Programming by Optimisation:

Towards a new Paradigm
for Developing
High-Performance Software

Holger H. Hoos

BETA Lab
Department of Computer Science
University of British Columbia
Canada

PPSN 2012
Taormina, Sicilia, 2012/09/02

The age of machines

“As soon as an Analytical Engine exists, it will necessarily guide the future
course of the science. Whenever any result is sought by its aid, the question
will then arise — by what course of calculation can these results be arrived at
by the machine in the shortest time?”

(Charles Babbage, 1864)

Holger Hoos: Programming by Optimisation 2

BB |CREES N a avel | ._k;m:‘

NEWS tecHNnoLOGY N

Home US & Canada Latin America UK Africa Asia Europe Mid-East Business 'Health =Sci/Environment REGI

22 August 2011 Last updated at 20:42 ET HEO=Ea

When algorithms control the world

By Jane Wakefield
Technology reporter

If you were expecting some kind of warning when
computers finally get smarter than us, then think
again.

There will be no soothing HAL 9000-type voice informing us
that our human services are now surplus to requirements.

In reality. our electronic overlords are already taking control,
and they are doing it in a far more subtle way than science
fiction would have us believe.

Their weapon of choice - the algorithm

Behind every smart web Service is some even smarter web
code. From the web retailers - calculating what books and
films we might be interested in, to Facebook's friend finding
and image tagging services, to the search engines that
guide us around the net

Algorithms are spreading their
influence around the globe

It is these invisible computations that increasingly control how we interact Related Stories
with our electronic world.

At last month's TEDGIobal conference, algorithm expert Kevin Slavin s;:vjlsnag";':;&"g:;':ysv

delivered one of the tech show's most "sit up and take notice” speeches. 5

where he warned that the "maths that computers use to decide stuff' was ~ Robot reads minds to
infiltrating every aspect of our lives train itself

Holger Hoos: Programming by Optimisation

The age of computation

T P74 The maths[!] that computers use to

NEWS TecHNOLOGY

decide stuff [is] infiltrating every aspect
of our lives."

financial markets

v

social interactions

v

v

cultural preferences

v

Related st

artistic production

Holger Hoos: Programming by Optimisation

Performance matters ...

» computation speed (time is money!)

> energy consumption (battery life, ...)

» quality of results (cost, profit, weight, ...

. increasingly:

> globalised markets
> just-in-time production & services

> tighter resource constraints

Holger Hoos: Programming by Optimisation

Example: Resource allocation

> resources > demands ~» many solutions, easy to find

economically wasteful
~~ reduction of resources / increase of demand

> resources < demands ~» no solution, easy to demonstrate

lost market opportunity, strain within organisation
~~ increase of resources / reduction of demand

> resources ~ demands
~ difficult to find solution / show infeasibility

Holger Hoos: Programming by Optimisation

This talk:

new approach to software development, leveraging ...

> human creativity
> optimisation & machine learning

» large amounts of computation / data

Holger Hoos: Programming by Optimisation

Key idea:

» program ~~ (large) space of programs

> encourage software developers to
» avoid premature commitment to design choices
» seek & maintain design alternatives

» automatically find performance-optimising designs
for given use context(s)

= Programming by Optimisation (PbO)

Holger Hoos: Programming by Optimisation

QOutline

2. Vision & promise of PbO
3. Design space specification
4. Design optimisation

5. Cost & concerns

6. The road ahead — towards main-stream use of PbO

Holger Hoos: Programming by Optimisation

contributed articles

So1s 3145 040 71480

Avoid premature commitrment, seek design
alternatives, and automatically generate
performance-optimized software.

[ox no Lok n_noos

ll:rogramming

\
Optimization

e

Pertormance Martrs
Compuer peograms snd the sl

ke insiahts

= s conmimanc ocesion
= :"_;Hm.mwmmm

MagCUDS0, 2y ol e A ot Ao UK .

e
s g_,,;‘a,,;, Fithms on which they e hased ¢ | masons of mantimabiiy, esens | fiect e program's comeemens and
g o qumisy i wags of g | Wk, and e | nstanai. 5
L e 7 sl e B w,:nzm e k;;ijnmn T | vl ot of v
pregamming anguiges Dtk hoben uncer g wh of | of 3 geats perars e, conita | 5 o33 W 0t g s e
imicaton sevrldsn o wil s | g oy s G sl aqins | e nciona e

s ks ptiv

Iy e the hest resus. Such design and sk 1.
e o s iy 0k | ek i o o, | ST, el e
=y e, tom bigh v . | deperes o e e | i compies hasdrae everracre fam

el apecis of 3 ok
o kowlevel mplemeniason desiki. | or more cand die desprs ave vad | & sestnely maner comen. Hawerer,
e n " .

o

Communications of the ACM, 55(2), pp. 70-80, February 2012

www.prog-by-opt.net

Example: SAT-based software verification

Hutter, Babi¢, HH, Hu (2007)

v

Goal: Solve SAT-encoded software verification problems
as fast as possible

» new DPLL-style SAT solver SPEAR (by Domagoj Babic)

= highly parameterised heuristic algorithm

(26 parameters, ~ 8.3 x 107 configurations)
» manual configuration by algorithm designer

» automated configuration using ParamlLS, a generic
algorithm configuration procedure
Hutter, HH, Stiitzle (2007)

Holger Hoos: Programming by Optimisation 10

SPEAR: Performance on software verification benchmarks

solver num. solved mean run-time
MiniSAT 2.0 302/302 161.3 CPU sec
SPEAR original 298/302 787.1 CPU sec
SPEAR generic. opt. config. 302/302 35.9 CPU sec
SPEAR specific. opt. config. ~ 302/302 1.5 CPU sec

» =2 500-fold speedup through use automated algorithm
configuration procedure (ParamlILS)

> new state of the art
(winner of 2007 SMT Competition, QF_BV category)

Holger Hoos: Programming by Optimisation

Software development in the PbO paradigm

design
space
' description
'
Y 7 \
PbO-<L> parametric PbO instantiated
PbO-<L> <L> 5 <L>
source(s) | — P weaver - source(s) — og:rsrﬁ;sr;r - source(s)
AN
Y
| M~ 4 ‘
benchmark| deployed
| inputs executable ‘
| — use context

Holger Hoos: Programming by Optimisation 12

Levels of PbO:

Level 4: Make no design choice prematurely that
cannot be justified compellingly.

Level 3: Strive to provide design choices and
alternatives.

Level 2: Keep and expose design choices considered
during software development.

Level 1: Expose design choices hardwired into
existing code (magic constants, hidden
parameters, abandoned design alternatives).

Level 0: Optimise settings of parameters exposed
by existing software.

Holger Hoos: Programming by Optimisation

13

Success in optimising speed:

Application, Design choices Speedup PbO level

SAT-based software verification (SPEAR), 41 4.5-500 x 2-3
Hutter, Babi¢, HH, Hu (2007)

Al Planning (LPG), 62 3-118 x 1

Vallati, Fawcett, Gerevini, HH, Saetti (2011)

Mixed integer programming (CPLEX), 76 2-52 x 0

Hutter, HH, Leyton-Brown (2010)

. and solution quality:

University timetabling, 18 design choices, PbO level 2-3

~> new state of the art; UBC exam scheduling
Fawcett, Chiarandini, HH (2009)

Machine learning / Classification, 803 design choices, PbO level 0-1
~ outperforms specialised model selection & hyper-parameter optimisation

methods from machine learning
Thornton, Hutter, HH, Leyton-Brown (2012)

Holger Hoos: Programming by Optimisation

Mixed Integer Programming (MIP)

Hutter, HH, Leyton-Brown, Stiitzle (2009); Hutter, HH, Leyton-Brown (2010)

» MIP is widely used for modelling optimisation problems

» MIP solvers play an important role for solving broad range of
real-world problems

CPLEX:

» prominent and widely used commercial MIP solver

» exact solver, based on sophisticated branch & cut algorithm
and numerous heuristics

> 159 parameters, 81 directly control search process

Holger Hoos: Programming by Optimisation 15

“A great deal of algorithmic development effort has been devoted to
establishing default ILOG CPLEX parameter settings that achieve good
performance on a wide variety of MIP models.”

[CPLEX 12.1 user manual, p. 478]

Automatically Configuring CPLEX:

» starting point: factory default settings

v

63 parameters (some with ‘AUTO’ settings)
1.38 x 103" configurations
configurator: FocusedILS 2.3 (Hutter et al. 2009)

performance objective: minimal mean run-time

v

v

v

» configuration time: 10 x 2 CPU days

Holger Hoos: Programming by Optimisation 16

CPLEX on various MIPS benchmarks

Benchmark Default performance Optimised performance ' Speedup
[CPU sec] [CPU sec] factor
BCOL/CONIC.SCH 5.37 2.35 (2.4 +£0.29) 2.2
BCOL/CLS 712 23.4 (327 £+ 860) 30.4
BCOL/MIK 64.8 1.19 (301 +948) 54.4
CATS/REGIONS200 72 10.5 (11.4 +£0.9) 6.8
RNA-QP 969 525 (827 £ 306) 1.8
Benchmark Default performance Optimised performance Speedup
[CPU sec] [CPU sec] factor
BCOL/CONIC.SCH 5.37 2.35 (2.4 +0.29) 2.2
BCOL/CLS 712 23.4 (327 £ 860) 30.4
BCOL/MIK 64.8 1.19 (301 +948) 54.4
CATS/REGIONS200 72 10.5 (11.4 +£0.9) 6.8
RNA-QP 969 525 (827 £ 306) 1.8

(Timed-out runs are counted as 10 X cutoff time.)

Holger Hoos: Programming by Optimisation 17

CPLEX on BCOL/CLS

=
o
£

=
o
w

=
o
N

(N

=
o

=
o
=}

optimised run-time [CPU s]
=
o

—2|

[
s

10

107 10" 10° 10" 10° 10° 10°
default run-time [CPU s]

Holger Hoos: Programming by Optimisation

18

CPLEX on BCOL/CoNIC.SCH

=
o
£

=
o
w

=
o
N

=
o
.

=}
3

=
o

[
s
L]

optimised run-time [CPU s]
=
o

2

10

107 10" 10° 10" 10° 10° 10°
default run-time [CPU s]

Holger Hoos: Programming by Optimisation

19

Planning
Vallati, Fawcett, HH, Gerevini, Saetti (2011)

» classical, well-studied Al challenge

» many variations, domains (explicitly specified)

LPG:
> state-of-the-art, versatile system for plan generation,
plan repair and incremental planning for PDDL2.2 domains
» based on stochastic local search over partial plans

» 62 parameters, over 6.5 x 1017 configurations
4 of these previously “magic constants”,
50 hidden (= undocumented)

» automated configuration using FocusedILS 2.3 (as for CPLEX)

Holger Hoos: Programming by Optimisation 20

LPG on various planning domains

Domain Default performance Optimised performance
[CPU sec] (% solved) [CPU sec] (% solved)

Blocksworld 105.3 (98.8%) 4.29 (100%)

Depots 78.1 (90.3%) 5.7 (98.5%)

Gold-miner
Matching-BW
N-Puzzle
Rovers
Satellite
Sokoban
Zenotravel

94.4 (90.5%)
93.8 (15.8%)
321 (85%)
72.2 (100%)
64 (100%)
24.6 (75.8%)
103.7 (100%)

1.6 (100%)
5.6 (97.8%)
31.2 (86.8%)
21.2 (100%)
1.3 (100%)
1.19 (96.5%)
11.1 (100%)

Run-time cutoff for evaluation: 600 CPU sec

Holger Hoos: Programming by Optimisation

Post-Enrolment Course Timetabling
Chiarandini, Fawcett, HH (2008); Fawcett, HH, Chiarandini (in preparation)

Setting:

» students enroll in courses

> courses are assigned to rooms and time slots,
subject to hard constraints

» preferences are represented by soft constraints

Our solver:

» modular multiphase stochastic local search algorithm

» hard constraint solver: finds feasible course schedules

> soft constraint solver: optimise schedule (maintaining
feasibility)

Holger Hoos: Programming by Optimisation

22

Solver #1.:

v

developed over ca. 1 month
starting point: Chiarandini et al. (2003)

v

v

soft constraint solver unchanged

v

automatically configured hard constraint solver

Design space for hard constraint solver:

» parameterised combination of constructive search, tabu
search, diversification strategy

> 7 parameters, 50400 configurations

Automated configuration process:

» configurator: FocusedILS 2.3 (Hutter et al. 2009)

» performance objective: solution quality after 300 CPU sec

Holger Hoos: Programming by Optimisation

23

2nd International Timetabling Competition (ITC), Track 2

Distance To Feasibility

Aggregate

Cambazard et al.

-1

Atsuta et al.

Our Solver 2008 u}—ﬁﬂ},, 'l

Nothegger et al.

Muller | oo ow,

Holger Hoos: Programming by Optimisation

24

Solver #2:

» developed over ca. 6 months
> starting point: solver #1

» automatically configured hard & soft constraint solvers

Design space for soft constraint solver:

> highly parameterised simulated annealing algorithm

» 11 parameters, 2.7 X 10° configurations

Holger Hoos: Programming by Optimisation 25

High-level structure of timetabling solver

W e

Solver #2:

» developed over ca. 6 months
> starting point: solver #1

» automatically configured hard & soft constraint solvers

Design space for soft constraint solver:

> highly parameterised simulated annealing algorithm

» 11 parameters, 2.7 X 10° configurations

Automated configuration process:

» configurator: FocusedILS 2.4 (new version, multiple stages)

» multiple performance objectives
(final stage: solution quality after 600 CPU sec)

Holger Hoos: Programming by Optimisation 25

2-way race against ITC Track 2 winner

Aggregate

e o ‘|:|:|>777777777777777777777%

Cambazard etal. | l-c---c--meme-od L :

> solver #2 wins beats ITC winner on 20 out of 24 competition instances

> application to university-wide exam scheduling at UBC
(= 1650 exams, 44000 students)

Holger Hoos: Programming by Optimisation

Automated Selection and Hyper-Parameter
Optimization of Classification Algorithms
Thornton, Hutter, HH, Leyton-Brown (2012)

Fundamental problem:

Which of many available algorithms (models) applicable to
given machine learning problem to use, and with which
hyper-parameter settings?

Example: WEKA contains 47 classification algorithms

Holger Hoos: Programming by Optimisation

27

Our solution, Auto-WEKA

> select between the 47 algorithms using a top-level
categorical choice

» consider hyper-parameters for each algorithm

» solve resulting algorithm configuration problem using
general-purpose configurator SMAC

» first time joint algorithm/model selection +
hyperparameter-optimisation problem is solved

Automated configuration process:

» configurator: SMAC
» performance objective: cross-validated mean error rate
> time budget: 4 x 10000CPUsec

Holger Hoos: Programming by Optimisation 28

Selected results (median error rate over 25 runs)

Dataset #lInstances #Features #Classes Best Def. TPE | Auto-WEKA
WDBC 569 30 2 3.53 3.53 2.94
Hill-Valley 606 101 2 7.73 6.08 0.55
Arcene 900 10000 2 8.33 5.00 8.33
Semeion 1593 256 10 8.18 7.87 7.87
Car 1728 6 4 0.77 0.39 0
KR-vs-KP 3196 37 2 0.73 0.84 0.31
Waveform 5000 40 3 14.33 14.53 14.20
Gisette 7000 5000 2 2.81 2.62 2.29

Further details: http://arxiv.org/abs/1208.3719

Holger Hoos: Programming by Optimisation

http://arxiv.org/abs/1208.3719

PbO enables . ..

>

performance optimisation for different use contexts

(some details later)

adaptation to changing use contexts
(see, e.g., life-long learning — Thrun 1996)

self-adaptation while solving given problem instance
(e.g., Battiti et al. 2008; Carchrae & Beck 2005; Da Costa et al. 2008)

automated generation of instance-based solver selectors
(e.g., SATzilla — Leyton-Brown et al. 2003, Xu et al. 2008;

Hydra — Xu et al. 2010; ISAC — Kadioglu et al. 2010)

automated generation of parallel solver portfolios
(e.g., Huberman et al. 1997; Gomes & Selman 2001;

Schneider et al. 2012)

Holger Hoos: Programming by Optimisation 30

Design space specification

Option 1: use language-specific mechanisms

» command-line parameters
» conditional execution

» conditional compilation (ifdef)

Option 2: generic programming language extension

Dedicated support for ...
> exposing parameters

» specifying alternative blocks of code

Holger Hoos: Programming by Optimisation

31

Advantages of generic language extension:

» reduced overhead for programmer
> clean separation of design choices from other code

» dedicated PbO support in software development environments

Key idea:
» augmented sources: PbO-Java = Java 4+ PbO constructs, ...

> tool to compile down into target language: weaver

Holger Hoos: Programming by Optimisation 32

PbO-<L>
source(s)

Holger Hoos: Programming by Optimisation

33

Exposing parameters

numerator -= (int) (numerator / (adjfactor+1l) * 1.4);

##PARAM(float multiplier=1.4)
numerator -= (int) (numerator / (adjfactor+1) * ##multiplier);

» parameter declarations can appear at arbitrary places
(before or after first use of parameter)

> access to parameters is read-only (values can only be
set/changed via command-line or config file)

Holger Hoos: Programming by Optimisation 34

Specifying design alternatives

» Choice: set of interchangeable fragments of code
that represent design alternatives (instances of choice)

» Choice point:
location in a program at which a choice is available

##BEGIN CHOICE preProcessing

<block 1>
##END CHOICE preProcessing

Holger Hoos: Programming by Optimisation

35

Specifying design alternatives

» Choice: set of interchangeable fragments of code
that represent design alternatives (instances of choice)

» Choice point:
location in a program at which a choice is available

##BEGIN CHOICE preProcessing=standard
<block S>
##END CHOICE preProcessing

##BEGIN CHOICE preProcessing=enhanced
<block E>
##END CHOICE preProcessing

Holger Hoos: Programming by Optimisation

35

Specifying design alternatives

» Choice: set of interchangeable fragments of code
that represent design alternatives (instances of choice)

» Choice point:
location in a program at which a choice is available

##BEGIN CHOICE preProcessing
<block 1>
##END CHOICE preProcessing

##BEGIN CHOICE preProcessing
<block 2>
##END CHOICE preProcessing

Holger Hoos: Programming by Optimisation

35

Specifying design alternatives

» Choice: set of interchangeable fragments of code
that represent design alternatives (instances of choice)

» Choice point:
location in a program at which a choice is available

##BEGIN CHOICE preProcessing
<block 1la>
##BEGIN CHOICE extraPreProcessing
<block 2>
##END CHOICE extraPreProcessing
<block 1b>
##END CHOICE preProcessing

Holger Hoos: Programming by Optimisation

35

PbO-<L>
source(s)

PbO-<L>
weaver

Holger Hoos: Programming by Optimisation

design
space
description

L7

<L>
source(s)

L7

36

The Weaver

transforms PbO-<L> code into <L> code
(<L> = Java, C++, ...)

> parametric mode:
> expose parameters

» make choices accessible via (conditional, categorical)
parameters

» (partial) instantiation mode:

» hardwire (some) parameters into code
(expose others)

» hardwire (some) choices into code
(make others accessible via parameters)

Holger Hoos: Programming by Optimisation

37

design
space
description

L7

parame! C

<L>
source(s)

instantiated
<L>
source(s)

PbO
design
optimiser

benchmark
\ input

| use context

Holger Hoos: Programming by Optimisation 38

Design optimisation
Simplest case: Configuration / tuning

» Standard optimisation techniques
(e.g., CMA-ES — Hansen & Ostermeier 01; MADS — Audet & Orban 06)

» Advanced sampling methods
(e.g., REVAC, REVAC++ — Nannen & Eiben 06-09)
> Racing
(e.g., F-Race — Birattari, Stiitzle, Paquete, Varrentrapp 02;
Iterative F-Race — Balaprakash, Birattari, Stiitzle 07)
» Model-free search
(e.g., ParamlILS — Hutter, HH, Stiitzle 07;
Hutter, HH, Leyton-Brown, Stiitzle 09)

» Sequential model-based optimisation
(e.g., SPO — Bartz-Beielstein 06; SMAC — Hutter, HH, Leyton-Brown 11-12)

Holger Hoos: Programming by Optimisation

40

Racing (for Algorithm Selection)

& 18 6

algorithms

Holger Hoos: Programming by Optimisation

41

Racing (for Algorithm Selection)

& 18 6

algorithms

Holger Hoos: Programming by Optimisation

problem
instances

41

Racing (for Algorithm Selection)

B 2 5 [4 [5]

& 18 6
1

algorithms

Holger Hoos: Programming by Optimisation

problem
instances

41

Racing (for Algorithm Selection)

B 2 5 [¢4 [5]

v

—

v

v

—

& 18 6
1

algorithms

Holger Hoos: Programming by Optimisation

problem
instances

41

Racing (for Algorithm Selection)

2] Fetances
VY

— e—

vV

— e—

vV

— . —-

& 18 6

algorithms

Holger Hoos: Programming by Optimisation

41

Racing (for Algorithm Selection)

3
AR

L L L

%

& 18 6

algorithms

Holger Hoos: Programming by Optimisation

problem

instances

41

Racing (for Algorithm Selection)

’ problem
instances

3
AR

s
ol

algorithms

Holger Hoos: Programming by Optimisation

Racing (for Algorithm Selection)

AR AR

O
’lﬁ* :\/ :\/ :‘/ :‘/

algorithms

Holger Hoos: Programming by Optimisation

problem
instances

41

s
ol

algorithms

Racing (for Algorithm Selection)

. problem
instances

AR AR

:\/ :\/ :\/ :\/ :\/

Holger Hoos: Programming by Optimisation

41

Racing (for Algorithm Selection)

problem
instances

3&* A A A :‘/ winner

\ J
\ J

algorithms

Holger Hoos: Programming by Optimisation 41

F-Race (Birattari, Stiitzle, Paquete, Varrentrapp 2002)

> inspired by methods for model selection methods
in machine learning
(Maron & Moore 1994; Moore & Lee 1994)

» sequentially evaluate algorithms/configuration,
in each iteration, perform one new run per
algorithm /configuration

» eliminate poorly performing algorithms/configurations
as soon as sufficient evidence is gathered against them

> use Friedman test to detect poorly performing
algorithms/configurations

Holger Hoos: Programming by Optimisation

42

lterat{ive,ed} F-Race (Balaprakash, Birattari, Stiitzle 2007)

Problem: When using F-Race for algorithm configuration,
number of initial configurations considered
is severely limited.

Solution:
» perform multiple iterations of F-Race on limited set of
configurations

» sample candidate configurations based on probabilistic model
(independent normal distributions centred on surviving
configurations)

» gradually reduce variance over iterations (volume reduction)

~» good results for
— MAX-MIN Ant System for the TSP (6 parameters)
— simulated annealing for stochastic vehicle routing (4 parameters)

— estimation-based local search for PTSP (3 parameters)

Holger Hoos: Programming by Optimisation 43

Iterated Local Search

Holger Hoos: Programming by Optimisation

44

Iterated Local Search

Initialisation

Holger Hoos: Programming by Optimisation

44

Iterated Local Search

Local Search

Holger Hoos: Programming by Optimisation

44

Iterated Local Search

Local Search

Holger Hoos: Programming by Optimisation

44

Iterated Local Search

Perturbation

Holger Hoos: Programming by Optimisation

44

Iterated Local Search

Local Search

Holger Hoos: Programming by Optimisation

44

Iterated Local Search

g

Local Search

Holger Hoos: Programming by Optimisation 44

Iterated Local Search

Local Search

Holger Hoos: Programming by Optimisation

44

Iterated Local Search

T

Selection (using Acceptance Criterion)

Holger Hoos: Programming by Optimisation 44

Iterated Local Search

Perturbation

Holger Hoos: Programming by Optimisation

44

ParamlILS

>

>

>

iterated local search in configuration space

initialisation: pick best of default + R random configurations

subsidiary local search: iterative first improvement,
change one parameter in each step

perturbation: change s randomly chosen parameters
acceptance criterion: always select better configuration

number of runs per configuration increases over time;
ensure that incumbent always has same number of runs
as challengers

Holger Hoos: Programming by Optimisation

45

Sequential Model-based Optimisation
e.g., Jones (1998), Bartz-Beielstein (2006)

> Key idea:
use predictive performance model (response surface model) to
find good configurations

» perform runs for selected configurations (initial design)
and fit model (e.g., noise-free Gaussian process model)

> iteratively select promising configuration,
perform run and update model

Holger Hoos: Programming by Optimisation 46

Sequential Model-based Optimisation

parameter response

Holger Hoos: Programming by Optimisation

47

Sequential Model-based Optimisation

parameter response

€ measured

Holger Hoos: Programming by Optimisation

47

Sequential Model-based Optimisation

parameter response

€ measured

==== model

Holger Hoos: Programming by Optimisation

47

Sequential Model-based Optimisation

parameter response

@ measured

==== model
@ predicted best

Holger Hoos: Programming by Optimisation 47

Sequential Model-based Optimisation

parameter response
€ measured
==== model
@ predicted best

|

Holger Hoos: Programming by Optimisation 47

Sequential Model-based Optimisation

parameter response
€ measured

==== model

Holger Hoos: Programming by Optimisation 47

Sequential Model-based Optimisation

parameter response
€ measured
==== model
@ predicted best

* -
,
,

,

,

,

,

,

Holger Hoos: Programming by Optimisation

47

Sequential Model-based Optimisation

parameter response
€ measured

==== model

Holger Hoos: Programming by Optimisation 47

Sequential Model-based Optimisation

parameter response
€ measured
==== model
@ predicted best

Holger Hoos: Programming by Optimisation 47

Sequential Model-based Optimisation

parameter response
€ measured

==== model

Holger Hoos: Programming by Optimisation 47

Sequential Model-based Optimisation

parameter response
€ measured
==== model
@ predicted best

@ new incumbent found!

Holger Hoos: Programming by Optimisation 47

Sequential Model-based Algorithm Configuration (SMAC)
Hutter, HH, Leyton-Brown (2011)

> uses random forest model to predict performance
of parameter configurations

» predictions based on algorithm parameters and instance
features, aggregated across instances

» finds promising configurations based on expected improvement
criterion, using multi-start local search and random sampling

> initialisation with single configuration
(algorithm default or randomly chosen)

Holger Hoos: Programming by Optimisation 48

Parallel algorithm portfolios
Key idea:

Exploit complementary strengths by running multiple algorithms
(or instances of a randomised algorithm) concurrently.

Holger Hoos: Programming by Optimisation

49

Holger Hoos:

P

Parallel Algorithm Portfolios

rogramming by Optimisation

49

Parallel algorithm portfolios

Key idea:

Exploit complementary strengths by running multiple algorithms
(or instances of a randomised algorithm) concurrently.

~ risk vs reward (expected running time) tradeoff,
robust performance on a wide range of instances

Huberman, Lukose, Hogg (1997); Gomes & Selman (1997,2000)

Note:

» can be realised through time-sharing / multi-tasking

» particularly attractive for multi-core / multi-processor
architectures

Holger Hoos: Programming by Optimisation

49

Application to decision problems (like SAT, SMT):

Concurrently run given component solvers until the first of them
solves the instance.

~» running time on instance m =
(# solvers) x (running time of VBS on)

Examples:

» ManySAT (Hamadi, Jabbour, Sais 2009; Guo, Hamadi,
Jabbour, Sais 2010)

» Plingeling (Biere 2010-11)

» ppfolio (Roussel 2011)

~~ excellent performance (see 2009, 2011 SAT competitions)

Holger Hoos: Programming by Optimisation

Constructing portfolios from a single parametric solver
HH, Leyton-Brown, Schaub, Schneider (2012)

Key idea: Take single parametric solver, find configurations that
make an effective parallel portfolio

Note: This allows to automatically obtain parallel solvers
from sequential sources (automatic parallisation)

Holger Hoos: Programming by Optimisation

51

Ingredients for parallel solver

based on competitive parallel portfolio

» Parametric solver A
» Configuration space C
» Instance set /

» Algorithm configurator AC

That’s all!

Holger Hoos: Programming by Optimisation

Recipe for parallel solver

based on competitive parallel portfolio

1. Use algorithm configurator to produce multiple configurations
of given solver that work well together

2. Run configurations in parallel until one solves given instance

Fully automatic method!

Holger Hoos: Programming by Optimisation 53

Recipe: GLOBAL

for parallel solver based on competitive parallel portfolio

» For k portfolio components (= processors/threads), consider
combined configuration space C¥ of k copies of given
parametric solver

» Use configurator AC to find good joint configuration in C*
(standard protocol for current configurators:
pick best result from multiple independent runs)

» Configurations are assessed using (training) instance set /

Challenge: Large configuration spaces (exponential in k)

Holger Hoos: Programming by Optimisation 54

Recipe: GREEDY

for parallel solver based on competitive parallel portfolio

» Add portfolio components, one at a time,
starting from single solver

» [teration 1: Configure given solver A using configurator AC
~~ single-component portfolio A*

> [teration j =2 ... k: Configure given solver A using AC
to achieve optimised performance of
extended portfolio A/ := AJ/~1|| A
i.e., optimise improvement in A/ over AJ~1

Note: Similar idea to many greedy constructive algorithms
(including Hydra, Xu et al. 2010)

Holger Hoos: Programming by Optimisation

55

Product: parallel Lingeling (v.276)

on SAT Comp. Application instances

PAR10 Overall Speedup Avg. Speedup
vs Configured-SP vs Configured-SP
Default-SP 3747 0.93 1.44
Configured-SP 3499 1.00 1.00
Plingeling 3066 1.14 7.39
Global-MP4 2734 1.27 10.47
Greedy-MP4 1341 2.61 3.52

Holger Hoos: Programming by Optimisation

56

Cost & concerns

But what about ...

» Computational complexity?
» Cost of development?

» Limitations of scope?

Holger Hoos: Programming by Optimisation

57

Computationally too expensive?

SPEAR revisited:

» total configuration time on software verification benchmarks:
~ 30 CPU days

» wall-clock time on 10 CPU cluster:
~ 3 days

» cost on Amazon Elastic Compute Cloud (EC2):
61.20 USD (= 42.58 EUR)

» 61.20 USD pays for ...

» 1:45 hours of average software engineer
» 8:26 hours at minimum wage

Holger Hoos: Programming by Optimisation

58

Too expensive in terms of development?

Design and coding:
» tradeoff between performance/flexibility and overhead
» overhead depends on level of PbO

» traditional approach: cost from manual exploration of
design choices!

Testing and debugging:

» design alternatives for individual mechanisms and components
can be tested separately

~ effort linear (rather than exponential) in the number of
design choices

Holger Hoos: Programming by Optimisation 59

Limited to the “niche” of NP-hard problem solving?

Some PbO-flavoured work in the literature:

» computing-platform-specific performance optimisation
of linear algebra routines
(Whaley et al. 2001)

» optimisation of sorting algorithms
using genetic programming
(Li et al. 2005)

» compiler optimisation
(Pan & Eigenmann 2006, Cavazos et al. 2007)

> database server configuration
(Diao et al. 2003)

Holger Hoos: Programming by Optimisation

60

The road ahead

» Support for PbO-based software development

» Weavers for PbO-C, PbO-C++, PbO-Java
» PbO-aware development platforms

» Improved / integrated PbO design optimiser

» Best practices
» Many further applications

» Scientific insights

Holger Hoos: Programming by Optimisation

61

Leveraging parallelism

> design choices in parallel programs
(Hamadi, Jabhour, Sais 2009)

» deriving parallel programs from sequential sources
~> concurrent execution of optimised designs
(parallel portfolios)
(Schneider, HH, Leyton-Brown, Schaub in progress)

> parallel design optimisers
(e.g., Hutter, Hoos, Leyton-Brown 2012)

Holger Hoos: Programming by Optimisation 62

Programming by Optimisation ...

» leverages computational power to construct
better software

v

enables creative thinking about design alternatives

v

produces better performing, more flexible software

v

facilitates scientific insights into

» efficacy of algorithms and their components

» empirical complexity of computational problems

. changes how we build and use high-performance software

Holger Hoos: Programming by Optimisation

63

Acknowledgements

Collaborators:

v

VVYVVYVYVYVVYYVYYVYYVYYY

Domagoj Babi¢
Sam Bayless
Chris Fawcett
Quinn Hsu
Frank Hutter
Erez Karpas
Chris Nell
Eugene Nudelman
Steve Ramage
Gabriele Roger
Marius Schneider
James Styles
Dave Tompkins
Mauro Vallati
Lin Xu

Research funding:

>
>

NSERC, Mprime, GRAND, CFI
IBM, Actenum Corp.

Holger Hoos: Programming by Optimisation

vyVvyvyVvVy Yy

v

>
>

Thomas Bartz-Beielstein
(FH KalIn, Germany)

Marco Chiarandini
(Syddansk Universitet, Denmark)

Alfonso Gerevini
(Universita degli Studi di Brescia, ltaly)

Malte Helmert

(Universitat Basel, Switzerland)
Alan Hu

Kevin Leyton-Brown
Kevin Murphy

Alessandro Saetti
(Universita degli Studi di Brescia, Italy)

Torsten Schaub

(Universitat Potsdam, Germany)

Thomas Stiitzle
(Université Libre de Bruxelles, Belgium)

Computing resources:

Arrow, BETA, ICICS clusters
Compute Canada / WestGrid

64

Gli uomini hanno idee [...]
— Le idee, se sono allo stato puro, sono belle.
Ma sono un meraviglioso casino.
Sono apparizioni provvisorie di infinito.

People have ideas [...]
— Ideas, in their pure state, are beautiful.
But they are an amazing mess.
They are fleeting apparitions of the infinite.

(Prof. Mondrian Kilroy in Alessandro Baricco: City)

contributed articles

So1s 3145 040 71480

Avoid premature commitrment, seek design
alternatives, and automatically generate
performance-optimized software.

[ox no Lok n_noos

ll:rogramming

\
Optimization

e

Pertormance Martrs
Compuer peograms snd the sl

ke insiahts

= s conmimanc ocesion
= :"_;Hm.mwmmm

MagCUDS0, 2y ol e A ot Ao UK .

e
s g_,,;‘a,,;, Fithms on which they e hased ¢ | masons of mantimabiiy, esens | fiect e program's comeemens and
g o qumisy i wags of g | Wk, and e | nstanai. 5
L e 7 sl e B w,:nzm e k;;ijnmn T | vl ot of v
pregamming anguiges Dtk hoben uncer g wh of | of 3 geats perars e, conita | 5 o33 W 0t g s e
imicaton sevrldsn o wil s | g oy s G sl aqins | e nciona e

s ks ptiv

Iy e the hest resus. Such design and sk 1.
e o s iy 0k | ek i o o, | ST, el e
=y e, tom bigh v . | deperes o e e | i compies hasdrae everracre fam

el apecis of 3 ok
o kowlevel mplemeniason desiki. | or more cand die desprs ave vad | & sestnely maner comen. Hawerer,
e n " .

o

Communications of the ACM, 55(2), pp. 70-80, February 2012

www.prog-by-opt.net

