
(or instances of a randomised algorithm) concurrently.

 risk vs reward (expected running time) tradeoff,
 robust performance on a wide range of instances

Huberman, Lukose, Hogg (1997); Gomes & Selman (1997,2000)

Note:

I can be realised through time-sharing / multi-tasking

I particularly attractive for multi-core / multi-processor
architectures
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Application to decision problems (like SAT, SMT):

Concurrently run given component solvers until the first of them
solves the instance.

 running time on instance π =
 (# solvers) × (running time of VBS on π)

Examples:

I ManySAT (Hamadi, Jabbour, Sais 2009; Guo, Hamadi,
Jabbour, Sais 2010)

I Plingeling (Biere 2010–11)

I ppfolio (Roussel 2011)

 excellent performance (see 2009, 2011 SAT competitions)
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Constructing portfolios from a single parametric solver

HH, Leyton-Brown, Schaub, Schneider (2012)

Key idea: Take single parametric solver, find configurations that
make an effective parallel portfolio

Note: This allows to automatically obtain parallel solvers
from sequential sources (automatic parallisation)
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Ingredients for parallel solver
based on competitive parallel portfolio

I Parametric solver A

I Configuration space C

I Instance set I

I Algorithm configurator AC

That’s all!
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Recipe for parallel solver
based on competitive parallel portfolio

1. Use algorithm configurator to produce multiple configurations
of given solver that work well together

2. Run configurations in parallel until one solves given instance

Fully automatic method!
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Recipe: Global
for parallel solver based on competitive parallel portfolio

I For k portfolio components (= processors/threads), consider
combined configuration space C k of k copies of given
parametric solver

I Use configurator AC to find good joint configuration in C k

(standard protocol for current configurators:
pick best result from multiple independent runs)

I Configurations are assessed using (training) instance set I

Challenge: Large configuration spaces (exponential in k)
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Recipe: Greedy
for parallel solver based on competitive parallel portfolio

I Add portfolio components, one at a time,
starting from single solver

I Iteration 1: Configure given solver A using configurator AC
 single-component portfolio A1

I Iteration j = 2 . . . k : Configure given solver A using AC
to achieve optimised performance of
extended portfolio A j := A j−1 ||A
i.e., optimise improvement in A j over A j−1

Note: Similar idea to many greedy constructive algorithms
(including Hydra, Xu et al. 2010)
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Product: parallel Lingeling (v.276)
on SAT Comp. Application instances

PAR10 Overall Speedup Avg. Speedup
vs Configured-SP vs Configured-SP

Default-SP 3747 0.93 1.44
Configured-SP 3499 1.00 1.00
Plingeling 3066 1.14 7.39
Global-MP4 2734 1.27 10.47
Greedy-MP4 1341 2.61 3.52
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Cost & concerns

But what about ...

I Computational complexity?

I Cost of development?

I Limitations of scope?
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Computationally too expensive?

Spear revisited:

I total configuration time on software verification benchmarks:
≈ 30 CPU days

I wall-clock time on 10 CPU cluster:
≈ 3 days

I cost on Amazon Elastic Compute Cloud (EC2):
61.20 USD (= 42.58 EUR)

I 61.20 USD pays for ...

I 1:45 hours of average software engineer
I 8:26 hours at minimum wage
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Too expensive in terms of development?

Design and coding:

I tradeoff between performance/flexibility and overhead

I overhead depends on level of PbO

I traditional approach: cost from manual exploration of
design choices!

Testing and debugging:

I design alternatives for individual mechanisms and components
can be tested separately

 effort linear (rather than exponential) in the number of
design choices
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Limited to the “niche” of NP-hard problem solving?

Some PbO-flavoured work in the literature:

I computing-platform-specific performance optimisation
of linear algebra routines
(Whaley et al. 2001)

I optimisation of sorting algorithms
using genetic programming
(Li et al. 2005)

I compiler optimisation
(Pan & Eigenmann 2006, Cavazos et al. 2007)

I database server configuration
(Diao et al. 2003)
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The road ahead

I Support for PbO-based software development

I Weavers for PbO-C, PbO-C++, PbO-Java

I PbO-aware development platforms

I Improved / integrated PbO design optimiser

I Best practices

I Many further applications

I Scientific insights
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Leveraging parallelism

I design choices in parallel programs
(Hamadi, Jabhour, Sais 2009)

I deriving parallel programs from sequential sources
 concurrent execution of optimised designs
 (parallel portfolios)
(Schneider, HH, Leyton-Brown, Schaub in progress)

I parallel design optimisers
(e.g., Hutter, Hoos, Leyton-Brown 2012)
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Programming by Optimisation ...

I leverages computational power to construct
better software

I enables creative thinking about design alternatives

I produces better performing, more flexible software

I facilitates scientific insights into

I efficacy of algorithms and their components

I empirical complexity of computational problems

... changes how we build and use high-performance software
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Gli uomini hanno idee [...]
– Le idee, se sono allo stato puro, sono belle.

Ma sono un meraviglioso casino.
Sono apparizioni provvisorie di infinito.

People have ideas [...]
– Ideas, in their pure state, are beautiful.

But they are an amazing mess.
They are fleeting apparitions of the infinite.

(Prof. Mondrian Kilroy in Alessandro Baricco: City)
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