
SFB 876 Verfügbarkeit von Information
durch Analyse unter Ressourcenbeschränkung

A Memory-Efficient Data Structure for Pattern Matching
in DNA with Backward Search

Dominik Kopczynski * Sven Rahmann*,†

*Collaborative Research Center SFB 876, TU Dortmund, Germany Dominik.Kopczynski@tu-dortmund.de
†Genome Informatics, Institute of Human Genetics, Faculty of Medicine, University of Duisburg-Essen, Germany Sven.Rahmann@uni-due.de

Since backward search was introduced by Ferragina and Manzini, it became a standard index-based linear-time exact pattern search tech-
nique [2]. Due to the inherently high memory usage of its auxiliary tables, we developed a data structure that provides at least a 20-fold data
reduction of memory usage without increasing computation time significantly.

Backward search

Given: A text T with n = |T | and pattern P with m = |P | over a finite
alphabet Σ. Task: Find all occurences of P in T in O(m) time.

Example
T = GCTATGATAGTCAT$

Backward search uses trick by exploiting sorted order of characters
in Burrows-Wheeler transform [1] of T .

Tbwt = TTCGTTGT$AAACGA

Auxiliary tables
Two auxiliary tables must be pre-computed.
•less: table of size |Σ|, where less[c] is the number of characters in
T lexicographically smaller than c

•occ: |Σ| × n matrix containing the number of cs in the BWT up to
(and including) index d

c less[c] occ[c]

A 1 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 3, 3, 4
C 5 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2
G 7 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3
T 10 1, 2, 2, 2, 3, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5

Tbwt = T T C G T T G T $ A A A C G A

Pattern matching
Process the pattern backwards character by character and update
the suffix array interval [L,R] that points to the occurrences of the
processed pattern suffix at each step. The update step is

L+(c) = less[c] + occ[c][L− 1],
R+(c) = less[c] + occ[c][R]− 1.

Interval [L,R] determines positions in suffix array where all prefixes
equal P . This process takes m iteratiorns.

Bioinformatics context
Backward search is widely used in read mappers like BWA [3]. Either
searching for exact seeds or error-tolerant alignment is possible.
Since double-stranded DNA contains about n ≈ 6.2 · 109 bases, the
occ table (int-typed entries of 4 byte each) reaches about

|Σ| · n · 4 bytes ≈ 100 Gbytes.

Challenge: Reduce memory usage without increasing runtime.

Improved backward search

Idea: Lots of information in occ table are redundant. Difference of
following entries is at most 1. Store information where character
appears bitwise in app table.

c app[c]

A 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1
C 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0
G 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0
T 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0

Tbwt = T T C G T T G T $ A A A C G A

Bits are stored in blocks of long int type. Trick: using hardware
implemented command popcnt to count bits in block and addition-
ally store summed up occurences in occ table for every r -th entry.
Typically the register size (long int) r = 64 is suitable.

c occ[c]

A 0, 0, 3
C 1, 1, 1
G 1, 2, 2
T 2, 5, 5

Tbwt = T T C G T T G T $ A A A C G A

(Example: r = 4)

Determination of new interval
•Given: interval L,R from previous iteration and current char c
•Determine long block in app table: block = L >> 6

•Determine the i significant bits in the block: i = L & 63
1 block_l = 0; block_r = R >> 6
2 if L > 0:
3 block_l = (L - 1) >> 6
4 appear_l = popcnt(app[c][block_l] << (63 - ((L - 1) & 63)))
5 appear_r = popcnt(app[c][block_r] << (63 - (R & 63)))
6 if block_l > 0: occur_l = occ[c][block_l - 1]
7 if block_r > 0: occur_r = occ[c][block_r - 1]
8
9 L = less[c] + appear_l + occur_l

10 R = less[c] + appear_r + occur_r - 1

Sampling occ table by storing only every k-th entry provides addi-
tional data reduction. Typically k = 4 is suitable. Code does not get
more difficult.

Memory
Using the double-stranded DNA again we get a memory usage of

app: |Σ| · n · 1
8 bytes ≈ 3.1 Gbytes

occ: |Σ| · n · 4
r ·k bytes ≈ 0.4 Gbytes

≈ 3.5 Gbytes.

References

[1] M. Burrows and D. Wheeler. A block-sorting lossless data compression algo-
rithm. Technical Report 124, Digital Equipment Corporation, Palo Alto, CA,
1994.

[2] P. Ferragina and G. Manzini. Opportunistic data structures with applications. In
Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium
on, pages 390–398. IEEE, 2000.

[3] H. Li and R. Durbin. Fast and accurate short read alignment with Burrows–
Wheeler transform. Bioinformatics, 25(14):1754–1760, 2009.

