
Master’s Thesis

Efficient Computation of Nearest
Smaller Suffixes

Jonas Ellert
July 8, 2019

Supervisors:
Prof. Dr. Johannes Fischer
M.Sc. Florian Kurpicz

Faculty of Computer Science
Algorithm Engineering (LS 11)
Technische Universität Dortmund
http://ls11-www.cs.tu-dortmund.de

Abstract. In this thesis we explore the possibilities of linear time
Lyndon array construction. We propose an intuitive way of rep-
resenting the Lyndon array as an ordered tree that can be stored
in only 2n+ o(n) bits of memory, which is asymptotically optimal.
A novel algorithm allows the construction of this representation in
O(δn) time, while using only d4n/δe+O(

√
n lgn) bits of additional

memory (for a freely choosable parameter δ). It is the first algo-
rithm that computes a representation of the Lyndon array in linear
time without relying on other data structures like the suffix array.
In practice, it is significantly faster than the algorithms that need
the suffix array, while using only a fraction of the memory. There-
fore, it makes the Lyndon array more accessible as a prerequisite
for other algorithms and data structures.

My gratitude goes to my supervisors, my family, and my friends.

Contents

1 Introduction 1
1.1 Overview . 3
1.2 Related Work . 3

1.2.1 Nearest Smaller Values . 3
1.2.2 Succinct Representations of Trees and the Lyndon Array 4
1.2.3 Lyndon Array Construction Algorithms 4

2 Preliminaries 7
2.1 Strings & Lyndon Words . 7
2.2 The Lyndon Array & Nearest Smaller Suffix Arrays 10
2.3 Ordinal Trees . 14

2.3.1 Subtrees . 15
2.3.2 Tree Traversal . 15

3 Previous Smaller Suffix Trees 17
3.1 Introducing the PSS Tree . 17
3.2 Building the NSS Array from the PSS Tree 19
3.3 Succinct Representation of the PSS Tree . 20

3.3.1 Storing the Tree as a Balanced Parentheses Sequence 20
3.3.2 Answering NSS and PSS Queries . 21
3.3.3 Answering Range Minimum Suffix Queries 23
3.3.4 Proving Optimal Succinctness . 24

4 Constructing the PSS Tree 27
4.1 Computing the NSS & PSS Array . 27

4.1.1 Pointer Jumping Technique . 27
4.1.2 Computing the NSS & PSS Array Simultaneously 28

4.2 Computing the BPS of the PSS Tree . 30
4.3 Introducing a Separate LCP Stack . 31

4.3.1 Skipping Previously Computed Prefixes 32
4.3.2 Applying the New Knowledge to the Algorithm 33

i

ii CONTENTS

4.3.3 Analyzing the Cost . 35

5 Achieving Linear Time 37
5.1 Run Extension . 40

5.1.1 Properties of Lyndon Runs . 40
5.1.2 Extending Increasing Runs . 44
5.1.3 Extending Decreasing Runs . 46
5.1.4 Skipping Ω(|γ|) Iterations . 48
5.1.5 Presence of Lyndon Run Indices on H 48

5.2 Amortized Look-Ahead . 50
5.2.1 Finding an Anchor . 51
5.2.2 Properties of the Anchor . 53
5.2.3 Skipping Iterations . 56

5.3 Algorithmic Summary . 62

6 Decreasing the Memory Bound 63
6.1 Maintaining H in O(

√
n · lgn) Bits . 63

6.2 Maintaining H in n+O(lgn · lg lgn) Bits 66
6.2.1 Counting Trailing Zeros . 66
6.2.2 Succinct Unary Stack . 71
6.2.3 Succinct Telescope Stack . 74

6.3 Embedding R in the BPS . 75
6.4 Maintaining L in d4n/δe+ o(n) Bits . 76

6.4.1 Transformation of LCP values . 76
6.4.2 Using a Unary Stack . 77
6.4.3 Proving the Space Bound . 78

6.5 Combining the Pieces . 82

7 Experimental Evaluation 83
7.1 Experimental Setup . 83
7.2 Counting Trailing Zeros . 83
7.3 Introducing the Text Collection . 86
7.4 Comparing the Stacks . 88

7.4.1 Artificial Instances . 90
7.4.2 Real Texts . 93

7.5 Comparison Against Existing Algorithms 96
7.5.1 Testing Methodology . 98
7.5.2 Results . 98
7.5.3 Conclusion . 100

7.6 Scalability . 101

CONTENTS iii

7.6.1 Repetitive Artificial Texts . 101
7.6.2 Real Texts . 104
7.6.3 Conclusion . 106

8 Conclusion 107
8.0.1 Future Work . 107

A Detecting Extended Lyndon Runs 109
A.0.1 Algorithmic Approach . 110

B Additional Experimental Results 113

Bibliography 121

Eidesstattliche Versicherung 125

iv CONTENTS

Chapter 1

Introduction

String processing is a fundamental discipline of computer science. Its applications are
countless and influence our lives on a daily basis. For example, efficient string match-
ing drives software like search engines, spell checkers, spam filters, and many more. The
ability to index large collections of DNA sequences accelerates the research in genetics,
improving our understanding of dangerous diseases and genetic disorders. Another im-
portant application of string processing is lossless text compression, which allows us to
handle the steadily growing amounts of data that we encounter in the information age,
for example during web mining, DNA sequencing, or when logging sensor data.

Many algorithms and data structures from the field of text indexing and compression utilize
the same fundamental data structures as building blocks or prerequisites. Two common
examples for this are the suffix array [Manber and Myers, 1990, 1993] and the Burrows-
Wheeler transform (BWT) [Burrows and Wheeler, 1994]. In recent years, a new data
structure called Lyndon array emerged, which could become another important building
block. In this thesis we focus on the efficient computation of the Lyndon array, which
makes it more practical as a prerequisite for other algorithms and data structures.

A Lyndon word (named after the American mathematician Roger Lyndon) is a string
that is lexicographically smaller than all of its rotations. For example, norway is not
a Lyndon word because it is lexicographically larger than its rotation aynorw. On the
other hand, belgium is a Lyndon word because it is lexicographically smaller than all of
its rotations. Given a string, the Lyndon array at position i contains the length of the
longest Lyndon word that begins at position i of the string. While apparently it has been
named Lyndon array for the first time in [Franek et al., 2016], it has previously been
used without the explicit name in [Bannai et al., 2017] (preprint available since 2014).
Since it was first introduced, the Lyndon array has become of great academic interest.
In the aforementioned paper, Bannai et al. prove that there are less than n runs in any
string of length n. A run is a maximal periodic subinterval of a string, like for example

1

2 CHAPTER 1. INTRODUCTION

ississi in mississippi. Their algorithm to compute all runs utilizes the Lyndon array,
showing its practical importance. Another use case of the Lyndon array emerged when
Baier introduced a new linear-time suffix sorting algorithm [Baier, 2015, 2016]. In its first
phase, this algorithm computes (a partially sorted version of) the Lyndon array, which
is then uses to compute the suffix array in the second phase. Efficient Lyndon array
construction algorithms could potentially speed up the first phase, and thus pave the way
for faster suffix sorting algorithms.

In this thesis we present the previous smaller suffix tree (PSS tree), a data structure
of size 2n + O(n/ lgc n) bits that simulates access to the Lyndon array in O(c2) time.
Constructing the PSS tree requires two steps: First, we have to build the actual tree
structure as a balanced parentheses sequence (BPS) of size 2n+ 2 bits. Then, we can add
O(c2) time query support by computing an auxiliary data structure of size O(n/ lgc n)
bits. We provide a parameterized construction algorithm that builds the PSS tree (or
more precisely its BPS) in O(δn) time and uses only d4n/δe+O(

√
n · lgn) bits of memory

(apart from input and output). The algorithm is elementary, i.e. it uses no complex
precomputed data structures like the suffix array or the Burrows-Wheeler transform. As
it appears, this is the first elementary algorithm that computes a representation of the
Lyndon array in linear time. The experimental evaluation confirms that the new algorithm
is highly competitive in practice.

We also introduce two data structures that are strongly related to the Lyndon array:
The previous smaller suffix array (PSS array, denoted as pss) and the next smaller suffix
array (NSS array, denoted as nss). Let Si be the i-th suffix of a string S, then the next
smaller suffix of Si can be found by searching among the upcoming suffixes Si+1, . . . , Sn for
the first suffix Sj that is lexicographically smaller than Si. The entry of the NSS array at
position i is exactly the described index j, i.e. we have nss[i] = j. The PSS array is defined
analogously. An interesting property of next smaller suffixes is, that they inherently encode
the Lyndon array. The longest Lyndon word starting at any text position i is exactly the
string S[i..nss[i]− 1], which has been shown in [Franek et al., 2016, Lemma 15] and later
also in [Louza et al., 2018, Lemma 1]. A similar property had previously been proven in
[Hohlweg and Reutenauer, 2003, Corollary 3.1].

The PSS tree does not only simulate access to the Lyndon array, but also to the NSS
array and the PSS array. In fact, it is merely a different representation of the PSS array.
An additional useful feature of the PSS tree is its ability to answer range minimum suffix
queries (RMSQ): Given two indices i, j, we find the lexicographically smallest suffix Sk
with k ∈ [i, j] in O(c2) time.

Finally, we prove that our data structure reaches optimal succinctness. The aim of succinct
data structures is to store elements from a universe of size L(n) in lg(L(n)) + o(lg(L(n)))

1.1. OVERVIEW 3

bits1. We will show that the information-theoretical lower bound for storing Lyndon arrays
of length n is lg(L(n)) = 2n − Θ(lgn) bits, which means that our data structure of size
2n+ o(n) bits is asymptotically optimal in terms of succinctness.

1.1 Overview

The paper is organized as follows: In the next section we discuss related work, focusing
on existing approaches for Lyndon array construction. Chapter 2 establishes the basic
definitions regarding string processing. Chapter 3 explains the PSS tree, its succinct rep-
resentation, and how to simulate access to the various array. We present the construction
algorithm for the PSS tree incrementally, starting in Chapter 4 with a solution that needs
O(n2) time and O(n) words of additional memory. In Chapter 5 we reduce the time
bound to O(n). In Chapter 6 we propose novel space efficient stack representations. They
allow us to introduce the parameter δ, reducing the memory bound of our algorithm to
d4n/δe + O(

√
n · lgn) bits for an execution time of O(δn). An extensive evaluation in

Chapter 7 is followed by the conclusion and a discussion of future work in Chapter 8.

1.2 Related Work

1.2.1 Nearest Smaller Values

First, we discuss the previous smaller value (PSV) and next smaller value (NSV) problems.
As the name suggests, they are in close relation to the previous and next smaller suffix
array. For the PSS tree and its construction we utilize techniques that have previously
been used in the context of PSVs and NSVs.

Given an array A, the PSV of A[i] is the rightmost element A[j] that is left of A[i] and
satisfies A[j] < A[i]. We write psv[i] = j. NSVs are defined analogously. The problem
originates from parallel computing, where it has been shown that all PSVs and NSVs of
an array of n entries can be computed in optimal O(lg lgn) time on a CRCW PRAM with
n/ lg lgn processors [Berkman et al., 1993]. It is commonly known, that computing all
PSVs and NSVs with a single processor takes O(n) time (for example [Goto and Bannai,
2013, Algorithm 4]). There is a wide variety of applications in which PSVs and NSVs can
be used, for example in the context of compressed suffix trees [Fischer et al., 2008], as a
prerequisite of Lempel-Ziv factorization [Goto and Bannai, 2013], and (for this thesis most
importantly) as a simple way of computing the Lyndon array [Franek et al., 2016]. We
will cover the Lyndon array construction with NSVs in Section 1.2.3. Most recently, PSVs
1In this thesis, lg denotes the binary logarithm.

4 CHAPTER 1. INTRODUCTION

have been used to define an alternative representation of Cartesian trees that enables new
pattern matching techniques [Park et al., 2019].

There is an intuitive way of storing all PSVs of an array in an ordinal tree: Each index i is a
child of psv[i], and children of the same node are ordered ascendingly. This representation
has been introduced under the name LRM tree as a navigational tool for succinct trees
[Sadakane and Navarro, 2010], and under the name 2d-min-heap in the context of range
minimum queries [Fischer, 2010]. It is the inspiration for the PSS tree, which is a modified
version of the LRM tree, where each index i of a string is a child of pss[i].

1.2.2 Succinct Representations of Trees and the Lyndon Array

There exists a variety of succinct tree representations that store an unlabeled ordinal tree
of n nodes in 2n bits. Most commonly known are the balanced parenthesis sequence
(BPS), the depth-first unary degree sequence (DFUDS), and the level-order unary degree
sequence (LOUDS) (see [Munro and Raman, 2001], [Benoit et al., 2005], and [Jacobson,
1989; Delpratt et al., 2006] respectively). Usually, these succinct representations are ac-
companied by an auxiliary support data structure of sublinear size that allows a wide
variety of navigational operations on the tree. For the PSS tree, we use the BPS with
Sadakane and Navarro’s auxiliary data structure of size O(n/ lgc n) bits, which supports
all common operations (except for insertions and deletions) in O(c2) time [Sadakane and
Navarro, 2010].

Interestingly, while we use only 2n+ o(n) bits of memory, we can simulate access to both
the PSS and the NSS array. This is surprising because it has been shown that the number
of bits needed for any combined NSV and PSV data structure is lgSn, where Sn is the
n-th Schröder–Hipparchus number with lgSn = 2n + Ω(n) [Fischer, 2011]. We will see
that the reason for this peculiarity is, that two entries at different positions of an array
can be identical, while two suffixes starting at different positions of a string cannot.

Coincidentally, the BPS representation of the PSS tree is identical to the succinct Lyndon
array representation shown in [Louza et al., 2018] (which also appears to be the only
known succinct version of the Lyndon array). What differs is the semantic interpretation:
Louza et al. do not interpret their representation as a tree, but identify each parenthesis
pair as a maximal Lyndon word, where the distance between the opening parenthesis and
the closing parenthesis determines the length of the word.

1.2.3 Lyndon Array Construction Algorithms

The literature differentiates between elementary and non-elementary Lyndon array con-
struction algorithms. The former ones directly compute the Lyndon array from a given

1.2. RELATED WORK 5

string without requiring precomputed data structures. The latter ones either require a
precomputed data structure, or they produce the Lyndon array as a byproduct while
computing another data structure. The exception is the first phase of Baier’s suffix sort-
ing algorithm [Baier, 2015, 2016], which cannot be clearly classified as elementary or
non-elementary (we will cover it in a separate section).

In general, elementary algorithms offer less compelling worst-case guarantees in terms of
execution time. For example, Duval’s algorithm for Lyndon factorization can be applied to
the input text in either iterative or recursive fashion, building the Lyndon array in O(n2)
time [Franek et al., 2016; Duval, 1983]. In the aforementioned paper by Franek et al.,
the authors provide an additional elementary algorithm that is based on the idea of next
smaller suffixes. They believe that this algorithm builds the Lyndon array in O(σn lgn)
time (where σ is the size of the alphabet), but do not provide a formal proof. It appears,
that no linear time elementary algorithm has been discovered yet.

Non-elementary Lyndon array construction algorithms usually achieve linear time (even
if we factor in the required precomputation time), but are slow in practice and have high
memory requirements. This is due to the fact, that seemingly all of them either depend
on the suffix array, or they simultaneously construct the Lyndon array and the suffix
array. A surprisingly elegant and simple algorithm exploits the connection between next
smaller suffixes and the Lyndon array by simply computing all NSVs of the inverse suffix
array [Franek et al., 2016]. The same idea has been used in [Crochemore and Russo,
2018]. Another interesting approach is the Lyndon array construction during Burrows-
Wheeler inversion. Given the Burrows-Wheeler transform of a string, it is possible to
simultaneously restore the string and compute the Lyndon array in linear time [Louza
et al., 2018]. This is very fast, if the BWT is already known. If only the plain text is
given, then we first have to construct the BWT, which essentially requires the suffix array.
Most recently, Nong’s space efficient suffix array construction algorithm [Nong, 2013] has
been modified to simultaneously compute the suffix array and the Lyndon array [Louza
et al., 2019].

Baier’s Suffix Sorting

Lastly, we want to briefly discuss Baier’s linear time suffix sorting algorithm [Baier, 2015,
2016]. It has been thoroughly analyzed regarding its relation to the Lyndon array [Franek
et al., 2017, 2018]. Essentially, the algorithm consists of two phases, which Franek et
al. characterized as follows: In the first one, it computes a partially sorted version of
the Lyndon array. The second phase exploits the partial sort to build the suffix array.
This differs from other approaches because the suffix array is not used as prerequisite of
computing the Lyndon array, and the Lyndon array is also not obtained as a byproduct

6 CHAPTER 1. INTRODUCTION

of computing the suffix array. A more matching description would be, that the Lyndon
array serves as a prerequisite of computing the suffix array. There exists a modification
of the algorithm that outputs the Lyndon array (in its original form, i.e. not partially
sorted) at the end of the first phase [Louza et al., 2018]2. However, it still computes the
partial sorting first, and then generates the non-sorted Lyndon array from it. Therefore,
it cannot really be seen as a non-elementary algorithm.

2see also https://github.com/felipelouza/lyndon-array

https://github.com/felipelouza/lyndon-array

Chapter 2

Preliminaries

In this chapter we introduce the notation and basic definitions that we use throughout
this work. In terms of general notation, we simplify some recurring terms. Since we
only use logarithms to base two, we simply write “lg x” instead of “log2 x”. The set
N of natural numbers is defined as the non-negative integers {0, 1, 2, . . . }, whereas N+

denotes the positive integers {1, 2, 3 . . . }. Intervals are always to be considered discrete,
i.e. for x, y ∈ N the interval [x, y] represents the set {i | i ∈ N ∧ x ≤ i ≤ y}. We use the
notations (x, y) = [x+ 1, y − 1], [x, y) = [x, y − 1], and (x, y] = [x+ 1, y] for open and half-
open discrete intervals. Our research is situated in the word RAM model [Hagerup, 1998],
where we can perform fundamental operations (logical shifts, basic arithmetic operations
etc.) on words of size w bits in constant time. For the input size n of our problems we
assume dlgne ≤ w.

2.1 Strings & Lyndon Words

2.1.1 Definition (Alphabet). An alphabet Σ is a strictly totally ordered and finite
set of characters. We assume that any two characters of the alphabet can be compared
in constant time.

For figures and examples we use the lowercase English alphabet with the commonly used
strict total order a < b < c < · · · < z.

2.1.2 Definition (String). A string S ∈ Σ∗ is a finite sequence of characters over an
alphabet Σ. The length |S| of the string is the number of characters it contains. We
say that S is empty and write S = ε, iff |S| = 0 holds. For n = |S|, i ∈ [1, n] and
j ∈ [0, n] we define:

7

8 CHAPTER 2. PRELIMINARIES

• S[i] is the i-th character of S.

• S[i..j] is the substring of length j− i+ 1 that starts at the i-th position and ends
at the j-th position of S. For j < i we define S[i..j] = ε instead.

• S[i..j + 1) = S(i− 1..j] = S(i− 1..j + 1) = S[i..j].

• S[1, j] is called prefix of S, and proper prefix of S, iff j < n.

• S[j + 1, n] is called suffix of S, and proper suffix of S, iff j > 0.

• Si = S[i..n] is the i-th suffix of S.

We use the notation S · T to express the concatenation of two strings S and T . The
repeated concatenation of a string is denoted as St = S · S · . . . · S︸ ︷︷ ︸

t times
for t ∈ N+.

As a convention for this thesis, we use uppercase English letters (S, T, U, . . .) to denote
strings. For better readability we sometimes use Greek lowercase letters (α, β, γ, . . .) to
denote substrings. For example, instead of repeatedly writing S[i..j], we might simply
define α = S[i..j] once, and then continue without having to use the cluttered index
notation. The input string of a problem is also called text. Its indices can be referred to
as text positions or text indices.

The strict total order on the alphabet naturally induces a strict total order on the set of
strings over the alphabet:

2.1.3 Definition (Lexicographical Order). Let S and T be two strings over the
same alphabet with |S| = n and |T | = m. Without loss of generality we assume n ≤ m.
We say that the strings are equal and write S = T , iff n = m and ∀i ∈ [1, n] : S[i] = T [i]
hold. We say that S is lexicographically smaller than T and write S <lex T , iff the
strings are not equal and one of the following conditions applies:

• S is a proper prefix of T , i.e. S = T [1..n].

• S and T share a prefix of length i − 1 for some i ∈ [1, n], and the i-th character
of S is smaller than the i-th character of T , i.e. S[1, i) = T [1, i) ∧ S[i] < T [i].

Naturally, we also have the following operators:

• S is lexicographically not larger than T : S ≤lex T ⇔ S = T ∨ S <lex T

• S is lexicographically larger than T : S >lex T ⇔ ¬(S ≤lex T)

• S is lexicographically not smaller than T : S ≥lex T ⇔ S = T ∨ S >lex T

2.1. STRINGS & LYNDON WORDS 9

Below we see the lexicographical order of some strings over the English alphabet:

five <lex twenty <lex twentyfive <lex twohundred

The first inequality holds because five and twenty do not share a non-empty common
prefix and mismatch on the first character with f < t. The second inequality holds because
twenty is a proper prefix of twentyfive. The third inequality holds because twentyfive

and twohundred share a common prefix of length two and have a mismatch on the third
character with e < o.

A fundamental subroutine in the field of string processing is the lexicographical comparison
of suffixes. Comparing two suffixes essentially means, that we have to find the longest
common prefix of the suffixes:

2.1.4 Definition (Longest Common Prefix). Let S be a string of length n, and
let i, j ∈ [1, n] with i < j be two indices. We define the LCP value of Si and Sj as
LcpS(i, j) = max{l | j + l ≤ n+ 1 ∧ S[i..i+ l) = S[j..j + l)}. The respective substring
S[i..i+ LcpS(i, j)) is called longest common prefix (LCP) of Si and Sj .

When naively computing LcpS(i, j), we have to compare Si and Sj character by character
until we find a mismatch or until we reach the end of Sj . In practice, checking if we
reached the end of Sj for every single character comparison is expensive. We can avoid
this corner case, as well as additional corner cases of our algorithms, if the input string
fulfills the following criterion:

2.1.5 Definition. Let S be a string of length n > 1. We say that S is guarded by the
sentinel ŝ, iff both S[1] = S[n] = ŝ and ∀i ∈ (i, n) : ŝ < S[i] hold.

Being guarded also implies Sn <lex S1 <lex Si for i ∈ (1, n). Some strings are naturally
guarded. For example, austria is guarded by the sentinel a. For strings that are not
guarded we use the special character $ /∈ Σ, which is smaller than all characters from
Σ. We can make any string guarded by pre- and appending $ at the front and the back
of the string. For example, S = australia is not guarded because of S[1] ≮ S[6], but
$australia$ is.

Finally we introduce Lyndon words, which are of particular interest for our research.

10 CHAPTER 2. PRELIMINARIES

T = albania
R1(T) = lbaniaa
R2(T) = baniaal
R3(T) = aniaalb
R4(T) = niaalba
R5(T) = iaalban

R6(T) = aalbani

(a) A non-Lyndon word.

U = belgium
R1(U) = elgiumb
R2(U) = lgiumbe
R3(U) = giumbel
R4(U) = iumbelg
R5(U) = umbelgi
R6(U) = mbelgiu

(b) A Lyndon word.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
S = $ n o r t h a m e r i c a $

maximal
Lyndon
words

=



$ n o r t h a m e r i c a
n o r t

o r t
r t

t
h

a m e r i c
m

e r i
r

i
c

a
$

λ = 13 4 3 2 1 1 6 1 3 1 1 1 1 1

(c) A Lyndon array.

Figure 2.1: Strings, their rotations, and a Lyndon array.

2.1.6 Definition (Rotation and Lyndon Word). Let S be a non-empty string of
length n. For i ∈ [1, n) we call Ri(S) = Si+1S[1..i] the i-th rotation of S. We say that
S is a Lyndon word, iff it is lexicographically smaller than all of its rotations, i.e. iff
∀i ∈ [1, n) : S <lex Ri(S) holds.

Figures 2.1a and 2.1b show two simple examples: The string T = albania is not a Lyndon
word, because it is lexicographically greater than its sixth rotation R6(T) = aalbani

(Figure 2.1a). On the other hand, the string U = belgium is a Lyndon word, because
it is lexicographically smaller than all of its rotations (Figure 2.1b). Duval proposed a
commonly used alternative characterization of Lyndon words:

2.1.7 Lemma (Duval, 1983 [Proposition 1.2]). Let S be a non-empty string of length
n. Then S is a Lyndon word, iff S is lexicographically smaller than all of its non-empty
proper suffixes, i.e. iff ∀i ∈ [2, n] : (Si >lex S) holds.

Since each proper prefix of a string S is lexicographically smaller than the string itself,
Lemma 2.1.7 implies that no non-empty proper suffix of S can also be a prefix of S, if S
is a Lyndon word.

2.2 The Lyndon Array & Nearest Smaller Suffix Arrays

Now we introduce the data structures that are in the main focus of our research: The
Lyndon array, the next smaller suffix array, and the previous smaller suffix array.

2.2. THE LYNDON ARRAY & NEAREST SMALLER SUFFIX ARRAYS 11

2.2.1 Definition (Lyndon Array). Let S be a non-empty string of length n and let
i ∈ [1, n]. Let î = max{j | j ∈ (i, n]∧(S[i..j) is a Lyndon word)}, or î = n+1 for i = n.
We call S[i..î) the maximal Lyndon word at position i. The Lyndon array λ is an array
of n entries with λ[i] = (î− i), i.e. λ[i] contains the length of the maximal Lyndon word
starting at position i.

In Figure 2.1c we see the string S = $northamerica$ and its Lyndon array λ. Each
entry of the Lyndon array corresponds to one of the maximal Lyndon words that are
displayed between the string and the Lyndon array. For instance, we have λ[7] = 6 with
the corresponding maximal Lyndon word S[7..12] = americ of length six.

The Lyndon array is essentially a different representation of the next smaller suffix array.
Given a suffix Si of the input string, the next smaller suffix of Si is the closest suffix right
of i that is lexicographically smaller than Si.

2.2.2 Definition (Next Smaller Suffix Array). Let S be a string of length n and
let i ∈ [1, n). We call Sj next smaller suffix of Si, iff j is the smallest index from (i, n]
with Si >lex Sj . The next smaller suffix array (or short NSS array) of S is an array
nss of size n with nss[i] = min{j | (j ∈ (i, n] ∧ Si >lex Sj) ∨ (j = n+ 1)} for i ∈ [1, n].

Figure 2.2 (left) visualizes all next smaller suffixes in the text $northamerica$. For exam-
ple, the next smaller suffix of S9 = erica$ is S12 = ca$, because ca$ is lexicographically
smaller than erica$, and both S10 = rica$ and S11 = ica$ are lexicographically larger
than erica$.

2.2.3 Lemma (Franek et al., 2016 [Lemma 15], Louza et al., 2018 [Lemma 1]).
Let S be a string of length n, let λ be its Lyndon array, and let nss be its NSS array. For
i ∈ [1, n] we have λ[i] = nss[i]− i.

Remark. The original statement in [Louza et al., 2018, Lemma 1] is, that λ[n] = 1 and
∀i ∈ [1, n) : λ[i] = k − i with k = min{j | j ∈ (i, n] ∧ Si >lex Sj} hold. Since this exactly
matches the definition of the NSS array, we have k = nss[i] und thus λ[i] = nss[i]− i. �

Clearly, given either the Lyndon array or the NSS array, we can simulate access to the
other one in constant time. The natural counterpart of the NSS array is the previous
smaller suffix array, which is defined analogously:

12 CHAPTER 2. PRELIMINARIES

1 2 3 4 5 6 7 8 9 10 11 12 13 14
S = $ n o r t h a m e r i c a $

nss = 6 6 6 6 7 13 9 12 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14
S = $ n o r t h a m e r i c a $

pss = 1 2 3 4 1 1 7 7 9 9 7 1

Figure 2.2: The PSS and NSS arrays of the string S = $northamerica$. For each index
i there is an arch from i to nss[i] and pss[i] respectively. We omit outgoing arches and
values for the sentinels.

2.2.4 Definition (Previous Smaller Suffix Array). Let S be a string of length n
and let i ∈ [2, n]. We call Sj previous smaller suffix of Si, iff j is the largest index from
[1, i) with Sj <lex Si. The previous smaller suffix array (or short PSS array) of S is an
array pss of size n with pss[i] = max{j | (j ∈ [1, i)∧ Sj <lex Si)∨ (j = 0)} for i ∈ [1, n].

As seen in Figure 2.2 (right), we can interpret each entry of pss[i] as a pointer to the
previous smaller suffix. For each index there is exactly one pointer, and each pointer’s
destination is a smaller index. Therefore, there is a unique path from every index i to the
artificial index 0. In the figure there is the path 11 → 9 → 7 → 1 → 0. The set of nodes
on the path starting at index i form the so called PSS closure of i:

2.2.5 Definition (Previous Smaller Suffix Closure). Let S be a string of length
n, let pss be its PSS array, and let i ∈ [0, n]. The PSS closure pss∗[i] of i is defined as:

pss∗[i] =

{0} , iff i = 0

{i} ∪ pss∗[pss[i]] , otherwise

Revisiting the previous example, we have the closure pss∗[11] = {0, 1, 7, 9, 11}, since there
is the following chain of PSS pointers:

0 = pss[1]︸ ︷︷ ︸
= 0

= pss[pss[7]︸ ︷︷ ︸
= 1

] = pss[pss[pss[9]︸ ︷︷ ︸
= 7

]] = pss[pss[pss[pss[11]︸ ︷︷ ︸
= 9

]]]

The PSS closure pss∗[i−1] conveniently contains the value pss[i]. For example, in Figure 2.2
we have pss[12] = 7 ∈ pss∗[11]. Therefore, whenever we want to find the previous smaller
suffix of Si, we only need to consider the indices from pss∗[i − 1]. A simple approach for
computing pss[i] is to try all indices from pss∗[i− 1] in descending order.

2.2.6 Lemma. Let S be a string of length n, let pss be its PSS array, and let i ∈ [2, n].
Then it holds: pss[i] = max{j | j ∈ pss∗[i− 1] ∧ (Sj <lex Si ∨ j = 0)}.

2.2. THE LYNDON ARRAY & NEAREST SMALLER SUFFIX ARRAYS 13

Proof. We only have to show that pss[i] ∈ pss∗[i− 1] holds. Then, the correctness follows
directly from Definition 2.2.4. Assume that pss[i] /∈ pss∗[i − 1] holds, and let j be the
smallest index from pss∗[i− 1] with j > pss[i]. We have j < i and pss[i] ∈ (pss[j], j):

S =

pss[j]
↓

pss[i]
↓

j
↓

i
↓

pss = pss[j] pss[i]

The fact that we have pss[i] ∈ (pss[j], j) implies that Sj <lex Spss[i] holds (otherwise we
would have pss[j] ≥ pss[i]). On the other hand, j ∈ (pss[i], i) implies that Spss[i] <lex Sj

holds (otherwise we would have pss[i] ≥ j). Because of this contradiction there cannot be
j < i with pss[i] ∈ (pss[j], j), and thus we have pss[i] ∈ pss∗[i− 1]. �

Finally, we show a direct relation between nearest smaller suffixes and Lyndon words.

2.2.7 Lemma. Let S be a string of length n, let nss be its NSS array, and let pss be its
PSS array. It holds:

• Let i ∈ [1, n], and let j = nss[i]. The string S[i..j) is a Lyndon word.

• Let j ∈ [2, n], and let i = pss[j]. The string S[i..j) is a Lyndon word.

Proof. In case of j = nss[i], we know that S[i..j) is exactly the longest Lyndon word start-
ing at position i (Lemma 2.2.3). Therefore, we only have to consider the case i = pss[j].
Following Lemma 2.1.7, the string S[i..j) is a Lyndon word, iff there exists no k ∈ (i, j)
with S[k..j) < S[i..j). Assume that such k exists. By definition of previous smaller suf-
fixes, and because of i = pss[j], the following properties hold:

(a) Sk >lex Si (b) Si+(j−k) >lex Sj

If there is a mismatching character between S[k..j) and S[i..j), then appending Sj to both
strings preserves this mismatch. This however implies, that we have S[k..j) < S[i..j)⇐⇒
S[k..j) · Sj < S[i..j) · Sj , and thus Sk <lex Si, which contradicts (a). Therefore, there is
no mismatch between S[k..j) and S[i..j), and the following property holds:

(c) S[k..j) = S[i..i+ (j − k))

14 CHAPTER 2. PRELIMINARIES

Finally, we combine the properties (a) and (c) to show a contradiction:

Sk
(a)
>lex Si

⇐⇒ S[k..j) · Sj >lex S[i..i+ (j − k)) · Si+(j−k)

⇐⇒
(c)

Sj >lex Si+(j−k)

This contradicts property (b), and it follows that the described k does not exist. Therefore,
S[i..j) is a Lyndon word. �

2.3 Ordinal Trees

2.3.1 Definition (Ordinal Tree). Let V be a set of nodes, let Parent : V → V be
a function, and let < be a strict total order on V (or on a superset of V). We call
T = (V,Parent, <) ordinal tree (or simply tree) of size |V |, iff there is a unique root
r ∈ V that is an ancestor of all nodes. For v ∈ V and i ∈ N+ the ancestor function is
defined recursively as:

Ancestori(v) =

Parent(v) , iff i = 1

Parent(Ancestori−1(v)) , otherwise

The root r must satisfy the condition ∀v ∈ V : lim
x→∞

Ancestorx(v) = r.

Figure 2.3 shows an ordinal tree with nodes V = [0, 13]. Each parent relation is represented
by a directed edge from the child to the parent. The root is its own parent, which is
necessary in order to satisfy ∀v ∈ V : lim

x→∞
Ancestorx(v) = r.

Basic Terminology

Let u, v ∈ V with u 6= v be nodes of a tree T = (V,Parent, <). We say that u is a child
of v, iff Parent(u) = v holds. In our example tree, node 3 is a child of node 1. If v lies on
the path from u to the root, i.e. if there is some i ∈ N+ with Ancestori(u) = v, then we
say that u is a descendant of v. In our example, the descendants of node 7 are exactly the
nodes from the interval [8, 13]. A node without descendants, for instance node 5, is called
leaf. From now on we assume that u < v holds. The nodes u and v are called siblings,
iff they share the same parent, i.e. if Parent(u) = Parent(v) holds. More precisely, u is
called left-side sibling of v, while v is called right-side sibling of u. If additionally there is no
other sibling between them, i.e. if @w ∈ V \ {u, v} : Parent(w) = Parent(u) ∧ u < w < v

holds, then u is called left sibling of v, while v is called right sibling of u. Thus, each node

2.3. ORDINAL TREES 15

0

1

2 3 4 5

6 7

8

9 10 11

12

13

Figure 2.3: An order tree T with nodes V = [0, 13] and root 0. The highlighted nodes
belong to the subtree T7, which is rooted in node 7.

can have multiple left-side siblings (and multiple right-side siblings), but at most one left
sibling (and at most one right sibling). A node without left-side siblings is called leftmost
sibling of its right-side siblings, and leftmost child of its parent (analogously defined for
rightmost sibling and rightmost child). Node 3 of our example tree has the right-side
siblings 4 and 5, where 4 is the right sibling, and 5 is the rightmost sibling. Node 5 is also
the rightmost child of node 1.

2.3.1 Subtrees

Let T = (V,Parent, <) be a tree with ancestor function Ancestor. Each node v ∈ V
is the root of a subtree Tv = (Vv,Parentv, <). The set Vv contains v and all of its
descendants, i.e. Vv = {u | ∃i ∈ N+ : Ancestori(u) = v} ∪ {v}. Since v is the new root,
we have Parentv(v) = v. For all other nodes u ∈ Vv we have Parentv(u) = Parent(u).

2.3.2 Definition (Subtree Size). Let T = (V,Parent, <) be a tree with ancestor
function Ancestor, and let v ∈ V . We define the subtree size of v as:

SubtreeSize(v) = |Vv| =
∣∣∣{u | ∃i ∈ N+ : Ancestori(u) = v} ∪ {v}

∣∣∣
The colored nodes in Figure 2.3 belong to the subtree T7 of size SubtreeSize(7) = 7.

2.3.2 Tree Traversal

A tree traversal is the process of visiting each node in a tree exactly once. A preorder-
traversal is a paradigm that clearly specifies the order in which we visit the nodes. We can

16 CHAPTER 2. PRELIMINARIES

assign a preorder-number to each node (denoted as #(v) in the following), which identifies
the rank of the node in the visiting order, i.e. node v has preorder-number #(v) = i, iff
v is the i-th node that we visit. The first node has preorder-number 0, such that the set
of preorder-numbers is exactly the interval [0, |V |). Algorithmically, the numbers can be
defined as follows: Assign the lowest unused number to the current node. Then, recursively
assign numbers to the subtrees that are rooted in children of the current node, where we
process the children in ascending (i.e. left-to-right) order. This procedure is outlined in
Algorithm 2.1. We start with the root (line 8–9). Whenever we begin processing a node
v, we first assign the next available preorder-number to it (line 3). Then, we recursively
process the children of v in ascending order (line 5–6).

Algorithm 2.1 Preorder-Traversal
Input: Ordinal tree T with root r
Output: Preorder-numbers of all nodes of T
1: next-number = 0
2: function assign-number(v)
3: #(v)← next-number
4: next-number← next-number + 1
5: for w ∈ {u | Parent(u) = v} in ascending order do
6: assign-number(w)

7: function assign-numbers(T)
8: r ← root of T
9: assign-number(r)

Another way of characterizing the preorder-traversal is, that every node gets visited after
its parent, and also after its left sibling and the descendants of its left sibling (if the left
sibling exists).

2.3.3 Observation. Let v be a node of an ordinal tree. Then it holds:

#(v) =

#(u) + SubtreeSize(u) , if u is the left sibling of v

#(Parent(v)) + 1 , if v has no left sibling

Chapter 3

Previous Smaller Suffix Trees

In this chapter we introduce the previous smaller suffix tree, which is the data structure
that we use to simulate the Lyndon array, the NSS array, and the PSS array.

3.1 Tree Structure

Since we have pss[i] < i for each i ∈ [1, n], the PSS array inherently forms a tree in which
each index i of the input string is represented by a node whose parent is pss[i]. The root
of this tree is the artificial index 0, which is the parent of all indices that do not have
a previous smaller suffix. Once again, we use the string $northamerica$ as an example
(see Figure 3.1). As mentioned in Chapter 1, the structure of this tree is very similar
to the LRM-Tree [Sadakane and Navarro, 2010], which is also known under the name
2d-min-heap [Fischer, 2010].

3.1.1 Definition (Previous Smaller Suffix Tree Tpss). Let S be a string of length
n. The previous smaller suffix tree (PSS tree) of S is a tree Tpss = (V,Parent, <) with
nodes V = [0, n], where 0 is the root. For i ∈ [1, n], we define Parent(i) = pss[i]. The
children are ordered ascendingly, i.e. if j is a right-side sibling of i, then i < j holds.

Since node i corresponds to index i, from now on we use the terms node and index
interchangeably. It is noteworthy, that the path from any node i to the root contains
exactly the indices from the PSS closure pss∗[i]. There are two essential properties of the
PSS tree, the latter of which has previously been shown for 2d-min-heaps [Fischer, 2010]:

3.1.2 Lemma. Let Tpss be the PSS tree of a string S of length n.

1. The descendants of any node i form a continuous interval (i, r) with r > i.

2. The nodes directly correspond to the preorder-numbers of Tpss such that node i has
preorder-number i (if the first preorder-number is 0).

17

18 CHAPTER 3. PREVIOUS SMALLER SUFFIX TREES

1 2 3 4 5 6 7 8 9 10 11 12 13 14
S = $ n o r t h a m e r i c a $

pss = 0 1 2 3 4 1 1 7 7 9 9 7 1 0

Tpss = 0
1
$

14
$2

n
6
h

7
a

13
a3

o
8
m

9
e

12
c4

r
10
r

11
i5

t

Figure 3.1: The PSS tree of the string S = “$northamerica$”. The highlighted indices
2, 6, 7, and 13 are exactly the text positions whose previous smaller suffix is S1. Therefore
they are the children of node 1. The children are sorted in increasing index order.

Proof. We address each property individually.

Regarding 1.: Assume, that r is the smallest node that is not a descendant of i. Since for
all descendants j ∈ (i, r) of i we have Si <lex Sj , we must have Sr <lex Si. Otherwise,
r would be a descendant of i. Now consider any node k ∈ (r, n]. If Si >lex Sk holds,
then clearly k is not a descendant of i. If however Si <lex Sk holds, then we also have
Sr <lex Sk, which implies pss[k] ≥ r. In this case, k is not a descendant of i either.

Regarding 2.: Proof by induction. Base case: Node 0 is the root and therefore has preorder-
number 0. Inductive step: If the nodes from [0, i) have the correct preorder-numbers, then
the node i also has the correct number. Let p = Parent(i). Clearly, we have p ∈ [0, i).
Assume that i is the leftmost child of p, then from the first property of this lemma follows,
that p = i − 1 holds. As seen in Observation 2.3.3, we have #(i) = #(p) + 1 = i. This
means, that we assign the correct preorder-number to node i. Now assume that i is not
the leftmost child, and let l be the left sibling of i. Clearly, we have l ∈ [0, i). Following the
first property of this lemma, the descendants of l are exactly the nodes from the interval
(l, i). As seen in Observation 2.3.3, we have #(i) = #(l)+SubtreeSize(l) = l+(i− l) = i.
This means, that we assign the correct preorder-number to node i.

3.1.3 Corollary. Let Tpss be the PSS tree of a string S of length n, and let nss be its NSS
array. Let i ∈ [1, n] be a node, then we have nss[i] = i+ SubtreeSize(i).

Proof. Let (i, r) be the interval containing exactly the descendants of i (which is a con-
tinuous interval because of the first property of Lemma 3.1.2). By definition of previous
smaller suffixes, we have Si <lex Sj for all descendants j ∈ (i, r) of i. Also, we have
Si >lex Sr because otherwise r would be a descendant of i. Therefore, r is the smallest
index that is larger than i and satisfies Si >lex Sr (or such index does not exist and we
have r = n+ 1). It follows nss[i] = r. Since the subtree rooted in i has exactly size r − i,
we have nss[i] = i+ SubtreeSize(i). �

3.2. BUILDING THE NSS ARRAY FROM THE PSS TREE 19

While the previous and next smaller suffix problems intuitively seem to be harder than
the previous and next smaller value problems, the corollary does not hold for NSVs and
the 2d-min-heap (which is essentially a previous smaller value tree). In the proof of the
corollary we can only assume Si >lex Sr because two suffixes can never be equal. Therefore,
we have Si ≮lex Sr =⇒ Si >lex Sr. If we look at values instead of suffixes, then
S[i] ≮ S[r] =⇒ S[i] > S[r] does not necessarily hold because we might have S[i] = S[r].
It has been shown, that it is still possible to encode all NSVs in the 2d-min-heap, if a
binary coloring information is added to some of its nodes [Fischer, 2011].

3.2 Building the NSS Array from the PSS Tree

Corollary 3.1.3 shows how powerful the PSS tree is. The time needed to answer PSS
queries is only limited by the time needed to retrieve the parent of a node, while the time
needed to answer NSS queries (and thus to access the Lyndon array) depends solely on
the time in which we can retrieve subtree sizes.

3.2.1 Corollary. Let Tpss be the PSS tree of a string S. We have pss[i] = Parent(i)
and nss[i] = i + SubtreeSize(i). Therefore, we can answer PSS queries in tParent time
and NSS queries in tSubtreeSize time, where tParent and tSubtreeSize are the times needed to
answer Parent(·) and SubtreeSize(·) respectively.

Even if we compute Tpss without support for fast SubtreeSize(·) operations, it allows us
to efficiently build the entire NSS array.

3.2.2 Corollary. Let Tpss be the PSS tree of a string S. We can compute the NSS array
in O(n · tParent) time using O(sParent) bits of additional memory, where tParent and sParent

are the time and space needed to answer Parent(·).

Proof. We construct the NSS array in three scans: In the first one, we assign nss[i]← 1 for
all indices. Next, we perform a right-to-left scan over the indices from the interval [2, n],
during which we assign nss[Parent(i)]← nss[Parent(i)]+nss[i] for each index i. Note that
we only use nss[i] on the right side of the assignment after we have processed all nodes j > i,
and thus also all children of i. Therefore, after the scan we have nss[i] = SubtreeSize(i).
In a final scan we assign nss[i] ← nss[i] + i for all indices. We have to answer Parent(·)
exactly n − 1 times, resulting in the time bound of O(n · tParent). Only one Parent(·)
query is answered at a time, explaining the additional memory of O(sParent) bits. �

20 CHAPTER 3. PREVIOUS SMALLER SUFFIX TREES

3.3 Succinct Representation of the PSS Tree

In this section we show how to represent the PSS tree in a way that is both memory and
query time aware. Any pointer based approach is problematic, since storing a pointer
from each node to its parent already requires Θ(n lgn) bits of memory. If we also want
fast NSS queries, then a naive solution would require another Θ(n lgn) bits to store all
subtree sizes.

There already exist smarter solutions that are directly applicable to the PSS tree. One
of the most common tree representations in the field of succinct data structures is the
Balanced Parentheses Sequence (BPS) [Munro and Raman, 2001], which can store an un-
labeled ordinal tree of n nodes in 2n bits. While there are other tree representations with
similar benefits (for example the DFUDS [Benoit et al., 2005] and the LOUDS [Jacobson,
1989; Delpratt et al., 2006]), the BPS is particularly suitable for our purposes: The algo-
rithms shown in Chapters 4 and 5 efficiently construct the BPS of the PSS tree from left
to right in an append only manner. First, we explain the structure of the BPS. Then, we
show how to use the BPS of the PSS tree to answer both PSS and NSS queries in constant
time. Finally, we also explain how to answer range minimum suffix queries, and prove
that in terms of space complexity the BPS of the PSS tree is an asymptotically optimal
way of encoding the Lyndon array.

3.3.1 Storing the Tree as a Balanced Parentheses Sequence

3.3.1 Definition. Let T be an ordinal tree with nodes V and root r ∈ V . The Balanced
Parentheses Sequence (BPS) of T is a string of 2n parentheses, where each node v is
represented by a pair of matching parentheses “(. . .)”, and all children of v are encoded
between this pair of parentheses. For v ∈ V we define:

enc(v) =

() , iff v is a leaf

(· enc(c1) · . . . · enc(ck) ·) , iff v has children c1 < c2 < · · · < ck

The BPS of T is defined as B(T) = enc(r). We write Bpss as a shorthand for B(Tpss).

We can more intuitively describe the BPS as the result of a preorder-traversal of the tree.
Starting with an empty parentheses string, we append an opening parenthesis whenever we
walk down an edge, and a closing parenthesis whenever we walk up an edge. This traversal
nature of the BPS also shows, that the node with preorder-number i corresponds to the
(i + 1)-th opening parenthesis of the BPS (if we start counting preorder-numbers with 0
and parentheses with 1). Since in turn the preorder-numbers of the PSS tree correspond
directly to the node labels (see Lemma 3.1.2), we know that node i corresponds to the

3.3. SUCCINCT REPRESENTATION OF THE PSS TREE 21

1 2 3 4 5 6 7 8 9 10 11 12 13 14
S = $ n o r t h a m e r i c a $

pss = 0 1 2 3 4 1 1 7 7 9 9 7 1 0

Tpss = 0
1
$

14
$2

n
6
h

7
a

13
a3

o
8
m

9
e

12
c4

r
10
r

11
i5

t

Bpss =
0
(

1
(

2
(

3
(

4
(

5
())))

6
()

7
(

8
()

9
(

10
()

11
())

12
())

13
())

14
())

Figure 3.2: The string S = “$northamerica$”, its PSS array pss, its PSS tree Tpss,
and the BPS representation Bpss of Tpss. Each opening parenthesis of Bpss is annotated
with the corresponding node label. For each opening parenthesis, the respective matching
closing parenthesis can be found by following the line under the opening parenthesis. We
have highlighted the subtree that is rooted in node 7.

(i+ 1)-th opening parenthesis. Figure 3.1 shows the BPS of the PSS tree of our running
example $northamerica$.

Since Tpss has n+ 1 nodes, there are 2n+ 2 parentheses in Bpss. In practice, we use a bit
vector to store the BPS, such that each opening parenthesis corresponds to a (1)2-bit, and
each closing parenthesis to a (0)2-bit. Therefore, the entire tree needs only 2n+ 2 bits. It
remains to be shown how to efficiently simulate access to the various arrays in constant
time.

3.3.2 Answering NSS and PSS Queries

As seen before, we only need fast Parent(·) and SubtreeSize(·) operations in order to
efficiently answer PSS and NSS queries. These operations can be reduced to answering
the following fundamental queries on the BPS:

• select(i): Returns the BPS index oi of the opening parenthesis that corresponds
to the node with preorder-number i, i.e. Bpss[select(i)] is the (i + 1)-th opening
parenthesis.

• find-close(oi): Returns the BPS index of the closing parenthesis that matches the
opening parenthesis at position Bpss[oi].

• enclose(oi): Returns the BPS index of the opening parenthesis that belongs to the
tightest enclosing parentheses pair that contains Bpss[oi].

22 CHAPTER 3. PREVIOUS SMALLER SUFFIX TREES

There are many ways of answering these basic queries in constant with only little additional
memory. For example, Sadakane and Navarro’s auxiliary data structure can be constructed
in linear time, needs only O(n/ logc n) bits of memory, and answers all of the above
queries (and many more) in O(c2) time (where we can choose any constant integer c > 0)
[Sadakane and Navarro, 2010]. Now we show how to use the basic queries as building
blocks for O(c2) time Parent(·) and SubtreeSize(·) operations. Remember that node i
represents textposition i, has preorder-number i and corresponds to the (i+ 1)-th opening
parenthesis of the BPS.

Simulating the PSS Array. For PSS queries we have pss[i] = Parent(i). First, we find
the opening parenthesis of node i at index oi = select(i) of the BPS. Since node i is encoded
between the parentheses pair of its parent, we can retrieve the opening parenthesis of node
Parent(i) as op = enclose(oi). The sequence Bpss(op..oi) contains exactly the encodings
of the left-side siblings of i. Since each of these encodings is balanced, exactly half of the
parentheses from Bpss(op..oi) are opening parentheses. Thus, the preorder-number of the
parent node is pss[i] = Parent(i) = i− (oi − op + 1)/2. Figure 3.3a shows an example of
the query execution.

Simulating the NSS array. For NSS queries we have nss[i] = i+ SubtreeSize(i). Once
again, we locate the opening parenthesis at position oi = select(i). The matching closing
parenthesis is located at position ci = find-close(oi). The subtree rooted in i is encoded in
the sequence Bpss[oi..ci]. Since exactly half of the sequence contains opening parentheses,
we have SubtreeSize(i) = (ci−oi+1)/2, and thus nss[i] = i+(ci−oi+1)/2. An example
is provided in Figure 3.3b.

Simulating the Lyndon array. Recalling Lemma 2.2.3, we have λ[i] = nss[i] − i. As
seen before, we have nss[i] = i+ (ci − oi + 1)/2, where ci is the BPS index of the closing
parenthesis of node i, and oi is the BPS index of the opening parenthesis of node i. Thus,
we have λ[i] = (ci − oi + 1)/2.

3.3.2 Lemma. Let c ∈ N+, let S be a string of length n, and let Bpss be the BPS of its
PSS tree. We can augment Bpss with an auxiliary data structure of size O(n/ lgc n) bits
that allows us to answer PSS and NSS queries in O(c2) time. It can be constructed in
O(n) time using O(n) bits of memory.

Proof. Follows directly from the description above as well as [Sadakane and Navarro, 2010,
Theorem 1.1]. �

3.3. SUCCINCT REPRESENTATION OF THE PSS TREE 23

Bpss =
0
(

1
(

2
(

3
(

4
(

5
())))

6
()

7
(

8
()

9
(

10
()

11
())

12
())

13
())

14
())

oi = select(12)

op = enclose(oi)

oi − op = 9

pss[i] = i − (oi − op + 1) / 2
pss[12] = 12 − (9 + 1) / 2 = 7

(a) Finding the PSS of S12. First, we find the opening parentheses that belong to node 12 and to
its parent. The distance between these parentheses allows us to compute the preorder-number of
the parent, which is 7. Thus, we have pss[12] = 7.

Bpss =
0
(

1
(

2
(

3
(

4
(

5
())))

6
()

7
(

8
()

9
(

10
()

11
())

12
())

13
())

14
())

oi = select(7)

ci = find-close(oi)

ci − oi = 11

nss[i] = i + (ci − oi + 1) / 2
nss[7] = 7 + (11 + 1) / 2 = 13

(b) Finding the NSS of S7. First, we find the opening and closing parentheses that belong to node
7. The distance between these parentheses allows us to compute the subtree size of node 7, which
is 6. Thus, we have nss[7] = 7 + 6 = 13.

Figure 3.3: Simulating access to the PSS array and the NSS array by using the BPS of
the PSS tree. We use the same example as in Figure 3.2.

3.3.3 Answering Range Minimum Suffix Queries

A useful feature of the PSS tree is its ability to answer range minimum suffix queries:

3.3.3 Definition. Let S be a string of length n, and let i, j ∈ [1, n] with i < j. A
range minimum suffix query (RMSQ) identifies the lexicographically smallest suffix that
begins within the interval [i, j]:

RMSQ(i, j) = min
<lex
{Sk | k ∈ [i, j]}

For example, in Figure 3.2 we have RMSQ(4, 10) = 7, because S7 = america$ is the
lexicographically smallest suffix that starts in the interval [4, 10]. Answering RMSQs can
be realized by using the three operations that are explained below. All examples refer to
Figure 3.2.

24 CHAPTER 3. PREVIOUS SMALLER SUFFIX TREES

• Depth(i): Returns the depth of node i in the PSS Tree, i.e. Depth(0) = 0, and
Depth(i) = min{j | Ancestorj(i) = 0} for i ∈ [1, n]. For example, we have
Depth(2) = 2 and Depth(11) = 4.

• LevelAnc(i, d): Returns the ancestor of node i that has depth d. Let di = Depth(i),
then we have LevelAnc(i, d) = Ancestord−di(i). Revisiting our example tree, we
have LevelAnc(12, 1) = 1 and LevelAnc(10, 2) = 7.

• LCA(i, j): Returns the lowest common ancestor of nodes i and j. If i is an ancestor
of j, then the result is i. If j is an ancestor of i, then the result is j. Otherwise, the
result is LevelAnc(i,max{d | LevelAnc(i, d) = LevelAnc(j, d)}). For example, we
have LCA(4, 8) = 1 and LCA(7, 11) = 7.

3.3.4 Lemma. Given the PSS tree of a string, we can answer RMSQ(i, j) using only the
queries described above. Let l = LCA(i, j). If i = l holds, then we have RMSQ(i, j) = i.
Otherwise, we have RMSQ(i, j) = LevelAnc(j,Depth(l) + 1).

Proof. The lemma has been proven for range minimum (value) queries and the 2d-min-
heap, and the proof also works for RMSQs and the PSS tree [Fischer, 2010, Lemma 2].�

Earlier, we considered the example RMSQ(4, 10) = 7 (see Figure 3.2). Using the lemma as
a query plan, we obtain the result as follows: We have LCA(4, 10) = 1 with Depth(1) = 1.
Therefore, we have RMSQ(4, 10) = LevelAnc(10, 1 + 1) = 7. Conveniently, the opera-
tions Depth(·),LevelAnc(·, ·), and LCA(·, ·) are supported by Sadakane and Navarro’s
auxiliary data structure.

3.3.5 Lemma. Let c ∈ N+, let S be a string of length n and let Bpss be the BPS of its
PSS tree. We can augment Bpss with an auxiliary data structure of size O(n/ lgc n) bits
that allows us to answer RMSQs in O(c2) time. It can be constructed in O(n) time using
O(n) bits of memory.

Proof. Follows from Lemma 3.3.4 and [Sadakane and Navarro, 2010, Theorem 1.1]. �

3.3.4 Proving Optimal Succinctness

It is commonly known that there are Cn different ordinal trees that have n+1 nodes, where
Cn =

(2n
n

)
/(n + 1) is the n-th Catalan number. Therefore, the information-theoretical

lower bound for encoding an ordinal tree of n+ 1 nodes is lgCn bits. By using Stirling’s
approximation we obtain lgCn = 2n−O(lgn). Thus, using 2n+o(n) bits for the BPS and
its support data structure results in a tree representation that is asymptotically optimal
in terms of space requirements. In simple terms, the BPS including the support data
structure requires a bit more than 2n bits of memory, while the best possible encoding

3.3. SUCCINCT REPRESENTATION OF THE PSS TREE 25

requires a bit less than 2n bits of memory. For large n, there is no significant difference
between the two options (lim

n→∞
2n+o(n)

2n−O(lgn) = 1).

In this section, we show that 2n+o(n) bits are not only asymptotically optimal for encoding
ordinal trees, but also for encoding the PSS tree and the Lyndon array. First, we show
that any ordinal tree of n+ 1 nodes is the PSS tree of some string of length n. The proof
works by construction: Given an ordinal tree of n + 1 nodes, we explain how to build a
string S of length n such that the ordinal tree is the PSS tree of the string. As always,
we use preorder-numbers to identify nodes. For convenience, we define S[0] = 0. The
resulting string is over the integer alphabet Σ = [1, n].

We process the nodes recursively, starting at the root. Let i be the current node, and
let c1, . . . , ck be exactly the children of i in ascending order. For j ∈ [1, k] we assign
S[cj]← S[i] + (k − j + 1). Then, we process each child recursively.

This construction ensures S[Parent(i)] < S[i] for all nodes i ∈ [1, n]. Therefore, we also
have SParent(i) <lex Si, and thus pss[i] ≥ Parent(i). The nodes with preorder-numbers
from the interval (Parent(i), i) are exactly the left-side siblings of i, as well as their
descendants. Let j ∈ (Parent(i), i) be such a node, then due to the way our construction
works, we inherently have S[j] > S[i]. Since this implies Sj >lex Si, it also follows that
pss[i] ≤ Parent(i) holds. Therefore, we have pss[i] = Parent(i), which means that the
given tree is the PSS tree of the constructed string. Thus, every ordinal tree of size n+ 1
is the PSS tree of at least one string of length n. It follows:

3.3.6 Lemma. The information-theoretical lower bound for the number of bits needed to
encode a PSS tree of n+ 1 nodes is lgCn = 2n−O(lgn).

Finally, we show that there are at least as many Lyndon arrays as there are PSS trees.
Consider two different PSS trees of size n + 1, then there is at least one node that has
a different subtree size in these trees (otherwise they would be identical). Since we have
λ[i] = SubtreeSize(i) (see Lemma 2.2.7 and Corollary 3.1.3), it follows that any two
different PSS trees of size n+1 simulate access to different Lyndon arrays of size n. Thus,
the number of different Lyndon arrays of size n is at least as high as the number of different
PSS trees of size n+ 1.

3.3.7 Lemma. The information-theoretical lower bound for the number of bits needed to
encode a Lyndon array of n entries is at least 2n−O(lgn).

3.3.8 Corollary. The BPS of the PSS tree combined with the support data structure from
Lemma 3.3.2 is an asymptotically optimal way of encoding the Lyndon array.

26 CHAPTER 3. PREVIOUS SMALLER SUFFIX TREES

Chapter 4

Constructing the PSS Tree

In the next chapters we introduce a space efficient and linear time algorithm that computes
the BPS of the PSS tree without requiring precomputed data structures. We present the
final solution in an incremental manner, starting with a very basic O(n2) time and O(n)
words memory algorithm. In Chapter 5 we reduce the time bound to O(n). In Chapter 6
we also reduce the space bound, resulting in a parameterized algorithm with compelling
worst-case guarantees:

4.0.1 Theorem. Let S be a string of length n and let δ ∈ [1, b
√
n/(3 lgn)c]. The BPS

of the PSS tree of S can be computed in O(δn) time using d4n/δe+O(
√
n · lgn) bits of

additional memory apart from the space needed for input and output.

4.1 Computing the NSS & PSS Array

The foundation of our solution is a simple algorithm that calculates NSVs and PSVs. It
has been implemented in the first version of the Succinct Data Structure Library (SDSL)1,
and pseudocode can be found for example in [Goto and Bannai, 2013, Algorithm 4]. If
we take this algorithm and replace all element comparisons with suffix comparisons (i.e.
replace S[i] > S[j] with Si >lex Sj), then we already have an algorithm that computes the
NSS and PSS array.

4.1.1 Pointer Jumping Technique

The general idea is simple: We calculate all entries of the PSS array from left to right.
Lets assume we have already computed pss up to index i−1 and now we want to find pss[i].
The most naive approach is to simply iterate over the indices j ∈ [1, i) in decreasing order
1https://github.com/simongog/sdsl, see file include/sdsl/algorithms.hpp

27

https://github.com/simongog/sdsl

28 CHAPTER 4. CONSTRUCTING THE PSS TREE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
S = $ a x y z b a x y z c a x y z $

pss = 1 2 3 4 5 2 7 8 9 7 ? pss∗[11] :


11 S11 ≮lex S12
7 S7 ≮lex S12
2 S2 ≮lex S12
1 S1 <lex S12

Figure 4.1: Pointer Jumping during the calculation of the PSS array. We have already
computed pss[1, 11]. As displayed on the left side, every entry pss[i] = j can be interpreted
as a pointer from index i to index j. When computing pss[12], we simply try the values
from pss∗[11] in decreasing order, until we find a suffix that is lexicographically smaller
than S12, i.e. we start at index 11 and then follow the outgoing chain of pointers until we
find a suitable value. For example, after we discover that S11 ≮lex S12 holds, we proceed
with index pss[11] = 7, i.e. we use the pointer to jump over the indices 10, 9, and 8.

and set pss[i]← j as soon as Sj <lex Si holds. However, as we have seen in Lemma 2.2.6,
the value pss[i] is contained in the PSS closure pss∗[i − 1]. Therefore, it is sufficient to
iterate over the indices j ∈ pss∗[i − 1] in decreasing order instead. This method saves
a substantial amount of suffix comparisons and is often named pointer jumping, because
trying the elements from pss∗[i− 1] in decreasing order can be seen as following the chain
of pss pointers that starts at index i− 1. An example can be seen in Figure 4.1.

Even though we are saving suffix comparisons, following the chain of pss pointers is ex-
pensive in practice: We have to repeatedly look up many different entries of the PSS array
that are potentially far apart from each other. Thus, there is a lot of random access on
the array, which in return causes expensive cache misses. Therefore, we use a dedicated
stack to store only the actually needed entries of the PSS array. At the time we want
to compute pss[i], the stack H contains exactly the elements 1 = h1, . . . , hk = i − 1 with
hj−1 = pss[hj] for j ∈ [2, k], i.e. pss∗[i − 1] = {0, h1, . . . , hk}. In the following section, we
show that the stack is easy to maintain while using the pointer jumping technique.

4.1.2 Computing the NSS & PSS Array Simultaneously

In Algorithm 4.1 (left) we see the pseudocode of xss-array, which realizes the pointer
jumping while utilizing the previously described stack H. So far we have only been talking
about computing the PSS array. As a matter of fact, the algorithm computes both the
PSS array and the NSS array at the same time. Before going into detail, it ought to
be mentioned that this algorithm is designed to work on guarded strings only. In the
beginning of the execution we push index 1 onto H (line 2). Since S[1] is the left sentinel,
we have S1 <lex Si for i ∈ (1, n). Therefore, the index 1 always stays on the stack, and
we can assume that the stack never becomes empty. Because of the sentinels we already
know that pss[1] = pss[n] = 0 and nss[n] = n+ 1 hold (lines 3–4). Although we also know

4.1. COMPUTING THE NSS & PSS ARRAY 29

Algorithm 4.1 xss-array (left) and xss-bps (right)

Input: Guarded string S of length n
Output: PSS and NSS array of S
1: H ← empty stack
2: H.push(1)
3: nss[n]← n+ 1
4: pss[1]← 0; pss[n]← 0;
5: for i = 2 to n− 1 do
6: while SH.top() >lex Si do
7: nss[H.top()]← i
8: H.pop()
9: pss[i]← H.top()

10: H.push(i)
11: while H is not empty do
12: nss[H.top()]← n
13: H.pop()
14:
15: return (pss, nss)

Input: Guarded string S of length n
Output: PSS tree of S as BPS
1: H ← empty stack
2: H.push(1)
3: Bpss ← ”((” . open 0 and 1
4:
5: for i = 2 to n− 1 do
6: while SH.top() >lex Si do
7: Bpss ← Bpss · ”)” . close H.top()
8: H.pop()
9: Bpss ← Bpss · ”(” . open i

10: H.push(i)
11: while H is not empty do
12: Bpss ← Bpss · ”)” . close H.top()
13: H.pop()
14: Bpss ← Bpss · ”())” . leaf n; close 0
15: return Bpss

that nss[0] = n holds, we do not manually assign this value at the beginning, since it will
be assigned naturally at a later point of the algorithm execution.

Now we look at the main loop (line 5), which considers each index i ∈ (1, n) between
the sentinels in ascending order. As an invariant for this loop, we require the stack to
work as described earlier: At the beginning of iteration i, the stack contains exactly the
elements 1 = h1, . . . , hk = i− 1 with hj−1 = pss[hj] for j ∈ [2, k]. Before the first iteration
with i = 2 this invariant is clearly satisfied, since H contains only the index 1. Now
we compare SH.top() with Si and keep popping the topmost element on the stack until
we have SH.top() <lex Si (lines 6–8). Each pop represents a pointer jump as described
earlier, i.e. each pop means that we succeed to the next smaller index from pss∗[i − 1].
The invariant ensures two things: First, whenever we pop H.top(), there has not yet been
an index j ∈ (H.top(), i) with SH.top() >lex Sj . Therefore, we know that nss[H.top()] = i

holds (line 7). Second, after reaching SH.top() <lex Si, we also know that pss[i] = H.top()
holds (line 9). By pushing i onto the stack, we maintain the invariant for the next iteration
(line 10).

After processing index n− 1, we have assigned pss[i] for i ∈ [1, n]. Also, we have assigned
nss[i] for all i ∈ [1, n] that are currently not on the stack. Let 1 = h1, . . . , hk = n − 1 be
the remaining indices on the stack. For any index hj with j ∈ [1, k] we clearly have not
found an index y > hj with Shj >lex Sy. Therefore, we can simply assign nss[hj] = n for

30 CHAPTER 4. CONSTRUCTING THE PSS TREE

all stack elements (lines 11–13). Note that this also includes index 1, explaining why we
did not need to assign nss[1] manually in the beginning.

4.1.1 Lemma. The algorithm xss-array computes the NSS and PSS array of a guarded
string of length n in O(n2) time using O(n) words of memory apart from input and output.

Proof. The correctness of the algorithm follows directly from the description and main-
taining the invariant of the loop. Since the stack contains at most n−1 elements, we need
O(n) words of additional memory. Each suffix comparison in line 6 is followed by either
a push or a pop. Considering that each index gets pushed and popped at most once, we
can follow that there are at most 2n suffix comparisons. Each comparison takes O(n)
time, which is why all comparisons combined take at most O(n2) time. This dominates
the execution time of the algorithm. �

An interesting property of the algorithm is, that each suffix comparison directly corre-
sponds to a previous or next smaller suffix relation. After comparing two suffixes Sj and
Si (line 6), we always assign either nss[j] = i (line 7) or pss[i] = j (line 9).

4.1.2 Lemma. If we compare two suffixes Sj and Si with j < i during the execution of
xss-array, then we have nss[j] = i or pss[i] = j. This also holds for the algorithms xss-bps,
xss-bps-lcp, and xss-real, which we present in the following sections.

4.1.3 Corollary. If we compare two suffixes Sj and Si with j < i during the execution
of xss-array, then S[j..i) is a Lyndon word. This also holds for the algorithms xss-bps,
xss-bps-lcp, and xss-real, which we present in the following sections.

Proof. Follows directly from Lemma 4.1.2 and Lemma 2.2.7. �

4.2 Computing the BPS of the PSS Tree

As we can see in Algorithm 4.1 (right), not many modifications to xss-array are needed to
construct the BPS Bpss of the PSS tree instead of the PSS and NSS array. The structure
of the new algorithm xss-bps remains essentially unchanged.

We build Bpss from left to right. In Section 3.3.1 we have seen that one way of obtaining
the BPS of a tree is to perform a depth-first traversal and write an opening parenthesis,
whenever we walk down an edge, and a closing parenthesis, whenever we walk up an edge.
Intuitively, the algorithm can be seen as a simulation of a depth-first traversal of Tpss. At
the beginning of iteration i of the outer loop, we are currently at node H.top() = (i− 1).
Let 1 = h1, . . . , hk = (i− 1) be the elements of H, then clearly the stack contains exactly
the path in Tpss that starts at node (i− 1) and extends all the way up to the left sentinel

4.3. INTRODUCING A SEPARATE LCP STACK 31

node 1 (in Section 4.1.2 we have shown that ∀j ∈ [2, k] : hj−1 = pss[hj] holds at the
beginning of the iteration). The next node that we have to visit during the traversal is i.
We know that i is a child of hj for some j ∈ [1, k]. For all nodes on the path from hk up to
hj , i.e. the nodes hl with l ∈ (j, k], we have Shl >lex Si. Therefore, we have one iteration
of the inner loop for each such hl, and thus write a total of |(j, k]| closing parentheses (line
7). This exactly corresponds to walking up the path from hk to hj during the depth-first
traversal. After the last iteration of the inner loop, the topmost element on H is hj .
Writing the opening parenthesis in line 7 directly corresponds to walking down the edge
from hj to i. As before, we push i onto H in order to satisfy the invariant of the outer
loop (line 10).
After the last iteration of the outer loop, we are at node H.top() = (n− 1). We write one
closing parenthesis for each node on the stack, which corresponds to walking up the path
from (n− 1) to the root 0. Lastly, we append one parenthesis pair for the sentinel index
n (which is a leaf), as well as the closing parenthesis of the root (line 14).

4.2.1 Corollary. The algorithm xss-bps computes the BPS of the PSS tree of a guarded
string of length n in O(n2) time using O(n) words of memory apart from input and output.

Proof. The correctness follows from the description. The time and memory bounds are
identical with the ones of xss-array. �

4.3 Introducing a Separate LCP Stack

One of the most expensive operations in xss-bps is the suffix comparison in line 6. Com-
paring two suffixes Si and Sj can be reduced to calculating the length of the prefix that
is shared by both suffixes: Let LcpS(i, j) be the length of the longest common prefix (see
Definition 2.1.4), then we have Si <lex Sj , iff S[i + LcpS(i, j)] < S[j + LcpS(i, j)] holds.
Note that the statement is only true for guarded strings, where no suffix can be the prefix
of another suffix. Conveniently, the right sentinel ensures that when determining the LCP
we do not need to check if we reached the end of the string.
Even though not explicitly stated in xss-bps, everytime we compare two suffixes in line 6,
we have to calculate LcpS(H.top(), i), which naturally takes LcpS(H.top(), i) + 1 individ-
ual character comparisons (assuming that we do not use a precomputed support data for
fast LCE queries). Processing a single index i can take Θ(n2) time because we might have
to compare Si with Θ(n) other suffixes, and on average each suffix comparisons might
require Θ(n) character comparisons. We will now reduce the worst-case processing time
per index from O(n2) to Θ(|γ|+c), where γ is the longest LCP that we discover during the
iteration, and c is the number of stack elements that we pop during the iteration. First,
we use a simple example to demonstrate why unnecessary character comparisons happen.
Assume that our input string is S = $axyzbaxyzcaxyz$, and the next index we want to

32 CHAPTER 4. CONSTRUCTING THE PSS TREE

process is i = 12 with S12 = axyz$, i.e. we have already calculated pss[j] for j ∈ [1, 11].
Below we see the state of all relevant data structures at that point in time.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S = $ a x y z b a x y z c a x y z $
pss = 1 2 3 4 5 2 7 8 9 7 ? H :


11 S11 = c. . .
7 S7 = axyzc. . .
2 S2 = axyzb. . .
1 S1 = $. . .

It is not hard to see, that S1 is the previous smaller suffix of S12. On the stack H we have
the indices 11, 7, 2, and 1. Therefore, xss-bps will compare S12 with S11, S7, S2, and S1,
which takes 1, 5, 5, and 1 individual character comparisons respectively. A step-by-step
walk through the algorithm reveals which comparisons are unnecessary. First, we compare
S11 with S12. Since the first character is already a mismatch (S[11] = c > a = S[12]), we
have S11 >lex S12. Therefore, we pop 11 and the new topmost element is 7. Again, we
compare S7 and S12, for which we find a shared prefix of length LcpS(7, 12) = 4 with a
mismatch S[7 + 4] = c > $ = S[12 + 4]. We pop 7, and 2 becomes the topmost element on
the stack. Now, since 7 was lying right on top of 2, we must have compared S2 and S7 in
the past, for which we calculated LcpS(2, 7) = 4. Clearly, when we have to compare S12

with S2, we have a shared prefix of length LcpS(2, 12) ≥ min(LcpS(2, 7),LcpS(7, 12)) = 4.
Had we actually stored LcpS(2, 7) instead of immediately discarding it, we could have
skipped the first four character comparisons when comparing S2 and S12.

4.3.1 Skipping Previously Computed Prefixes

As we have seen, memorizing the length of the LCP between adjacent stack elements
allows us to speed up future suffix comparisons. Lets look at this more formally. Assume
that we are currently in iteration i of the outer loop of xss-bps, and just popped index hk
because Shk >lex Si holds. Let hk−1 be the new topmost element on the stack. In terms
of the PSS tree, we know that i is not a descendant of hk. Next, we want to find out if i
is a child of hk−1, or more precisely, if i is the right sibling of hk (see left side of the figure
below).

The next suffix comparison that we have to evaluate is Shk−1 >lex Si. Let α be the longest
common prefix between Shk and Si, and let β be the longest common prefix between Shk−1

and Shk . Assume that at this point we have knowledge of |α| and |β|. There are two cases
to consider:

4.3. INTRODUCING A SEPARATE LCP STACK 33

hk−1

hk i

?

Case (1): |α| ≤ |β|

Si = α x1...

Shk = α γ x2...

Shk−1 = α γ︸ ︷︷ ︸
β

x3...

Case (2): |α| > |β|

Si =
α︷ ︸︸ ︷

β γ x1...

Shk = β γ x2...

Shk−1 = β x3...

Case (1): The string α is a prefix of β, i.e. β = αγ for some possibly empty string γ.
Then Shk−1 and Si share at least the prefix α (exactly prefix α, if γ is non-empty).

Case (2): The string β is a proper prefix of α, i.e. α = βγ for some non-empty string γ.
Then Shk−1 and Si share exactly the prefix β. Since Shk was lying on top of Shk−1 ,
we have Shk−1 <lex Shk with S[hk−1 + |β|] < S[hk + |β|] = S[i+ |β|]. Therefore, we
also have Shk−1 <lex Si.

Now assume that we want to calculate LcpS(hk−1, i) in order to evaluate Shk−1 >lex Si. Re-
gardless of which case actually applies, this value is at least min(|β|, |α|). Therefore, we can
simply skip the first min(|β|, |α|) character comparisons when calculating LcpS(hk−1, i).
If Case (1) applies, then we saved |α| = LcpS(hk, i) character comparisons. If Case (2)
applies, then we saved |β| = LcpS(hk−1, hk) character comparisons, and we will immedi-
ately find a mismatch on the next character with S[hk−1 + |β|] < S[i + |β|]. Since that
also implies that we break out of the inner loop of xss-bps, no further suffixes will be com-
pared during iteration i of the outer loop. Therefore, apart from the last calculated LCP
(which caused Case (2) to apply), all other LCPs calculated in iteration i of the outer loop
must have been (not necessarily strictly) monotonically increasing in length. Also, since
in Case (1) we always skip the full length of the previously calculated LCP, the total cost
for iteration i of the outer loop becomes Θ(|γ|+ c), where γ is the longest LCP discovered
and c is the number of popped elements during the iteration. It remains to be shown how
to provide the values of |α| and |β| whenever they are needed. For |α| this is trivial: It
is exactly the last LCP value that we have calculated. For |β| we use a dedicated stack,
which we describe in the next section.

4.3.2 Applying the New Knowledge to the Algorithm

In Algorithm 4.3 we see xss-bps-lcp, which is a modified version of xss-bps that uses the
technique from the previous section. To store the length of computed prefixes we use a
dedicated stack L (line 2). Let h1, . . . , hk be the elements on the index stack H at any
time during the algorithm execution. Then l1, . . . , lk−1 with lj = LcpS(hj , hj+1) are the

34 CHAPTER 4. CONSTRUCTING THE PSS TREE

Algorithm 4.2 Naive Computation of Longest Common Prefixes
Input: A guarded string S, indices i and j, optional ` with S[i..i+ `) = S[j..j + `)
Output: The length of the longest common prefix between Si and Sj
1: function LcpS(i, j, `)
2: while S[i+ `] = S[j + `] do . skips the first ` characters
3: `← `+ 1
4: return `

5: function LcpS(i, j)
6: return LcpS(i, j, 0)

Algorithm 4.3 xss-bps-lcp
Input: A guarded string S of length n
Output: The BPS Bpss of the PSS tree of S
1: H ← empty stack . contains h1, . . . , hk, such that hj = pss[hj+1]
2: L← empty stack . contains l1, . . . , lk−1, such that lj = LcpS(hj , hj+1)
3: H.push(1)
4: Bpss ← ”((”
5: for i = 2 to n− 1 do
6: |α| ← LcpS(H.top(), i) . first comparison cannot skip characters
7: while S[H.top() + |α|] > S[i+ |α|] do
8: Bpss ← Bpss · ”)”
9: |β| ← L.top()
10: H.pop()
11: L.pop()
12: |α| ← LcpS(H.top(), i,min(|β|, |α|)) . skip the already known prefix
13: Bpss ← Bpss · ”(”
14: H.push(i)
15: L.push(|α|)
16: while H is not empty do
17: Bpss ← Bpss · ”)”
18: H.pop()
19: Bpss ← Bpss · ”())”
20: return Bpss

4.3. INTRODUCING A SEPARATE LCP STACK 35

elements of L. We make sure that this property of L is satisfied at all times: Whenever we
push an element i onto H.top(), we also push LcpS(H.top(), i) onto the LCP stack (lines
14–15), and whenever we pop an element of H we also pop an element of L (lines 10–11).
A fundamental difference between xss-bps and xss-bps-lcp is, that we become more explicit
about the suffix comparison. Instead of writing SH.top() >lex Si in line 7, we split the
comparison into the calculation of the length of the LCP α between SH.top() and Si, and
the comparison of S[H.top()+|α|] and S[i+|α|] (lines 6, 7, and 12). When processing i, we
only need to calculate the first LCP value without skipping characters (line 6). For each
following comparison, we use the known LCP length |β| of the two topmost index-stack
elements as shown in the previous section (line 12). We deploy Algorithm 4.2 to calculate
the LCP values. Everything else remains unchanged from xss-bps. At this point we want
to emphasize, that using the LCP stack only reduces the worst case processing time per
iteration of the outer loop to Θ(|γ|+ c). The tightest possible bound for xss-bps-lcp is still
O(n2) (for example for the text “$an−2$”).

Considering that maintaining an additional stack means both memory and execution time
overhead, xss-bps-lcp only outperforms xss-bps, if the input string offers high LCP values.
However, deploying the separate LCP stack is an important step towards a linear time
solution, as it will also be used by our final algorithm.

4.3.3 Analyzing the Cost

Before we explain how to achieve linear time, we first need to gain a better understanding of
the time that we need per iteration. The bound of Θ(|γ|+c) consists of three components:

1. We pop exactly c elements during the iteration, which takes Θ(c) time (assuming
constant time pop operations).

2. We compute one LCP value for each popped element, and one additional LCP value
that causes the condition in line 7 to no longer hold. For each LCP value, we first
find between zero and |γ| matching characters, and then one mismatch. For now,
we only consider the c+ 1 mismatches, which take Θ(c) time.

3. Finally, we also consider the matching character comparisons. As seen before, the
LCP values per iteration are non-decreasing (except for possibly the last one). When-
ever Case (1) applies (see Section 4.3.1), we skip the full length of the previously
computed LCP. If Case (2) applies, then we immediately find a mismatch and break
out of the loop, i.e. no matching character comparison occurs. Thus, the total num-
ber of matching character comparisons in the entire iteration is exactly |γ|, which
means that they take Θ(|γ|) time.

36 CHAPTER 4. CONSTRUCTING THE PSS TREE

Keeping in mind that we want to achieve linear time, the first two components are not
problematic. Since c is the number of popped elements in the iteration, and we naturally
pop each element at most once, it follows that the total cost of the first two components
for all iterations is O(n). The critical factor is third component, which we will take care
of in the next chapter.

Chapter 5

Achieving Linear Time

We have seen in Section 4.3.3, that the critical time component of each iteration of
xss-bps-lcp is Θ(|γ|), where γ is the longest LCP that we discovered during the itera-
tion. Without this cost, we would already achieve linear time. However, because we found
an LCP of length |γ|, we also gained some important information about the input string.
In this chapter we show how to exploit this information, such that whenever we find an
LCP of length |γ|, we can fast-forward through the next z = Ω(|γ|) iterations of our al-
gorithm. We achieve this by using two techniques, where after each iteration of the outer
loop of xss-bps-lcp we can always use exactly one of the two:

Run Extension: We found a run in the input string. This allows us to fast-forward
through z = Θ(|γ|) iterations.

Amortized Look-Ahead: We did not find a run in the input string. However, we can
still fast-forward through z = Ω(|γ|) iterations (where sometimes this might even be
z = ω(|γ|)).

Regardless of which technique we actually use, the additional time spent on fast-forwarding
through the iterations is Θ(z). Now assume that we just finished iteration i of the outer
loop of xss-bps-lcp, during which we found the longest LCP of length |γ|. Also, assume
that we used one of the techniques to fast-forward through the next z iterations, i.e. we can
continue with iteration i+ z. Then the total time that we spent on iterations i to i+ z−1
is Θ(|γ|) + Θ(z) (the critical cost of iteration i, plus the cost of either the run extension or
the amortized look-ahead; ignoring the cost O(c) of iteration i, see Section 4.3.3). Since
we have |γ| = O(z) and thus Θ(|γ|) + Θ(z) = Θ(z), it follows that the average time spent
on each of the z+ 1 iterations is constant. Thus, if we use one of the two techniques after
each iteration, then we achieve linear time. In the next two sections we use the following
notation:

37

38 CHAPTER 5. ACHIEVING LINEAR TIME

• Sj is the suffix that we compared Si with while discovering the LCP γ, i.e. at some
point during iteration i, the topmost element on H was j and we have S[j..j+ |γ|) =
S[i..i + |γ|) = γ and S[j + |γ|] 6= S[i + |γ|] (we have S[j + |γ|] < S[i + |γ|], if the
last suffix comparison of the iteration was covered by Case (1) of Section 4.3.1, and
S[j + |γ|] > S[i+ |γ|], if it was covered by Case (2)). If multiple indices satisfy this
criterion, we define j to be the leftmost (i.e. smallest) matching index.

• oj is the BPS index of the opening parenthesis that belongs to node j. Let Bpref
be the prefix of the BPS that we have computed after iteration i, then the last
parenthesis that we have written is the opening parenthesis that belongs to node i.
Since during the iteration we compared Sj and Si, we know that we have already
written both the opening and the closing parenthesis for each node from the interval
(j, i). If Sj <lex Si holds, then we have not written the closing parenthesis of Sj yet,
and the opening parenthesis of j is located at index oj = |Bpref| − 2(i− j) + 1:

Bpref =
oj = oi − 2(i− j) + 1
(︸ ︷︷ ︸

2(i− j − 1) parentheses:
open and close nodes from (j, i)

oi = |Bpref|
(

Otherwise, we have already written the closing parenthesis of j, and therefore we
have oj = |Bpref| − 2(i− j):

Bpref =
oj = oi − 2(i− j)
(︸ ︷︷ ︸

2(i− j − 1) parentheses:
open and close nodes from (j, i)

)
↑

close j

oi = |Bpref|
(

Note that there cannot be another parenthesis between the closing parenthesis of
j and the opening parenthesis of i. Assume that there was another node k whose
closing parenthesis should be between the closing parenthesis of j and the opening
parenthesis of i, then we have k < j with Sk >lex Si. Since the LCPs discovered
in one iteration of the algorithm are non-decreasing (except for the last one; see
Section 4.3), the shared prefix between Sk and Si has length |γ|. However, we defined
j to be the leftmost index with S[j..j+|γ|) = S[i..i+|γ|) = γ and S[j+|γ|] 6= S[i+|γ|].
Therefore, the described k does not exist.

Given |γ| and j, we can evaluate Sj <lex Si in constant time, because we have
Sj <lex Si ⇔ S[j + |γ|] < S[i + |γ|]. Therefore, computing oj also takes constant
time.

39

Since the knowledge of |γ| and j is essential for both the run extension and the amortized
look-ahead, we have to augment xss-bps-lcp with additional bookkeeping. This is shown
in Algorithm 5.1, which is the final version of our algorithm. It is called xss-real (Run
Extension and Amortized Look-ahead). We have highlighted the parts of the algorithm
that differ from xss-bps-lcp. In each iteration of the outer loop, we store the values of |γ|
and j after the first LCP computation (lines 7–8). Then, whenever we discover an LCP of
longer or equal length, we update the values accordingly (lines 14–16). At the end of each
iteration, we use either the run extension or the amortized look-ahead to skip the next
Ω(|γ|) iterations (lines 19–23), which we will explain in depth in the following sections.

Algorithm 5.1 xss-real
Input: A guarded string S of length n
Output: The BPS Bpss of the PSS tree of S
1: H ← empty stack . contains h1, . . . , hk, such that hj = pss[hj+1]
2: L← empty stack . contains l1, . . . , lk−1, such that lj = LcpS(hj , hj+1)
3: H.push(1)
4: Bpss ← ”((”
5: for i = 2 to n− 1 do
6: |α| ← LcpS(H.top(), i) . first comparison cannot skip characters

7: |γ| ← |α| . use |γ| and j to keep track of the longest LCP
8: j ← H.top()

9: while S[H.top() + |α|] > S[i+ |α|] do
10: Bpss ← Bpss · ”)”
11: |β| ← L.top()
12: H.pop(); L.pop()
13: |α| ← LcpS(H.top(), i,min(|β|, |α|)) . skip the already known prefix length

14: if |α| ≥ |γ| then . if a longer or equally long LCP was discovered:
15: |γ| ← |α| . update |γ| accordingly
16: j ← H.top() . update j accordingly

17: Bpss ← Bpss · ”(”
18: H.push(i); L.push(|α|)

19: if |γ| ≥ 2(i− j) then . skip iterations
20: inext ← RunExtension(S,H,L,Bpss, |γ|, j, i)
21: else
22: inext ← AmortizedLookahead(S,H,L,Bpss, |γ|, j, i)
23: continue with iteration i = inext

24: while H is not empty do
25: Bpss ← Bpss · ”)”
26: H.pop()
27: Bpss ← Bpss · ”())”
28: return Bpss

40 CHAPTER 5. ACHIEVING LINEAR TIME

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
S = $ a b c c a b c c a b c c a b c c d $

pss = 0 1 2 3 3 2 6 7 7 6 10 11 11 10 14 15 16 17 0

Tpss = 0
1
$

19
$2

a 3
b

6
a4

c
5
c

7
b

10
a8

c
9
c

11
b

14
a12

c
13
c

15
b 16

c 17
c 18

d

2
a 3

b 4
c

5
c

6
a 7

b 8
c

9
c

10
a 11

b 12
c

13
c

Bpss =
0
(

1
(

2
(

3
(

4
()

5
())

6
(

7
(

8
()

9
())

10
(

11
(

12
()

13
())

14
(

15
(

16
(

17
(

18
()) · · ·

19
())

Figure 5.1: The PSS tree of the string S = $abccabccabccabccd$ and its BPS. The
Lyndon word abcc repeats itself four times at the beginning of S2. Each repetition,
except for the last one, induces the same structure within the PSS tree. This structure
is represented by the parentheses sequence ((()()), which therefore repeats itself three
times in the BPS.

5.1 Run Extension

As the name suggests, the run extension exploits properties of runs, or more precisely runs
of Lyndon words. The general idea is, that a repeating Lyndon word in the input string
implies a repeating structure within the PSS tree, and thus also a run in its BPS. Therefore,
instead of expensively recomputing the same part of the BPS for every repetition, we can
simply create copies of the respective substring of the BPS. After that, we only have to
ensure that the stacks H and L are updated to the correct state. Figure 5.1 shows how
the run of the Lyndon word abcc in the string $abccabccabccabccd$ causes a run in
the BPS of the PSS tree. The run extension is applicable, iff |γ| ≥ 2(i − j) holds (see
Algorithm 5.1, line 19), and skips at least |γ|/3 = Ω(|γ|) iterations.

5.1.1 Properties of Lyndon Runs

Before explaining the run extension, we formally define Lyndon runs. Also, we will show
some general properties of Lyndon runs within the input string.

5.1. RUN EXTENSION 41

5.1.1 Definition (Lyndon Run). We say that a string S is a Lyndon run of t rep-
etitions, if it has the form S = µt · pre(µ) with t ≥ 2, where µ is a Lyndon word and
pre(µ) is a proper (possibly empty) prefix of µ. The length |µ| of the repeating Lyndon
word is called period of the run.

S = µ µ . . . µ µ︸ ︷︷ ︸
t times

pre(µ)

For example, the string S = xyz xyz xyz xyz xy is a Lyndon run of t = 4 repetitions
with period |µ| = |xyz| = 3. We already claimed, that the run extension is applicable
iff |γ| = LcpS(j, i) ≥ 2(i − j) holds. Now we assume that this condition is satisfied, and
define µ = S[j..i). Note that from Corollary 4.1.3 follows, that µ is a Lyndon word. As
visualized below, the substring S[j..i+ |γ|) is a Lyndon run:

S = . . .

j=r1
↓

µ

i=r2
↓

µ

r3
↓

. . .

rt−1
↓

µ

rt
↓

µ

rt+1
↓

pre(µ)

i+|γ|
↓

. . .

S = . . . µ µ µ . . . µ pre(µ)︸ ︷︷ ︸
S[j..j + |γ|) = S[i..i+ |γ|) = γ

. . .

The Lyndon word µ fits exactly b|γ|/|µ|c times into the shared prefix S[i..i + |γ|) = γ.
Additionally, we have to count the first occurrence S[j..i) as one repetition. Therefore,
the number of repetitions is t = b|γ|/|µ|c + 1. From |γ| ≥ 2|µ| follows, that t ≥ 3 holds.
The starting positions of the repetitions are r1 = j, r2 = i, and rx = j + (x − 1) · |µ| for
x ∈ [3, t]. The first index after the last repetition is rt+1 = j + t · |µ|. Now we show that
each repetition of µ, except for the last one, induces the same structure in the PSS tree.

5.1.2 Lemma. Let x, y ∈ [1, t] and a ∈ [1, |µ|). We have Srx <lex Sry+a.

Proof. Since rx and ry are starting positions of repetitions of µ, we know that µ is a prefix
of Srx and Sry . Also, µa+1 is a prefix of Sry+a:

µ =

1
↓

a+1
↓

µ

Srx = µ Srx+1

µa+1

Sry+a = µa+1 Sry+1

42 CHAPTER 5. ACHIEVING LINEAR TIME

Each proper non-empty suffix of µ is lexicographically larger than µ, because µ is a Lyndon
word (Lemma 2.1.7). Therefore, we have µ <lex µa+1, and thus Srx <lex Sry+a. �

The lemma characterizes a structural property of the PSS tree: For an arbitrary repetition
S[rx..rx+1) of µ, the nodes from the interval (rx, rx+1) are descendants of rx. Therefore,
the interval [rx, rx+1) is represented by a subtree that is rooted in rx, and has rx+1− 1 as
its rightmost leaf.

r1

r2 − 1

r2

r3 − 1

· · ·

rt−1

rt − 1

rt

rt+1 − 1

It remains to be shown that all of these structures, except for the last one, are isomorphic.
As we have seen many times throughout the previous chapters, the structure of the PSS
tree essentially depends on the outcome of suffix comparisons. To show that the structures
are isomorphic, we prove that the suffix comparisons on which they depend have the same
outcome for all repetitions of the Lyndon word.

5.1.3 Lemma. Let x, y ∈ [1, t) and a, b ∈ [0, |µ|) with a < b. It holds:

Srx+a <lex Srx+b ⇐⇒ Sry+a <lex Sry+b

Proof. Let a′ = a + 1 and b′ = b + 1. There are at least two repetitions of µ at the
beginning of Srx . Therefore, µa′ ·µ and µb′ ·µ are prefixes of Srx+a and Srx+b respectively:

S =

1
↓

S[1..rx)

rx
↓
rx+a
↓

rx+b
↓

µ

rx+1
↓

µ

rx+2
↓

Srx+2

Srx+a = µa′ µ Srx+2

Srx+b = µb′ µ Srx+2

This allows us to show, that the strings µa′ · µ and µb′ · µ have a guaranteed mismatch.

µ =

1
↓
a′

↓
b′

↓

µ

a′+|µb′ |
↓
|µ|
↓

µa′ · µ = µa′ µ

µb′ µ

µb′ · µ = µb′ µ

Consider the two hatched areas in the drawing above. The upper area highlights the suffix
µa′+|µb′ | of µ. Let c = |µ| − (a′ + |µb′ |) + 1 be the length of this suffix. The bottom area

5.1. RUN EXTENSION 43

highlights the prefix µ[1..c] of µ. Since µ is a Lyndon word, there is no proper non-empty
suffix of µ that is also a prefix of µ (otherwise we contradict Lemma 2.1.7). It follows, that
the two highlighted areas are not equal, i.e. we have µa′+|µb′ | 6= µ[1..c]. This guarantees
that µa′ ·µ and µb′ ·µ have a mismatch within the first |µa′ | characters. Since the mismatch
occurs, appending an arbitrary string to µa′ · µ and µb′ · µ does not influence the outcome
of a lexicographical comparison. Therefore we have:

µa′ · µ <lex µb′ · µ ⇐⇒ µa′ · µ · Srx+2 <lex µb′ · µ · Srx+2

⇐⇒ Srx+a <lex Srx+b

Clearly, the proof above also holds if we replace x with y. It follows:

Srx+a <lex Srx+b ⇐⇒ µa′ · µ <lex µb′ · µ ⇐⇒ Sry+a <lex Sry+b

.
�

Finally, we can show the actual isomorphism:

5.1.4 Lemma. Let x, y ∈ [1, t) and b ∈ [1, |µ|). It holds:

∃a ∈ [0, b) : (pss[rx + b] = rx + a ∧ pss[ry + b] = ry + a)

Proof. From Lemma 5.1.2 follows, that all nodes from the interval (rx, rx+1) are descen-
dants of rx in the PSS tree. Particularly, this means that there is some a ∈ [0, b) with
pss[rx + b] = rx + a. By definition of previous smaller suffixes, we have Srx+a <lex Srx+b,
and all suffixes that begin within S(rx + a..rx + b) are lexicographically larger than Srx+b.
These suffix comparisons are covered by Lemma 5.1.3:

∀c ∈ (a, b) : Srx+c >lex Srx+b ∧ Srx+a <lex Srx+b

⇐⇒
Lemma 5.1.3

∀c ∈ (a, b) : Sry+c >lex Sry+b ∧ Sry+a <lex Sry+b

By definition of previous smaller suffixes, this is equivalent to pss[ry + b] = ry + a. �

Thus, all repetitions except for the last one induce identical structures in the PSS tree.
This is the fundamental insight that allows us to skip iteration by copying the repeating
part of the PSS tree (or more precisely its BPS). However, we still do not know how the
isomorphic structures are connected within the tree. There are only two possible scenarios,
which depend on the so called direction of the Lyndon run.

44 CHAPTER 5. ACHIEVING LINEAR TIME

5.1.5 Definition. We call S[j..i + |γ|) increasing Lyndon run, iff Sr1 <lex Sr2 holds,
and decreasing Lyndon run, otherwise.

The string in Figure 5.1 contains an increasing run, because Sr1 = abccabccabccabccd$

is lexicographically smaller than Sr2 = abccabccabccd$. On the other hand, the string
T = $xyzxyzxyzxyzxyy$ contains a decreasing run, because Tr1 = xyzxyzxyzxyzxyy$ is
lexicographically larger than Tr2 = xyzxyzxyzxyy$. The names increasing and decreasing
are motivated by the fact, that the repetitions of the run are monotonically increasing or
decreasing in terms of the lexicographical order.

5.1.6 Observation. We have Sr1 <lex Sr2 <lex Sr3 <lex . . . <lex Srt+1 for increasing
runs. This holds because Sr1 and Sr2 share the prefix µ.

Sr1 <lex Sr2 ⇐⇒ µ · Sr2 <lex µ · Sr3 ⇐⇒ Sr2 <lex Sr3

By repeatedly applying the implication above, we get the chain Sr1 <lex . . . <lex Srt+1 .
For decreasing runs we have Sr1 >lex . . . >lex Srt+1 instead.

Looking at the previously used example string T = $xyzxyzxyzxyzxyy$ and its decreasing
run, we have Tr1 >lex Tr2 >lex Tr3 >lex Tr4 >lex Tr5 . As visualized below, the same
mismatch is responsible for all inequalities of the chain:

Tr1 = x y z x y z x y z x y z x y y $

>lex Tr2 = x y z x y z x y z x y y $

>lex Tr3 = x y z x y z x y y $

>lex Tr4 = x y z x y y $

>lex Tr5 = x y y $

Using the new definitions and insights, we can finally show how to skip iterations by using
the run extension. The procedure for increasing runs and decreasing runs differs slightly.
In both cases, we will skip rt− r2 iterations, i.e. the next regular iteration that we have to
perform after the run extension is iteration inext = rt + 1. Note that we can determine if
the run is increasing or decreasing in constant time: Since γ is exactly the LCP between
Sr1 and Sr2 , we have Sr1 <lex Sr2 ⇔ S[r1 + |γ|] < S[r2 + |γ|].

5.1.2 Extending Increasing Runs

Take any x ∈ [2, t], then following Lemma 5.1.2 we have Srx−1+a >lex Srx for a ∈ [1, |µ|).
Since in increasing runs we also have Srx−1 <lex Srx , we know that pss[rx] = rx−1 holds.

5.1. RUN EXTENSION 45

r1 r2 rt−1 rt rt+1
S = S[1..r1) µ µ · · · µ µ S[rt+1..n]

pss[r1]

µ

r1

r2 − 1 µ

r2

r3 − 1 · · ·

· · ·

· · · µ

rt−1

rt − 1

rt

Bpss = · · ·

open
r1
↓
(︸ ︷︷ ︸

BPS of
(r1, r2)

open
r2
↓
(︸ ︷︷ ︸

BPS of
(r2, r3)

open
r3
↓
(· · ·

open
rt−1
↓
(︸ ︷︷ ︸

BPS of
(rt−1, rt)

open
rt
↓
(· · ·

original 1st copy (t− 2)-th copy

Figure 5.2: The increasing run of the Lyndon word µ induces repeated structures in the
PSS tree. The t repetitions of µ cause t − 1 repetitions of a subsequence in the BPS. As
shown in Section 5.1, the BPS of interval (rx−1, rx) is identical for all x ∈ [2, t]. Since the
run is increasing, we have a path (r1, r2, . . . , rt) in the PSS tree.

This results in a chain of previous smaller suffix relations between the indices r1, . . . , rt.
Therefore, as seen in in Figure 5.2, there is also a chain of edges that connects the struc-
tures that are induced by the repetitions of µ. In the BPS of the PSS tree, the opening
parenthesis of node rx is always preceded by a balanced sequence of 2(|µ| − 1) parenthe-
ses that represent the interval (rx−1, rx). This sequence is balanced because the suffixes
Srx−1 and Srx are lexicographically smaller than all suffixes that start within the interval
(rx−1, rx) (see Lemma 5.1.2). Therefore, all nodes from this interval are encoded between
the opening parentheses of rx−1 and rx. At the time we finish iteration i = r2 during the
execution of xss-real, the last parenthesis that we have written is the opening parenthesis
of r2. We simply take the last 2|µ|−1 parentheses that we have written and append them
t− 2 times to the known prefix of the BPS, which is also visualized in Figure 5.2.

After this, the last parenthesis that we have written is the opening parenthesis of node rt.
Since after the run extension we want to continue with iteration rt + 1 of our algorithm,
we still have to update the stacks H and L to their correct state. Currently, the topmost
element on H is r2. Therefore, we have to push the indices r3, . . . , rt onto H, and the

46 CHAPTER 5. ACHIEVING LINEAR TIME

corresponding LCP values LcpS(r2, r3), . . . ,LcpS(rt−1, rt) onto L. We compute the LCP
values one at a time, and in left-to-right order, i.e. LcpS(r2, r3) first and LcpS(rt−1, rt)
last. Looking at three adjacent repetitions beginning at indices rx−1, rx, and rx+1, we
clearly have LcpS(rx, rx+1) = LcpS(rx−1, rx)− |µ|. Therefore, we can compute each LCP
value in constant time.

5.1.3 Extending Decreasing Runs

Take any x ∈ [2, t], then following Lemma 5.1.2 we have Srx−1+a >lex Srx for all a ∈ [1, |µ|).
Since in decreasing runs we also have Srx−1 >lex Srx , we know that pss[rx] < rx−1 holds.
Now we will show that in fact we have pss[rx] = pss[r1].

5.1.7 Lemma. (In this lemma we are only considering increasing runs.) Let x ∈ [2, t].
The suffixes Sr1 and Srx have the same PSS, and also share the same LCP with this PSS,
i.e. pss[rx] = pss[r1] and LcpS(pss[rx], rx) = LcpS(pss[r1], r1) hold. The length of the LCP
is bound by LcpS(pss[r1], r1) < |µ|.

Proof. Assume that Spss[r1] begins with the prefix µ. If we additionally assume that
pss[r1] + |µ| > r1 holds, we get the following picture:

S =

pss[r1]
↓

µ

r1
↓

pss[r1]+|µ|
↓

µ

As indicated by the hatched area, this implies that there is a proper non-empty suffix of
µ that is also a prefix of µ, which contradicts Lemma 2.1.7. Thus, we have shown that
pss[r1] + |µ| ≯ r1 holds. Also, we cannot have pss[r1] + |µ| = r1, because then pss[r1] is
the starting position of another repetition of µ.

S =

pss[r1]
↓

µ

r1
↓

µ

r2
↓

µ · · ·

rt
↓

µ

rt+1
↓

Since the run is decreasing, this would imply Spss[r1] >lex Sr1 , which contradicts the defi-
nition of previous smaller suffixes. It follows, that pss[r1] + |µ| < r1 holds. Consequently,
Spss[r1]+|µ| begins somewhere between pss[r1] and r1, and we have Spss[r1]+|µ| >lex Sr1 .
However, this leads to a contradiction:

Spss[r1] <lex Sr1 ⇐⇒ µ · Spss[r1]+|µ| <lex µ · Sr2

⇐⇒ Spss[r1]+|µ| <lex Sr2

=⇒
Sr1>lexSr2

Spss[r1]+|µ| <lex Sr1

5.1. RUN EXTENSION 47

r1 r2 rt−1 rt rt+1
S = S[1..r1) µ µ · · · µ µ S[rt+1..n]

pss[r1]

µ

r1

r2 − 1

µ

r2

r3 − 1

· · ·

· · ·

· · ·

µ

rt−1

rt − 1

rt

Bpss = · · ·

open
r1
↓
(︸ ︷︷ ︸

BPS of
(r1, r2)

close
r1
↓
)

open
r2
↓
(︸ ︷︷ ︸

BPS of
(r2, r3)

close
r2
↓
)

open
r3
↓
(· · ·

open
rt−1
↓
(︸ ︷︷ ︸

BPS of
(rt−1, rt)

close
rt−1
↓
)

open
rt
↓
(· · ·

original 1st copy (t− 2)-th copy

Figure 5.3: The decreasing run of the Lyndon word µ induces repeated structures in the
PSS tree. The t repetitions of µ cause t − 1 repetitions of a subsequence in the BPS. As
shown in Section 5.1, the BPS of interval (rx−1, rx) is identical for all x ∈ [2, t]. Since the
run is decreasing, the nodes r1, r2, . . . , rt are children of pss[r1] in the PSS tree, such that
rx is the right sibling of rx−1.

It follows that µ is not a prefix of Spss[r1]. Thus, we have LcpS(pss[r1], r1) < |µ|. Since all
other suffixes Srx with x ∈ [2, t] begin with the prefix µ as well, we have LcpS(pss[r1], rx) =
LcpS(pss[r1], r1). This also means, that the suffixes Spss[r1] and Sr1 compare in the same
way as Spss[r1] and Srx . We have Spss[r1] <lex Srx , and therefore pss[rx] = pss[r1]. �

As a direct consequence of this lemma, all nodes rx with x ∈ [2, t] are children of pss[r1],
as visualized in Figure 5.3. If we look at the BPS of the PSS tree, the opening parenthesis
of node rx is preceded by the closing parenthesis of node rx−1, which in turn is preceded
by a balanced sequence of 2(|µ|−1) parentheses that represent the interval (rx−1, rx). We
simply take the last 2|µ| parentheses that we have written and append them t−2 times to
the known prefix of the BPS. Bringing the stackH into the correct state is easy: We simply
replace the topmost element onH (which is r2 = i) with rt. Currently, the topmost element
on L is LcpS(pss[r2], r2). We have already shown that LcpS(pss[r2], r2) = LcpS(pss[rt], rt)
holds. Therefore, the stack L does not need to be altered. Thus, we have skipped the next
rt − r2 iterations.

48 CHAPTER 5. ACHIEVING LINEAR TIME

5.1.4 Skipping Ω(|γ|) Iterations

We have shown that for both increasing and decreasing runs we can skip rt−r2 iterations.
Remember that γ contains exactly (t − 1) full repetitions of µ, as well as an additional
proper prefix of µ. Thus, we have |γ| < t · |µ|. It follows, that the number of skipped
iterations is bound by Ω(|γ|):

rt − r2 = (t− 2) · |µ| > (t− 2) · |µ|
t · |µ|

· |γ| ≥ |γ|/3 = Ω(|γ|)

The time needed for performing the run extension is O(|γ|), which is dominated by the
time needed for copying either (2|µ| − 1) · (t − 2) < 2|γ| parentheses for increasing runs,
or 2|µ| · (t − 2) < 2|γ| parentheses for decreasing runs respectively. Therefore, we satisfy
the requirements that we stated at the beginning of Chapter 5, i.e. each skipped iteration
takes constant time on average.

It is noteworthy, that during the execution of xss-real we actually detect all Lyndon runs
of at least three repetitions:

5.1.8 Lemma. Let r1, . . . , rt be the starting positions of a Lyndon run that has t ≥ 3
repetitions. If iteration r2 of xss-real is a regular iteration, i.e. if we do not skip iteration r2,
then we will detect the Lyndon run in this iteration. The longest LCP that we discover in
iteration r2 is LcpS(r1, r2), and we only find this LCP between Sr1 and Sr2. Therefore, the
run extension will be used after iteration r2, allowing us to skip Ω(LcpS(r1, r2)) iterations.

Proof. First, assume that the run is increasing. In iteration r2 we only compare Sr2

against suffixes that begin within [pss[r2], r2) = [r1, r2). Clearly, the longest LCP between
Sr2 and any Sa with a ∈ [r1, r2) is exactly the one between Sr2 and Sr1 . For decreasing
runs, we have to consider all suffixes starting in [r1, r2), and additionally the suffix Spss[r2].
However, we have already shown that LcpS(pss[r2], r2) is less than the length of one
repetition (Lemma 5.1.7). Therefore, regardless of the direction of the run, the longest
LCP discovered in iteration r2 is LcpS(r1, r2). �

5.1.5 Presence of Lyndon Run Indices on H

We conclude the section by showing some additional properties of Lyndon runs that are
particularly useful for our algorithmic setting. We will use these properties to prove the
time bound of the amortized look-ahead, as well as the the space bound of our succinct
representation of the stack L.

Lyndon runs not only induce isomorphic structures in the PSS tree, but also cause specific
patterns on the index stack H. The presence of some indices of a Lyndon run on H can
imply the absence of others.

5.1. RUN EXTENSION 49

5.1.9 Lemma. Let r1, . . . , rt be the starting positions of a Lyndon run that has t ≥ 3
repetitions and period |µ| = (r2−r1). Let x ∈ [1, t) and a ∈ [1, |µ|). If at any point in time
during the algorithm execution the stack H contains the index rx + a, then the topmost
element on H is smaller than rx+1.

Proof. From Lemma 5.1.2 follows, that Srx+a >lex Srx+1 holds. Therefore, once we reach
iteration rx+1 of our algorithm, we pop rx+a. Thus, if H contains rx+a, we have not yet
reached iteration rx+1, and we have only pushed elements that are smaller than rx+1. �

5.1.10 Lemma. Let r1, . . . , rt be the starting positions of an increasing Lyndon run that
has t ≥ 3 repetitions. Let x ∈ [1, t). If at any point in time during the algorithm execution
the topmost element on the stack H is larger than rx, but H does not contain rx, then it
also does not contain any index from the interval (rx, rt].

Proof. Let |µ| = (r2 − r1). Since the topmost element is larger than rx, we must have
popped rx already. Therefore, we have processed a suffix Sa with a > rx that is lex-
icographically smaller than Srx . Since in increasing runs all suffixes starting within
(rx, rt + |µ|] are lexicographically larger than Srx (Lemma 5.1.2 and Observation 5.1.6),
we have a > rt + |µ|. It follows, that we popped all indices from the interval (rx, rt + |µ|]
during iteration a of our algorithm. �

50 CHAPTER 5. ACHIEVING LINEAR TIME

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
S = $ a f e b c b c b d a f e b c b c b $

pss = 0 1 2 2 2 5 5 7 7 9 1 11 11 11 14 11 16 11 0

Tpss = 0

1
$

19
$2

a
11
a3

f
4
e

5
b

12
f

13
e

14
b

16
b

18
b6

c
7
b

15
c

17
c8

c
9
b 10

d

2
a 3

f
4
e

5
b 6

c

11
a 12

f
13
e

14
b 15

c

Bpss =
0
(

1
(

2
(

3
()

4
()

5
(

6
()

7
(

8
()

9
(

10
()))))

11
(

12
()

13
()

14
(

15
())

16
(

17
())

18
()))

19
())

Figure 5.4: The PSS tree of the string S = $abccabccabccabccd$ and its BPS. There
are two occurrences of the substring afebcbcb. The structures in the PSS tree that are
induced by these occurrences are similar. Even though the substring has length eight, the
completely identical areas in the PSS tree only contain five nodes.

5.2 Amortized Look-Ahead

It remains to be shown how to skip Ω(|γ|) iterations, if the run extension is not applicable,
i.e. if we have |γ| < 2(i− j). Once again, the general idea is to copy a part of the already
computed prefix of the BPS. A long LCP between j and i might cause a large repeating
structure within the PSS tree. Computing the LCP can be interpreted as expensively
looking ahead in the input string S. Since we amortize this cost by skipping iterations,
the new technique is called amortized look-ahead. While being conceptually simple, the
approach is complicated in technical detail. Unfortunately, the two occurrences of γ =
S[i..i+ |γ|) = S[j..j + |γ|) do not necessarily induce completely identical structures in the
PSS tree. Figure 5.4 shows the PSS tree of the string S = $afebcbcbdafebcbcb$. Even
though we have the shared prefix S[2..9] = S[11..18] = afebcbcb of length eight between
S2 and S11, the respective identical parts of the PSS tree contain only five nodes. The
difficulty of the amortized look-ahead is to find the part of the BPS that can be copied.
Before going into detail, we will briefly outline the three main steps of the algorithmic
procedure:

• First, we compute a so called anchor χ ∈ [1, |γ|], which indicates that we can skip
exactly χ− 1 iterations by using the amortized look-ahead. Similar to the way that
each repetition of a run induces the same structure in the PSS tree, the anchor en-
sures that S[j..j+χ) and S[i..i+χ) induce the same structure in the PSS tree. If we
find an anchor that is relatively small, i.e. χ < b|γ|/4c, then we can skip Ω(|γ|) addi-
tional iterations by using the run extension. Otherwise, we have χ ≥ b|γ|/4c, which

5.2. AMORTIZED LOOK-AHEAD 51

means that we can skip Ω(|γ|) iterations with the amortized look-ahead. Therefore,
we always skip Ω(|γ|) iterations.

• We copy a part of the already computed prefix of the BPS and append it to its end.
Since S[j..j+χ) and S[i..i+χ) induce the same structures in the PSS tree, we have
Bpss(oj ..oj+χ−1] = Bpss(oi..oi+χ−1], where ox denotes the BPS index of the opening
parenthesis of node x.

• Lastly, we update the stacks H and L such that they reflect the changes that we
made to the BPS.

We make sure, that we spend at most O(|γ|) additional time on the amortized look-ahead.
This way, we guarantee that the average time per skipped iteration is constant.

5.2.1 Finding an Anchor

We already stated, that we want S[j..j + χ) and S[i..i+ χ) to induce identical structures
in the PSS tree. As we have seen multiple times throughout this thesis, the edges in the
PSS tree depend on suffix comparisons. If we can ensure, that suffix comparisons within
S[j..j + χ) have the same result as suffix comparisons within S[i..i + χ), then we also
have identical structures in the PSS tree. Ideally, we want to select the largest possible
χ for which there are no two offsets a, b ∈ [0, χ) with Sj+a <lex Sj+b and Si+a >lex Si+b.
However, we have to keep in mind that we want to spent at most O(|γ|) time. Therefore,
it is not feasible to simply compute the results of all possible suffix comparisons. Thus,
we need a smarter mechanism to determine the anchor.

Assume that we are looking at any two problematic offsets a, b ∈ [0, |γ|) for which we
have Sj+a <lex Sj+b and Si+a >lex Si+b. Since we have S[j..j + |γ|) = S[i..i + |γ|) = γ,
we know that the shared prefix between Sj+a and Sj+b (and also the one between Si+a

and Si+b) must extend at least all the way to the end of S[j..j + |γ|) (or the end of
S[i..i + |γ|), respectively). Otherwise, the first mismatch between Sj+a and Sj+b would
occur in S[j..j+ |γ|), and therefore the same mismatch would occur between Si+a and Si+b
in S[i..i+ |γ|). If a and b are small, then also the distance between j+a and j+b becomes
small compared to the length of the shared prefix between Sj+a and Sj+b. In fact, if both
a and b are from the interval [0, b|γ|/4c), then they can only be problematic, if γ ends in a
run of length at least d3|γ|/4e and period |a− b|. We will show how to detect runs of this
kind, which then allows us to choose an anchor for which there are no problematic offsets.

Let ` = b|γ|/4c. We split γ into the prefix γ[1..`] and the suffix γ`+1. Then, we determine
whether there is a Lyndon run that begins in γ[1..`] and extends to the very end of γ.
Formally, we introduce extended Lyndon runs:

52 CHAPTER 5. ACHIEVING LINEAR TIME

5.2.1 Definition (Extended Lyndon Run). Let S be a string. We say that S is an
extended Lyndon run with period |µ|, if there is a Lyndon word µ and an integer t ≥ 2,
such that S has the form S = suf(µ) · µt · pre(µ), where suf(µ) and pre(µ) are a proper
suffix and a proper prefix of µ.

S = suf(µ) µ µ · · · µ µ︸ ︷︷ ︸
t times

pre(µ)

Consider the string γ = “az xyz xyz xyz xyz xyz xyz xyz xy” of length 25 as an example.
We have ` = b25/4c = 6, resulting in the following substrings γ[1..`] and γ`+1:

γ = az xyz x︸ ︷︷ ︸
γ[1..`]

yz xyz xyz xyz xyz xyz xy︸ ︷︷ ︸
γ`+1

In this case, γ`+1 is an extended Lyndon run with µ = xyz, suf(µ) = yz, pre(µ) = xy

and t = 5. Determining whether or not γ`+1 is an extended Lyndon run takes O(|γ`+1|)
time and O(1) words of additional memory, using a modified version of Duval’s algorithm
[Duval, 1983, Algorithm 2.1], which we describe in Appendix A. Given an extended Lyndon
run, the algorithm does not only detect that it is an extended Lyndon run, but also outputs
the period |µ| of the run, as well as the length |suf(µ)|, which identifies the starting position
of the first full repetition of µ.

If γ`+1 is not an extended Lyndon run, then we simply choose the anchor χ = ` = b|γ|/4c.
Otherwise, we try to extend the run to the left: We are now not only considering the
suffix γ`+1, but the entire string γ. We want to find the leftmost index y of γ that is the
starting position of a repetition of µ. Given |µ| and |suf(µ)|, this can be done naively by
scanning γ[1..`] from right to left, which takes O(`) time. Finally, we define the anchor
χ = min(y + |µ| − 1, `). For our example, we have y = 3 and χ = y + |µ| − 1 = 5:

γ = az

y
↓

xy

χ
↓

z x︸ ︷︷ ︸
γ[1..`]

yz xyz xyz xyz xyz xyz xy︸ ︷︷ ︸
γ`+1

For completeness, we also give an example with ` < y + |µ| − 1:

γ = abc ab

χ
↓

c︸ ︷︷ ︸
γ[1..`]

yz

y
↓

xy

y+|µ|−1
↓

z xyz xyz xyz xyz xy︸ ︷︷ ︸
γ`+1

We will show later, that we can skip exactly χ − 1 iterations by using the amortized
look-ahead. After that, we can continue with iteration inext = i + χ of xss-real. Now

5.2. AMORTIZED LOOK-AHEAD 53

we show, that for small anchors χ < ` we can skip additional Ω(|γ|) iterations by using
the run extension. From χ < ` follows, that we actually found an extended Lyndon run.
Therefore, in the input string S we have:

S = · · · ︸ ︷︷ ︸
γ[1..`]

︸ ︷︷ ︸
γ`+1

i
↓

a =
i+y−1
↓

µ

b =
i+χ
↓

µ µ µ µ pre(µ) · · ·

Let a = i + y − 1 and b = i + χ. Looking at the two suffixes Sa and Sb, we know
that their LCP extends at least all the way to the end of γ, which means that we have
LcpS(a, b) > |γ`+1| = Ω(|γ|). Also, we clearly have LcpS(a, b) > 2|µ|, because γ`+1

contains at least two repetitions of µ. Therefore, S[a..b + LcpS(a, b)) is a Lyndon run as
defined in Definition 5.1.1. Following Lemma 5.1.8, we will detect this run in iteration
b = i+χ of xss-real. Thus, the run extension will be used immediately after the amortized
look-ahead and we skip Ω(|γ|) additional iterations.

5.2.2 Properties of the Anchor

So far we only gave a vague intuition of how the anchor ensures identical structures in the
PSS tree. In this section, we explain its functionality in more detail. By splitting γ into
γ[1..χ] and γχ+1 we get the following picture:

S =

j
↓

γ[1..χ]

j+χ
↓

γχ+1

i
↓

γ[1..χ]

i+χ
↓

γχ+1

Now we show that the two occurrences of γ[1..χ] actually induce identical structures in the
PSS tree. We proceed in a similar fashion as in Section 5.1.1. The lemmas and corollaries
of this chapter are specific for our current algorithmic situation, which means that i, j, χ,
and γ always refer to the setting displayed above.

5.2.2 Lemma. Let a ∈ [1, |γ|). We have Sj <lex Sj+a, and therefore pss[j + a] ≥ j. The
lemma also holds for i instead of j.

54 CHAPTER 5. ACHIEVING LINEAR TIME

Proof. Since we compared Sj and Si during the execution of xss-real, it follows from
Corollary 4.1.3 that γ is a Lyndon word.

γ =

1
↓

a+1
↓

γ

Sj = γ Sj+|γ|

γa+1 Sj+|γ|

Sj+a = γa+1 Sj+|γ|

Each proper non-empty suffix of γ is lexicographically larger than γ (Lemma 2.1.7). We
have γ <lex γa+1, and thus Sj <lex Sj+a. The proof also works if we replace j with i. �

The lemma characterizes a structural property of the PSS tree: The nodes from the interval
(j, j + χ) are descendants of node j. Therefore, the interval [j, j + χ) is represented by
a subtree that is rooted in j, and has j + χ − 1 as its rightmost leaf. Analogously, the
interval [i, i + χ) is represented by a subtree that is rooted in i, and has i + χ − 1 as its
rightmost leaf.

j

j + χ− 1

i

i+ χ− 1

Next, we show that these two structures are actually isomorphic. We benefit from the
properties of the anchor, which we exploit in the following auxiliary lemma:

5.2.3 Lemma. Let a, b ∈ [1, χ] with a < b. At least one of the following holds:

1. The string γ[a..b) is not a Lyndon word.

2. The string γb is not a prefix of γa.

Proof. Assume that none of the two properties holds, i.e. γ[a..b) is a Lyndon word and γb
is a prefix of γa. Let µ = γ[a..b). By definition of χ we have b ≤ χ ≤ ` = b|γ|/4c.

γ = . . .

a
↓

µ

b
↓

µ µ

`+1
↓

. . . µ µ pre(µ)

γ = . . . µ µ µ µ . . . µ pre(µ)︸ ︷︷ ︸
γ[a..a+ |γb|) = γb = γ

5.2. AMORTIZED LOOK-AHEAD 55

As visualized above, there is a run of the Lyndon word µ that starts at index a and extends
all the way to the end of γ. The period |µ| of this run is bound by |µ| = b − a < χ ≤ `.
Since we have |γ`+1| ≥ 3`, there are at least two full repetitions of µ that lie within γ`+1.
This however means that γ`+1 is an extended Lyndon run. While determining χ we would
have extended the run as far as possible to the left, resulting in an anchor χ < b (see
Section 5.2.1). From this contradiction follows, that at least one of the properties holds.�

5.2.4 Lemma. Let a, b ∈ [0, χ) with a < b. At least one of the following holds:

1. The string γ[a+ 1..b+ 1) = S[j + a..j + b) = S[i+ a..i+ b) is not a Lyndon word.

2. We have Sj+a <lex Sj+b ⇐⇒ Si+a <lex Si+b.

Proof. Let a′ = a+ 1 and b′ = b+ 1. The string γ is a prefix of Sj . Therefore, the strings
γa′ and γb′ are prefixes of Sj+a and Sj+b respectively:

S =

1
↓

S[1..j)

j
↓

j+a
↓

j+b
↓

γ

j+|γ|
↓

Sj+|γ|

Sj+a = γa′ Sj+|γ|

Sj+b = γb′ Sj+|γ|

Now assume that µ = S[j+a..j+b) = γ[a′..b′) is a Lyndon word. Then from Lemma 5.2.3
follows, that γb′ is not a prefix of γa′ . Since this means that there is a definite mismatch
between γa′ and γb′ , we can append an arbitrary string to γa′ and γb′ without influencing
the outcome of a lexicographical comparison. It follows:

γa′ <lex γb′ ⇐⇒ γa′ · Sj+|γ| <lex γb′ · Sj+|γ|
⇐⇒ Sj+a <lex Sj+b

Clearly, the proof above also holds if we replace j with i. It follows:

Sj+a <lex Sj+b ⇐⇒ γa′ <lex γb′ ⇐⇒ Si+a <lex Si+b

.
�

Finally, we can prove the actual isomorphism.

5.2.5 Lemma. Let b ∈ [1, χ). It holds:

∃a ∈ [0, b) : (pss[j + b] = j + a ∧ pss[i+ b] = i+ a)

Proof. From Lemma 5.2.2 follows, that all nodes from the interval (j, j + |γ|) are descen-
dants of j in the PSS tree. Particularly, this means that there is some a ∈ [0, b) with

56 CHAPTER 5. ACHIEVING LINEAR TIME

pss[j + b] = j + a. Assume that we have (pss[i+ b] < i+ a):

S =

j
↓

γ[1..a]

j+a
↓

γ(a..b]

j+b
↓

γ(b..χ]

j+χ
↓

S =

i
↓

γ[1..a]

i+a
↓

γ(a..b]

i+b
↓

γ(b..χ]

i+χ
↓

From Lemma 2.2.7 follows that S[j+a..j+ b) is a Lyndon word. By definition of previous
smaller suffixes we have Sj+a <lex Sj+b. Therefore, by applying Lemma 5.2.4 we get
Si+a <lex Si+b, which contradicts the assumption that pss[i + b] < i + a holds. Thus, we
cannot have pss[i + b] < i + a. Now assume pss[i + b] > i + a and let i + a′ = pss[i + b].
From Lemma 2.2.7 follows that S[i+a′..i+ b) is a Lyndon word. By definition of previous
smaller suffixes we have Si+a′ <lex Si+b. Again, we can apply Lemma 5.2.4 and get
Sj+a′ <lex Sj+b, which contradicts pss[j + b] = j + a < j + a′. Thus, we also cannot have
pss[i+ b] > i+ a, and the only possible option is pss[i+ b] = i+ a. �

Since the structures induced by the occurrences of γ[1..χ] are isomorphic, they are repre-
sented by the same parentheses sequence in the BPS of the PSS tree. We use the notation
ox for the BPS index of the opening parenthesis of node x. As a direct consequence of
Lemma 5.2.5 we have:

5.2.6 Corollary. It holds: Bpss[oj ..oj+χ−1] = Bpss[oi..oi+χ−1].

5.2.3 Skipping Iterations

Finally, we can show how to skip iterations by using the amortized look-ahead. We have
already shown how to find the BPS index oj of the opening parenthesis of node j in
constant time (see first section of Chapter 5). The last parenthesis that we have written
is the opening parenthesis of node i at BPS index oi. We can simply extend the known
prefix of the BPS by appending a copy of Bpss(oj ..oj+χ−1], as visualized in Figure 5.5.
The correctness of this extension is guaranteed by Corollary 5.2.6. Appending the copy
is trivial: We start at index oj + 1, and keep copying parentheses until we have copied
exactly χ − 1 opening parentheses. As shown in Lemma 5.2.2, we have Sj <lex Sj+a for
a ∈ (j, j + χ). Therefore, the BPS interval Bpss[oj ..oj+χ−1] does not contain the closing
parenthesis of node j. It follows that it contains at most 2(χ − 1) parentheses: Exactly
χ opening parentheses for all nodes from the interval [j, j + χ), as well as at most χ − 2
closing parentheses for the nodes from the interval (j, j + χ − 1). Thus, appending the

5.2. AMORTIZED LOOK-AHEAD 57

S =

1
↓

n
↓

j
↓

γ[1..χ]

j+χ
↓

γχ+1

i
↓

γ[1..χ]

i+χ
↓

γχ+1

Tpss = 0

n

γ[1..χ]

j

j + χ− 1

γ[1..χ]

i

i+ χ− 1

Bpss =

oj
↓

(

oj+χ−1
↓

(︸ ︷︷ ︸
BPS of

(j, j + χ)

oi
↓

(

oi+χ−1
↓

(︸ ︷︷ ︸
BPS of

(i, i+ χ)

original copy

Figure 5.5: The two occurrences of γ[1..χ] induce isomorphic structures in the PSS tree.
Therefore, there are also two substrings of the BPS that are identical.

copy of Bpss(oj ..oj+χ−1] takes O(χ) time. After appending the copy, the last parenthesis
that we have written is the opening parenthesis of node i + χ − 1. In order to continue
the execution of xss-real with iteration i+ χ, we still have to update the stacks H and L
accordingly.

Updating the Index Stack

In practice, updatingH is not a separate step. Instead, we simultaneously append the copy
of Bpss(oj ..oj+χ−1] and bring H into the correct state. As we have seen in the first version
xss-bps of our algorithm (Algorithm 4.1, right), the push operations exactly correspond
with the opening parentheses, while the pop operations exactly correspond with the closing
parentheses. Therefore, while appending Bpss(oj ..oj+χ−1], we can interpret each parenthe-
sis as a stack instruction: Every time we write an opening parenthesis, we push an element
onto H, and every time we write a closing parenthesis, we pop an element. The opening
parentheses that we write belong exactly to the nodes from the interval (i, i+ χ). There-
fore, we always know which index to push next. Let 1 = h1, . . . , hk = i be the elements
on H before appending the copy of Bpss(oj ..oj+χ−1], and let hk+1, . . . , hk+m = i+ χ− 1

58 CHAPTER 5. ACHIEVING LINEAR TIME

S =

i=42
↓

a a b

45
↓

a

46
↓

a b

48
↓

a b

50
↓

a

51
↓

b︸ ︷︷ ︸
γ[1..χ]

i+χ
↓

a b a d . . .︸ ︷︷ ︸
γχ+1

i+|γ|
↓

(a) The longest LCP discovered in iteration i = 42 of xss-real is LcpS(j, i) = |γ|. The anchor is
χ = 10. The indicated indices 45, 46, 48, 50, and 51 are exactly the elements that we have to push
onto H (see below).

Bpss[oj ..oj+χ−1] =
a
(

a
(

b
())

a
(

a
(

b
()

a
(

b
()

a
(

b
(

push
43

push
44

push
45

push
46

push
47

push
48

push
49

push
50

push
51

poppop pop pop

45,
hk+1

46,
hk+2

48,
hk+3

50,
hk+4

51
hk+5

H = 1,
h1

. . . , 42,
hk=i

(b) Given the parentheses sequence Bpss[oj ..oj+χ−1], we interpret each parenthesis as a stack
operation. For each opening parenthesis we push an element, and for each closing parenthesis we
pop an element. We want to skip the iterations (i, i + χ) = [43, 51]. Thus, the elements that we
push onto H are exactly the indices 43, . . . , 51.

Before:

H︷ ︸︸ ︷
1,
h1

. . . , 42,
hk=i

45,
hk+1

46,
hk+2

48,
hk+3

50,
hk+4

51
hk+5

After: 1,
h1

. . . , 42
hk=i︸ ︷︷ ︸

H

51,
hk+5

50,
hk+4

48,
hk+3

46,
hk+2

45
hk+1︸ ︷︷ ︸

R

(c) On the stackH, the newly computed indices hk+1, . . . , hk+m can only be accessed in descending
order, i.e. hk+m first and hk+1 last. Therefore, we move them from H onto a separate stack R,
which reverses their order.

Figure 5.6: Updating the stack H during the amortized look-ahead.

be the additional elements on H afterwards. In Figures 5.6a and 5.6b we provide a short
example that demonstrates how to determine hk+1, . . . , hk+m while appending the copy of
Bpss(oj ..oj+χ−1].

Note that the additional effort of performing the stack operations does not affect the time
bound for appending the copy of Bpss[oj ..oj+χ−1]. We only perform one stack operation
per parenthesis. Therefore, assuming that we have constant time push and pop operations
on H, we still need O(χ) time to perform the extension.

5.2. AMORTIZED LOOK-AHEAD 59

H = h1, h2, . . . , hk, . . . , hx−1

Before:

 R = hk+m, hk+m−1, . . . , hx+1, hx

L = l1, l2, . . . , lx−2

H = h1, h2, . . . , hk, . . . , hx−1, hx

After:

 R = hk+m, hk+m−1, . . . , hx+1

L = l1, l2, . . . , lx−2, lx−1

top(), pop()
compute lx−1

= LcpS(hx−1, hx)

push(hx)

top()

push(lx−1)

Figure 5.7: Computing an LCP value while updating the stacks.

Updating the LCP Stack

It remains to be shown how to update L in O(|γ|) time, i.e. how to efficiently compute the
LCP values lk, . . . , lk+m−1 with lx = LcpS(hx, hx+1) for x ∈ [k, k +m). We have to push
these values onto L in the correct order, i.e. lk first and lk+m−1 last. Therefore, we have
to be able to access the indices hk, . . . , hk+m in ascending order. This can be achieved by
using a separate stack R: We pop the elements hk+1, . . . , hk+m from the top of H (hk+m

first and hk+1 last) and push them onto R. This reverses their order, i.e. hk+m lies at
the bottom of R, while hk+1 is the topmost element. Again, we provide an example in
Figure 5.6c.

Now we process the indices hk+1, . . . , hk+m one at a time and in ascending order. Let hx be
the next index to process. First, we pop hx from the top of R. Then, we naively compute
the LCP length lx−1 = LcpS(hx−1, hx), and push hx and lx−1 onto H and L respectively.
Figure 5.7 visualizes how the stacks change when processing one index. The described
procedure already determines all missing values of L in the right order. However, due to
the naive LCP computation, processing index hx takes O(lx−1) time. This is unfeasible
because we want to spend at most O(|γ|) time to process all indices. Therefore, after
processing hx we may have to perform one additional step in order to make up for the cost
of computing the LCP: If we have lx−1 ≥ (hx − hx−1), then both suffixes Shx−1 and Shx
begin with the prefix µ = S[hx−1, hx). In this case we look at the next index hx+1, which is
currently the topmost element on R. If the indices hx−1, hx, and hx+1 are equidistant, i.e.
if we have (hx+1−hx) = (hx−hx−1), then it follows that Shx−1 = µ·Shx and Shx = µ·Shx+1

hold. Therefore, we have lx = LcpS(hx, hx+1) = LcpS(hx−1, hx)− |µ| = lx−1 − |µ|. Since
both lx−1 and |µ| are known, we can compute lx in constant time. Thus, we pop hx+1

from the top of R, and push hx+1 and lx onto H and L respectively. This step can
be repeated until the newly computed LCP value becomes smaller than (hx − hx−1), or

60 CHAPTER 5. ACHIEVING LINEAR TIME

until the next index from R is not equidistant to the two previous indices anymore. For
example, when computing lk+2 = LcpS(hk+2, hk+3) = LcpS(46, 48) = 7 in the setting of
Figure 5.6, the next index hk+3 = 50 is equidistant to the two previous ones, i.e. we have
(50 − 48) = (48 − 46) = 2. Therefore, we can compute lk+3 = lk+2 − 2 = 7 − 2 = 5 in
constant time. The following index on R is 51, which is not equidistant to 50 and 48.
Thus, we compute the LCP between S50 and S51 naively.

Once the stack R is empty, we have computed all missing LCP values lk, . . . , lk+m−1 and
pushed them onto L. Also, we have pushed all indices hk+1, . . . , hk+m back onto H. Thus,
both the BPS and the stacks are ready for iteration i + χ of xss-real. It remains to be
shown that computing the LCP values in the described manner takes O(|γ|) time.

Proving the Time Bound

First, we only consider the LCP values with lx−1 < 2(hx − hx−1). We have to perform
lx−1 + 1 individual character comparisons in order to naively compute lx−1. Thus, the
total number of character comparisons for all lx−1 with lx−1 < 2(hx − hx−1) is bound by:

k+m∑
x=k+1

(lx−1 + 1) ≤
k+m∑
x=k+1

2(hx − hx−1) = 2(hk+m − hk)

From hk = i and hk+m = i+χ−1 follows that the total number of comparisons is at most
2χ. Therefore, we compute all LCP values with lx−1 < 2(hx − hx−1) in O(χ) time.

Now we consider only the remaining elements lx−1 with lx−1 ≥ 2(hx−hx−1). As described
in Section 5.1.1, the string S[hx−1..hx + lx−1) is an increasing Lyndon run of t ≥ 3 repeti-
tions with period |µ| = (hx−hx−1) (increasing because of pss[hx] = hx−1). Let r1 = hx−1,
r2 = hx, and rx = rx−1 + |µ| for x ∈ [3, t] be the starting positions of the repetitions.

S =

r1=hx−1
↓

µ

r2=hx
↓

µ

r3
↓

µ · · ·

rt
↓

µ

rt+|µ|
↓

pre(µ)︸ ︷︷ ︸
LCP between Shx−1 and Shx

hx+lx−1
↓

Each computed LCP value is covered by one of the following three cases.

Case (1): The next index hx+1 lies after r3, i.e. hx+1 > r3. From Lemma 5.1.10 follows
that hx+1 > rt + |µ| = hx−1 + (t + 1) · |µ| holds. Since we also have lx−1 < t · |µ|, the
LCP is bound by lx−1 < (hx+1 − hx−1). Thus, the total number of character comparisons
needed for this case is O(χ):

k+m−1∑
x=k+1

(lx−1 + 1) ≤
k+m−1∑
x=k+1

(hx+1 − hx−1) < 2(hk+m − hk) = O(χ)

5.2. AMORTIZED LOOK-AHEAD 61

Case (2): The next index hx+1 is exactly r3. Since hx−1, hx, and hx+1 are equidistant,
we compute the next LCP length lx = lx−1 − |µ| in constant time. The number of
character comparisons needed to compute lx−1 is exactly lx−1 + 1. We interpret lx + 1
of these comparisons as the cost of computing lx. Since lx is covered by one of the three
cases as well (or we have lx < 2(hx+1 − hx)), we only have to account for the remaining
lx−1 − lx = |µ| = (hx − hx−1) character comparisons. Again, we obtain the upper bound
O(χ) for all LCP values of this case:

k+m∑
x=k+1

(lx−1 − lx) =
k+m∑
x=k+1

(hx − hx−1) = (hk+m − hk) = O(χ)

Case (3): The only remaining scenario is hx+1 < r3. Lemma 5.1.9 implies that the
topmost element on H is smaller than r3. It follows, that all remaining larger indices
hx+2, . . . , hx+m are from the interval (hx+1, r3) = (r2, r3).

S =

r1=hx−1
↓

µ

r2=hx
↓

µ

hx+m
↓

r3
↓

µ · · ·

rt+|µ|
↓

pre(µ)︸ ︷︷ ︸
LCP between Shx−1 and Shx

hx+lx−1
↓

Assume that we are currently looking at the leftmost lx−1 that is covered by this case.
Then the next LCP value ly−1 that is covered by this case (if it exists) is the length of the
LCP between hy−1 and hy, where both of these indices are from the interval [hx, r3). We
have already seen that two indices in the same repetition of a Lyndon run share a prefix
of length less than |µ| (for example in Lemma 5.1.3, µa · µ and µb · µ have a guaranteed
mismatch within the first |µa| characters). Thus, we also have ly−1 < |µ|. Since at the
same time we have lx−1 ≥ 2|µ|, we know that ly−1 < lx−1/2 holds. If we iterate over all
LCP values that are covered by this case, then every value is less than half as large as the
previous one. It follows, that the sum of all LCP values of this case is smaller than 2 · lx−1,
if lx−1 is the leftmost and thus largest of the covered values. Lastly, we also know that the
largest LCP that we compute during the amortized look-ahead is bound by |γ| because
otherwise we contradict Lemma 5.2.3. Therefore, the sum of all LCP values covered by
this case is bound by 2|γ|, and computing the values takes O(|γ|) time.

62 CHAPTER 5. ACHIEVING LINEAR TIME

5.3 Algorithmic Summary

We have seen how to directly compute the BPS of the PSS tree in linear time. The new
algorithm can be summarized as follows:

• A commonly used stack algorithm for the computation of NSVs and PSVs is the
base of our algorithm. We use a loop to process all indices from the interval (1, n)
in ascending order, i.e. the loop runs for n − 2 iterations. Instead of performing
element comparisons, which are used in the NSV/PSV setting, we perform naive
suffix comparisons (xss-array). Also, instead of saving the PSS and NSS array, we
directly build the BPS of the PSS tree in an append-only manner (xss-bps).

• At all times, the stack H keeps track of the indices that have already been processed,
but whose next smaller suffix has not been found yet.

• We use an additional stack L to memorize the LCP values of adjacent indices on H.
By using the stored information we can skip character comparisons while performing
suffix comparisons (xss-bps-lcp).

• If an iteration causes a critical time overhead of O(|γ|), then we can fast-forward the
next Ω(|γ|) iterations by using either the run extension or the amortized look-ahead
(xss-real). Since the time needed for this process is linear in the number of iterations
that we skip, on average each iteration takes constant time.

– If we detect a Lyndon run in the input string, then each repetition of the run
(except for the last one) induces the same structure in the PSS tree.

– Otherwise, we can still identify two isomorphic structures in the PSS tree. If
these structures are small, then we can detect an additional Lyndon run.

– The run extension and the amortized look-ahead exploit the isomorphic struc-
tures by copying a part of the already computed BPS prefix and appending it
to its end. The stacks H and L get updated to reflect these changes.

The correctness of xss-real follows directly from the description. Effectively, the algorithm
performs the same operations as xss-bps-lcp, but takes some shortcuts when fast-forwarding
through iterations. The worst-case time bound is linear because on average each iteration
takes constant time.

5.3.1 Lemma. Let S be a guarded string of length n. The algorithm xss-real computes
the BPS of the PSS tree of S in O(n) time using O(n) words of memory apart from input
and output.

Chapter 6

Decreasing the Memory Bound

In order to obtain a more space aware solution, we do not need to change the algorithm.
Instead, we simply show how to maintain succinct representations of the stacks H and
L. We can show, that O(

√
n · lgn) bits are enough to simulate H without affecting

the worst-case time bound of our algorithm. Also, we give a more general alternative
representation that can be used for any stack of strictly increasing integers. While it
uses n + O(lgn · lg lgn) bits of memory, it has the advantage of high cache efficiency.
By using this representation for the stack R during the amortized look-ahead, we can
fit all elements of R into the free space at the back of the BPS, such that R effectively
needs no additional memory. For L we introduce a parameterized representation that uses
4n/δ +O(lgn · lg lgn) bits of memory and allows our algorithm to run in O(δn) time.

6.1 Maintaining H in O(
√
n · lgn) Bits

Consider the stack H = h1, . . . , hk at any point in time during the execution of our
algorithm. At this point we have written a prefix Bpref of the BPS, where for some of
the opening parentheses we have already written the matching closing parentheses, and
all other opening parentheses are still unmatched. Since for every push operation on the
stack we write an opening parenthesis and for every pop operation we write a closing
parenthesis, the elements on the stack directly correspond to the unmatched opening
parentheses of the known BPS prefix. More precisely, iff hi is an element on H, then the
(hi + 1)-th opening parenthesis of the BPS does not have a matching closing parenthesis
yet (remember that node hi has preorder-number hi + 1, see Lemma 3.1.2). For i ∈ [1, k]
let oi be the index of the (hi + 1)-th opening parenthesis, and let o0 = 1 be the index of
the first opening parenthesis, which belongs to the artificial root node 0. Below we see the
known BPS prefix, where each empty block between two indices oi and oi+1 represents a
balanced parentheses string of length (oi+1 − oi − 1) = 2(hi+1 − hi − 1):

63

64 CHAPTER 6. DECREASING THE MEMORY BOUND

Bpref =

corresponds to
artificial root 0

↓
o0

(
o1

(
o2

(

corresponds
to h3
↓
o3

(︸ ︷︷ ︸
balanced sequence of
o4 − o3 − 1 parentheses

corresponds
to h4
↓
o4

(
o5

(· · ·
ok−2

(
ok−1

(
ok

(

Now assume that we know the pair (oi+1, hi+1), then we can find the pair (oi, hi) using
only the known prefix of the BPS. We scan the BPS from right to left, starting at index
oi+1 − 1. As soon as we have read more opening than closing parentheses, we have found
the next unmatched opening parenthesis at index oi. Then we have:

hi = hi+1 − (oi+1 − oi − 1)/2︸ ︷︷ ︸
opening parenthesis
between oi and oi+1

− 1

Theoretically, we can already simulate top access to H, if we always keep the rightmost
pair (ok, hk) in memory. Whenever we write a closing parenthesis, we then need to restore
the next pair (ok−1, hk−1) using the described scanning technique. This however would
increase the time bound of our algorithm, since we might need to scan large parts of the
BPS multiple times. These repeated scans can be prevented by using a small support
data structure that was introduced by Davoodi et al. for the construction of Cartesian
trees [Davoodi et al., 2017, Chapter 3]. Conceptually, we divide the known prefix of the
BPS in blocks of length d

√
ne, where the first block starts at BPS index 1. For each block

that is entirely contained in the known prefix of the BPS and that contains at least one
unmatched opening parenthesis, we store the pair (o, h) on a stack Pall, where:

• o is the BPS index of the rightmost so far unmatched opening parenthesis of the
block. This parenthesis has to be unmatched in the entire known prefix of the BPS,
i.e. an opening parenthesis can be matched even though its closing parenthesis does
not lie within the same block.

• h is the text index that corresponds to the rightmost so far unmatched opening
parenthesis of the block (i.e. the (h+1)-th opening parenthesis of the BPS is located
at index o).

There are at most O(
√
n) blocks and each pair (o, h) uses O(lgn) bits. Thus, all pairs

together need O(
√
n · lgn) bits of memory. Since in general the length of Bpref is not

necessarily a multiple of d
√
ne, we have a partial block at the end. For this block we

maintain a separate stack Plast that stores both the BPS index and the corresponding
text index of all unmatched opening parentheses, which takes another O(

√
n · lgn) bits

of memory. Below we see a visualization of the data structures at hand:

6.1. MAINTAINING H IN O(
√
N · LGN) BITS 65

Bpref =
o0

(
o1

(
o2

(

corresponds
to h3
↓
o3

(︸ ︷︷ ︸
d√ne

o4

(

corresponds
to h5
↓
o5

(︸ ︷︷ ︸
d√ne

· · ·

corresponds
to hk−2
↓

ok−2

(︸ ︷︷ ︸
d√ne

correspond to
hk−1 and hk
↓

ok−1

(

↓
ok

(︸ ︷︷ ︸
d√ne

Pall = (o3, h3), (o5, h5), . . . , (ok−2, hk−2)

Plast = (ok−1, hk−1), (ok, hk)

Now we describe how to perform push, pop and top operations on H using only the known
prefix of the BPS as well as the stacks Pall and Plast.

top(): If Plast is empty, return the h-component of the topmost element on Pall. Otherwise
return the h-component of the topmost element on Plast. Clearly this takes constant time.

push(e): Let hk+1 = e and let ok+1 = |Bpref|. Since we are pushing an element, we
have just appended an opening parenthesis to the BPS. Therefore the hk+1-th opening
parenthesis is located at index ok+1 of the BPS. Let otop be the o-component of the
topmost element on Plast. If botop/d

√
nec = bok+1/d

√
nec holds (or if Plast is empty), then

the rightmost block is still unfinished and we push (ok+1, hk+1) onto Plast. Otherwise, we
have finished the rightmost block. In this case we push the topmost element from Plast
(which is (ok, hk)) onto Pall, and then make (ok+1, hk+1) the only element on Plast. This
also takes constant time.

pop(): If Plast is not empty, then we simply pop the topmost element on Plast. Otherwise,
let (ok, hk) be the topmost element on Pall. We can restore (ok−1, hk−1) by using the
scanning technique as described earlier. If we reach the beginning of the block without
finding an unmatched parenthesis, then we pop (ok, hk) off the top of Pall. Otherwise, we
update the topmost element on Pall to be (ok−1, hk−1). Apart from the actual scanning,
the pop operation takes constant time. Since the scanning time is linear in the length of
the scanned area, and since we only scan each block once, the total scanning time during
the execution of our algorithm is limited by O(n).

Note that the operations only work as described, if we only push elements immediately
after writing the respective opening parentheses. However, even when performing the
run extension or the amortized look-ahead of xss-real, we can always write the BPS and
update the stack H simultaneously. Therefore, the operations work as described for all of
our algorithms. We have shown:

66 CHAPTER 6. DECREASING THE MEMORY BOUND

6.1.1 Lemma. We can simulate the stack H using only the already computed prefix of
the BPS as well as a support data structure of size O(

√
n · lgn) bits without affecting the

worst-case time bound of our algorithm.

6.2 Maintaining H in n+O(lgn · lg lgn) Bits

While using the support data structure from the previous section results in a small memory
footprint, it may perform poorly in terms of cache efficiency. To simulate H we have
to access essentially arbitrary positions of the BPS during the entire execution of the
algorithm. In this section, we propose an alternative representation of H that is very
cache efficient. As we will see, the reason for this efficiency is, that elements that are
close to each other on the logical stack are also stored close to each other in terms of
physical memory layout. However, it comes at the cost of a higher memory bound of up
to n+O(lgn · lg lgn) bits. A similar stack has been introduced by Fischer in the context
of range minimum queries [Fischer, 2010, Section 4.2]. Our new approach has multiple
advantages. Most importantly, it is straightforward to implement, allows dynamic memory
allocation based on the actual number of elements on the stack, and the O(lgn · lg lgn) bit
term can be dropped on modern CPUs. The core of the new representation of H is a stack
that stores small values in unary representation, and large values in binary representation
(we will clarify the exact meaning of small and large later). Since the stack achieves its
memory bound thanks to the unary representation, we call it unary stack.

6.2.1 Counting Trailing Zeros

An important prerequisite of the unary stack is the ability to count trailing zeros in
constant time. Let w be the size of a computer word in bits. Given a bit string x of
length b = O(w) (i.e. b ∈ [0, 2b)), we want to find the length TZ(x) of the longest zero-only
suffix of x. For example, TZ((11001000)2) = 3, because the last three bits are zero. Note
that on modern Intel and AMD processors these queries can easily be answered using the
TZCNT instruction from the Bit Manipulation Instruction Set 1 (BMI1)1, which counts the
trailing zeros of an entire computer word in constant time. In this section, we show two
small index data structures that can answer TZ(x) in constant time, even if the TZCNT

instruction is not available. In any case, we preprocess x by extracting the rightmost
(1)2-bit as follows: If x = 0, then we have TZ(x) = b. Otherwise x has the form (α10TZ(x))2

for some bit string α. Let −x be the two’s complement of x, i.e. −x = x̄+ (1)2. We define
1https://software.intel.com/file/36945

https://software.intel.com/file/36945

6.2. MAINTAINING H IN N +O(LGN · LG LGN) BITS 67

the extraction function f(x): [1, 2b) → {2z | z ∈ [0, b)} with f(x) = x&−x. It is easy to
show that we have f(x) = 2TZ(x):

f(x) = x & −x

= (α10TZ(x))2 & ((ᾱ01TZ(x))2 + (1)2)

= (α10TZ(x))2 & (ᾱ10TZ(x))2

= (10TZ(x))2

= 2TZ(x)

Computing f(x) clearly takes constant time. If we use this simple preprocessing, then our
index data structure only has to be able to answer trailing zero queries for elements from
the set {2z | z ∈ [0, b)} (instead of [0, 2b)).

Using De Bruijn Sequences

A common technique uses minimal perfect hashing to map {2z | z ∈ [0, b)} onto the
compact interval [0, b). Since 2z is likely not going to be mapped onto z, we have to
permute the results back into the correct order, which can be realized by using a lookup
table. For computer words of size 64 bits (i.e. b = 64), this approach can be found in
[Knuth, 2011, p. 142]. We show a generalization to bit strings of arbitrary length b, which
is derived from [Leiserson et al., 1970]. Without loss of generality we assume (lg b) ∈ N.

Let x ∈ [1, 2b) be the bit string for which we want to count the number of trailing zeros,
and let f(x) = 2TZ(x) ∈ {2z | z ∈ [0, b)} be the rightmost (1)2-bit of x, which we have
already extracted as described earlier. We compute TZ(x) by applying two functions h
and π with π(h(f(x))) = TZ(x).

• The bijective function h: {2z | z ∈ [0, b)} → [0, b) is a minimal perfect hash func-
tion that maps the range of f onto the compact interval [0, b). Finding a suitable
function h requires a one time precomputation that takes O(b) time and O(b lg b)
bits of memory. After this precomputation, the function can be stored in b bits and
evaluated in constant time.

• The bijective function π: [0, b) → [0, b) brings the range of h back into the correct
order, i.e. π(h(2z)) = z. Since effectively this function is a permutation of [0, b), it
can be stored in a lookup table of size b lg b bits. Filling the table takes O(b) time
and no additional memory.

68 CHAPTER 6. DECREASING THE MEMORY BOUND

x f(x) g(f(x)) TZ(x)
f(x) = (x & −x) h π

1 = (0001)2
3 = (0011)2
5 = (0101)2
7 = (0111)2
9 = (1001)2

11 = (1011)2
13 = (1101)2
15 = (1111)2
2 = (0010)2
6 = (0110)2

10 = (1010)2
14 = (1110)2
4 = (0100)2

12 = (1100)2
8 = (1000)2

20

21

22

23

0
1
2
3

0
1
2
3

De Bruijn sequence for h:
h(f(x)) = ((a · f(x)) mod 16) >> 2
a = (a1a2a3a4)2 = (0110)2 = 6

Lookup table for π:

π(h(f(x))) = Zπ[h(f(x))] = TZ(x)

f(x) h(f(x))

20 = (0001)2 (a1a2)2 = (01)2 = 1
21 = (0010)2 (a2a3)2 = (11)2 = 3
22 = (0100)2 (a3a4)2 = (10)2 = 2
23 = (1000)2 (a40)2 = (00)2 = 0

h(f(x)) Zπ[h(f(x))]

0 = h(23) 3
1 = h(20) 0
2 = h(22) 2
3 = h(21) 1

Figure 6.1: Interaction of the functions f, h and π in the de Bruijn method for bit strings
of length four. The utilized de Bruijn sequence is a = (0110)2. Each entry of the lookup
table Zπ can be stored using two bits.

First, we show how to find a suitable function h. Let a ∈ [0, 2b), i.e. a is a bit string
(a1a2 . . . ab)2 of length b. Consider the following function:

h(2z) = ((a · 2z) mod 2b) >> (b− lg b)

Clearly, this function can be computed in constant time, and we only need to store a,
which takes b bits. Effectively, the function extracts a consecutive interval of bits from a.
If we define ai = 0 for i > b, then the result of the function can be rewritten as follows:

h(2z) = ((a · 2z) mod 2b) >> (b− lg b)

= ((a << z) mod 2b) >> (b− lg b)

= (az+1az+2 . . . az+lg b)2

6.2. MAINTAINING H IN N +O(LGN · LG LGN) BITS 69

We have to select a in a way such that h becomes bijective, i.e. (az1+1 . . . az1+lg b)2 6=
(az2+1 . . . az2+lg b)2 for all z1, z2 ∈ [0, b) with z1 6= z2. A binary de Bruijn sequence of
order (lg b) is a cyclic bit string of length b that contains each possible bit string of length
(lg b) exactly once [de Bruijn, 1946]. For example, (00010111)2 is a de Bruijn sequence of
order three, because it contains all bit strings of length three exactly once. In this case,
(110)2 and (100)2 are contained because we consider (00010111)2 in a cyclic manner. For
our hash function h we select a such that it is a binary de Bruijn sequence of order (lg b)
and begins with the prefix (0lg b−1)2. It has been proven over a century ago that many of
such de Bruijn sequences exist for each b [Flye Sainte-Marie, 1894]. Finding a binary de
Bruijn sequence for a fixed b takes O(b) time and O(b lg b) bits of memory (for example by
using Hierholzer’s algorithm [Hierholzer and Wiener, 1873] to find a Eulerian circuit in the
(lg b− 1)-dimensional binary de Bruijn graph in which every node has in- and out-degree
two).

The permutation π(h(2z)) = z is naturally defined by h. We simply create a lookup table
Zπ that has b entries Zπ[0], . . . , Zπ[b − 1] with Zπ[i] = π(i). The table can be computed
in O(b) time by taking each z ∈ [0, b) and setting Zπ[h(2z)] = z. The final formula for
computing TZ(x) with x 6= 0 is:

TZ(x) = Zπ[((a · (
f(x)︷ ︸︸ ︷

x & −x)) mod 2b) >> (b− lg b)︸ ︷︷ ︸
h(f(x))

]

Figure 6.1 visualizes how the functions f, h and π interact. Answering TZ(x) takes constant
time, because only a constant amount of basic word RAM operations is required. Therefore
we have shown:

6.2.1 Lemma. Let b ∈ [1, w]. There is a data structure of size O(b lg b) bits that can
answer TZ(x) in constant time for any x ∈ [0, 2b). It can be constructed in O(b) time
using O(b lg b) bits of memory.

In practice, the most expensive operation during the computation of TZ(x) = h(g(f(x)))
is the integer multiplication a · 2z in the function g. Apart from that, only primitive CPU
instructions like bit-shifts and additions are used. The lookup in Zπ is also very fast
because even for b = 64 the entire table uses only 64 bytes, which fits into a single cache
line on most Intel and AMD processors.

Using Binary Search

An alternative to the de Bruijn method of the previous section is a simple binary search.
Once again we assume (lg b ∈ N), and we manually check for the special case x = 0. For

70 CHAPTER 6. DECREASING THE MEMORY BOUND

x > 0 the number of trailing zeros can be described recursively as TZ(x) = searchb(x)
with:

searchb(x) =


searchb/2(x >> b/2) + b/2 , iff (x mod 2b/2 = 0) ∧ (b > 1)

searchb/2(x) , iff (x mod 2b/2 > 0) ∧ (b > 1)

0 , otherwise (i.e. b = 1)

If the lower (less significant) b/2 bits of x do not contain a (1)2-bit (i.e. if x mod 2b/2 = 0),
then the number of trailing zeros is b/2 plus the number of trailing zeros in the bit string
x >> b/2, which is of length b/2 (see first case of the definition above). If however there is
a (1)2-bit in the lower half of x (i.e. if x mod 2b/2 > 0), then the number of trailing zeros
of x is the same as the number of trailing zeros of the lower half of x (see second case
of the definition above). For bit strings of length one, we have no trailing zeros because
we already manually checked for x = 0 in the beginning (see third case of the definition
above). Since in every step we cut the number of bits in half, the total number of recursive
steps is (lg b). Therefore, searchb(x) is already a suitable algorithm for answering trailing
zero queries in O(lg b) time.

Only a small change to the definition of searchb(x) is necessary to achieve constant query
time instead. We allow a larger base case for the recursive call to search, i.e. once we have
narrowed down the position of the rightmost (1)2-bit to an interval of length c, we use a
lookup table Zc to count the trailing zeros of those c bits in constant time. Once again
we assume (lg c) ∈ N without loss of generality.

searchb(x) =


searchb/2(x >> b/2) + b/2 , iff (x mod 2b/2 = 0) ∧ (b > c)

searchb/2(x) , iff (x mod 2b/2 > 0) ∧ (b > c)

Zc[f(x)] , otherwise (i.e. b ≤ c)

The lookup table Zc has 1 + 2c−1 entries of size lg c bits, such that Zc[f(x)] = TZ(x) (note
that at this point x has been shifted far enough to the right, that the rightmost (1)2-bit
is located in the lowest c bits). Since we use the function f from the previous section to
extract the rightmost (1)2-bit, we only need to assign the lookup table entries Zc[2z] = z

for z ∈ [0, c), which takes O(c) time. We need (lg(b/c)) recursive steps of search to reach
the base case.

6.2.2 Lemma. Let b ∈ [1, w] and c ∈ [1, b]. There is a data structure of size O(2c · lg c)
bits that can answer TZ(x) in O(1 + lg(b/c)) time for any x ∈ [0, 2b). It can be constructed
in O(c) time using no additional memory.

For instance, we can select c = b/2, which allows constant time trailing zero queries, using
a lookup table of size O(

√
2b · lg b) bits. Figure 6.2 shows an example for b = 32 and

6.2. MAINTAINING H IN N +O(LGN · LG LGN) BITS 71

TZ((0110 1010 1110 0000 0000 0000 0000 0000)2)
= search32((0110 1010 1110 0000 0000 0000 0000 0000︸ ︷︷ ︸

= 0

)2)

= search16((0110 1010 1110 0000︸ ︷︷ ︸
> 0

)2) + 16

= search8((1110 0000︸ ︷︷ ︸
= 0

)2) + 16

= search4((1110)2) + 4 + 16
= Z4[f((1110)2)] + 4 + 16
= Z4[(0010)2] + 4 + 16
= 1 + 4 + 16 = 21

i Z4[i]
0 –
1 = (0001)2 0
2 = (0010)2 1
3 –
4 = (0100)2 2
5 –
6 –
7 –
8 = (1000)2 3

Figure 6.2: Counting trailing zeros in constant time using binary search and lookup. We
take a bit string of length b = 32 bits as an example and use a lookup table for bit strings
of length c = 4 bits. Therefore, we need lg(32/4) = lg 8 = 3 recursive steps to reach the
base case.

c = 4. In Section 7.2 we evaluate the practical query time and memory usage of the two
strategies from Lemmas 6.2.1 and 6.2.2. We also try different values for c, and compare
the query time of both approaches against the TZCNT instruction.

6.2.2 Succinct Unary Stack

With the trailing zero queries of the previous section, we can realize the unary stack.
Note that this stack is not used as the final representation of the index stack H of our
algorithms. Instead, we first introduce the unary stack, and then use it as an underlying
data structure for the actual representation of H.

6.2.3 Lemma. There is a stack with constant time push, pop, and top operations that
stores up to n elements from the interval [1, n] using n +O(lgn · lg lgn) bits of memory,
if the sum of the elements on the stack never exceeds n. It can be initialized in O(lgn)
time.

Proof. We use a bit vector V of length n bits to store the stack elements, which we classify
into small and large elements. The front of the bit vector contains the small elements
e < 2dlgne in unary representation, while the back of the bit vector contains all the large
elements e ≥ 2dlgne in fixed width binary representation. When pushing small elements,
data in the front of the bit vector grows from left to right, and when pushing large elements,
data in the back of the bit vector grows from right to left. During the entire lifetime of the
stack we maintain variables containing the index ts of the rightmost bit used by a small
element, as well as the index t` of the leftmost bit used by a large element. Since at any

72 CHAPTER 6. DECREASING THE MEMORY BOUND

time we have to know if the topmost element is a small element or a large element, we
annotate each large element with the value of ts at the time of pushing the large element.
For both the large element and its annotation we use dlgne bits each to store the binary
representation with leading zeros, such that each large element including the annotation
uses exactly 2dlgne bits of the bit vector.
Initially, all bits of V are set to (0)2, index ts ← 0 points to the left of the first bit, and
index t` ← n+ 1 points to the right of the last bit. The operations are realized as follows:

push(e): Depending on the size of the pushed element e we proceed as follows:

1. For small elements e < 2dlgne we set V[ts+e] to (1)2 and update the index ts ← ts+e
accordingly. The number of used bits increases exactly by e.

2. For large elements e ≥ 2dlgne we take the dlgne bit binary representations of ts and
e (with leading zeros) and write them to the bit vector intervals V[t` − 2dlgne..t` −
dlgne) and V[t` − dlgne..t`) respectively. We update the index t` ← t` − 2dlgne
accordingly. The number of used bits increases by 2dlgne ≤ e.

top(): When retrieving the topmost element e, we first need to find out if it is a small or
a large element. Let tc be the unsigned integer stored in binary representation in interval
V[t`..t` + dlgne), i.e. tc is the annotation of the topmost large element.

1. If tc = ts, then the topmost element is a large element, because no small element
has been pushed after the considered large element. Its value is stored in binary
representation in the interval V[t` + dlgne..t` + 2dlgne).

2. Otherwise, the topmost element is a small element. Its value is one larger than the
number of trailing zeros of the bit string V[ts − d2 lgne..ts). We can determine it in
constant time by using the de Bruijn method from Section 6.2.1 with b = 2 lgn (or
by using the TZCNT instruction if available).

pop(): We already showed how to retrieve the top element. Knowing its value, we can
simply revert the corresponding push operation. Let e be the top element.

1. If e < 2dlgne we set bit V[ts] to zero and decrease ts by e.

2. Otherwise we overwrite V[t`..t` + 2dlgne) with zeros and increase t` by 2dlgne.

In the word RAM model we can write the dlgne bit binary representations of elements
and annotations to any position in the bit vector in constant time using only logical AND,
OR, and bitshift operations. The same is true for retrieving those representations and for
overwriting them with zeros. Therefore all described stack operations take constant time.

6.2. MAINTAINING H IN N +O(LGN · LG LGN) BITS 73

Since pushing an element e increases the number of used bits by at most e, and since
popping an element reverts its push operation, the number of used bits never exceeds the
sum of all elements on the stack. Using the de Bruijn method with b = 2 lgn requires a
lookup table of size O(lgn · lg lgn) bits and a one-time initialization time of O(lgn) (see
Lemma 6.2.1). �

Example. We provide a detailed example of the unary stack, starting with the non-empty
unary stack U = 6, 3, 16, 2, 4, 12 and then performing some push and pop operations. The
initial stack is depicted below. The bit vector has n = 64 bits, and elements are considered
small, iff they are smaller than 2dlgne = 12. For clarity, the bits belonging to each element
are grouped in a box. For large elements, the leftmost six bits in the box are the annotation
in binary representation, and the rightmost 6 bits are the value of the element in binary
representation.

V =

1
↓

000001︸ ︷︷ ︸
6

001︸ ︷︷ ︸
3

01︸︷︷︸
2

0001︸ ︷︷ ︸
4

ts=15
↓

· ·

t`=41
↓

001111 001100︸ ︷︷ ︸
tc=15, 12

001001 010000︸ ︷︷ ︸
9, 16

64=n
↓

First we push the value 14, which is a large element. Therefore we write the binary
representation 14 = (001110)2 to interval V[t` − 6..t`) = V[35..40]. We annotate the large
element by writing the current value of ts = 15 = (001111)2 to interval V[t`− 12..t`− 6) =
V[29..34]. The index t` gets decreased by d2 lgne = 12 (from 41 to 29).

V =

1
↓

000001︸ ︷︷ ︸
6

001︸ ︷︷ ︸
3

01︸︷︷︸
2

0001︸ ︷︷ ︸
4

ts=15
↓

· · · · · · · · · · · · ·

t`=29
↓

001111 001110︸ ︷︷ ︸
tc=15, 14

001111 001100︸ ︷︷ ︸
15, 12

001001 010000︸ ︷︷ ︸
9, 16

64=n
↓

Next we push value 5, which is a small element. We set the bit V[ts + 5] = V[20] to 1 and
increase ts by 5 (from 15 to 20).

V =

1
↓

000001︸ ︷︷ ︸
6

001︸ ︷︷ ︸
3

01︸︷︷︸
2

0001︸ ︷︷ ︸
4

00001︸ ︷︷ ︸
5

ts=20
↓

· · · · · ·

t`=29
↓

001111 001110︸ ︷︷ ︸
tc=15, 14

001111 001100︸ ︷︷ ︸
15, 12

001001 010000︸ ︷︷ ︸
9, 16

64=n
↓

Now we start popping values. Since ts = 20 > 15 = tc holds, we know that the top
element is a small element. Therefore, we count the trailing zeros z = TZ(V[ts− 12..ts)) =
TZ(V[8..19]) = 4. The top element is e = z + 1 = 5. We set bit V[ts] = V[20] to zero and
decrease ts by e = 5 (from 20 to 15).

V =

1
↓

000001︸ ︷︷ ︸
6

001︸ ︷︷ ︸
3

01︸︷︷︸
2

0001︸ ︷︷ ︸
4

00001︸ ︷︷ ︸
5

ts=20
↓

z= TZ(V[8..19]) = 4︷ ︸︸ ︷
· · · · · ·

t`=29
↓

001111 001110︸ ︷︷ ︸
tc=15, 14

001111 001100︸ ︷︷ ︸
15, 12

001001 010000︸ ︷︷ ︸
9, 16

64=n
↓

74 CHAPTER 6. DECREASING THE MEMORY BOUND

V =

1
↓

000001︸ ︷︷ ︸
6

001︸ ︷︷ ︸
3

01︸︷︷︸
2

0001︸ ︷︷ ︸
4

ts=15
↓

00000 · · · · · ·

t`=29
↓

001111 001110︸ ︷︷ ︸
tc=15, 14

001111 001100︸ ︷︷ ︸
15, 12

001001 010000︸ ︷︷ ︸
9, 16

64=n
↓

If we perform another pop, we have ts = 15 = tc, indicating that the top element is a large
element. Its value is (V[t` + 6..t` + 12))2 = (001110)2 = 14. We overwrite the interval
V[t`..t` + 12) with zeros and increase t` by d2 lgne = 12 (from 29 to 41).

V =

1
↓

000001︸ ︷︷ ︸
6

001︸ ︷︷ ︸
3

01︸︷︷︸
2

0001︸ ︷︷ ︸
4

ts=15
↓

· · · · · · · · · · · · ·

t`=29
↓

001111 001110︸ ︷︷ ︸
tc=15, 14

001111 001100︸ ︷︷ ︸
15, 12

001001 010000︸ ︷︷ ︸
9, 16

64=n
↓

V =

1
↓

000001︸ ︷︷ ︸
6

001︸ ︷︷ ︸
3

01︸︷︷︸
2

0001︸ ︷︷ ︸
4

ts=15
↓

· · · · · · · · · · · · 000000 000000

t`=41
↓

001111 001100︸ ︷︷ ︸
tc=15, 12

001001 010000︸ ︷︷ ︸
9, 16

64=n
↓

Cache Efficiency and Dynamic Memory Allocation

There are some aspects of the unary stack that are not relevant in terms of theoretical
bounds, but have important implications in practice. The left and the right part of the
bit vector V can be seen as two individual stacks: On the left side we have a stack that
contains small elements in unary representation, while on the right side we have a stack
that contains annotated large elements in binary representation. Since we only require top
access on both of these individual stacks, we have excellent cache locality in practice. Also,
instead of using a statically allocated bit vector of size n bits, we can use two separate bit
vectors which dynamically grow and shrink depending on their content. We evaluate the
efficiency of static and dynamic stack implementations in Section 7.4.

6.2.3 Succinct Telescope Stack

When executing xss-real (or any of the other new algorithms), the stack H always contains
only strictly monotonically increasing elements, because we iterate over the indices in
ascending order and push index i in iteration i. Instead of storing absolute values, we can
store each stack element as the difference to the element that lies on top of it. This keeps
the sum of the stack elements below n at all times, allowing us to deploy a unary stack.

6.2.4 Corollary (Telescope Stack). There is a stack with constant time push, pop, and
top operations that stores up to n elements from the interval [1, n] using n+O(lgn · lg lgn)
bits of memory, if the elements on the stack are always strictly monotonically increasing.
It can be initialized in O(lgn) time.

6.3. EMBEDDING R IN THE BPS 75

Proof. We use a unary stack U with bit vector length n. Instead of storing the strictly
monotonically increasing elements h1, . . . , hk, we store U = (h2− h1), (h3− h2), . . . , (hk −
hk−1) and a dedicated variable htop = hk for the topmost element. This can be achieved
by implementing the operations as follows:

push(e): Perform U .push(e− htop) and set htop ← e.
pop(): Set htop ← (htop − U .top()) and perform U .pop().
top(): Return htop.

Let (h2−h1), (h3−h2), . . . , (hk−hk−1) be the content of U at any point in time, then the
sum of its elements is bound by ∑k

i=2 hi − hi−1 = hk − h1 < n. Therefore, a bit vector of
length n is large enough for U . The O(lgn) initialization time and additional memory of
O(lgn lg lgn) bits result from the use of the unary stack (see Lemma 6.2.3). �

6.3 Embedding R in the BPS

When performing the amortized look-ahead, we use an additional stack R. We pop some
of the topmost elements of H, and push them onto R, which reverses their order. As we
have seen in Section 5.2.3, these elements are from the interval (i, i + χ), where χ is the
anchor that we have computed as described in Section 5.2.1. Once we have pushed the
elements onto R, they are strictly monotonically decreasing. With a slight modification,
we can use a telescope stack as described in the previous section to represent R.

We use the function f(x) = i + χ − x to map the elements on the interval [1..χ). Note
that this function is self-inverse, i.e. we have f−1(x) = f(x). By applying f , the elements
become strictly monotonically increasing, and therefore satisfy the requirements of Corol-
lary 6.2.4. Let F be a telescope stack of length χ as shown in the corollary. Then we can
realize the operations on R as follows:

push(e): Perform F .push(f(e)).
pop(): Perform F .pop().
top(): Return f(F .top()).

The stack F needs χ+O(lgχ · lg lgχ) bits of memory. However, even after performing the
amortized look-ahead, there are at least 3χ more indices to process (see Section 5.2.1; we
have i+ 4χ < n). Therefore, there are at least 6χ more parenthesis to write, and thus 6χ
unused bits at the end of the BPS. For sufficiently large χ, we have χ+O(lgχ · lg lgχ) < 6χ.
Consequently, we can embed R into the unused space of the BPS.

6.3.1 Lemma. We can embed the stack R of the amortized look-ahead into the so far
unwritten part of the BPS. All operations can be performed in constant time, and the
initialization time is O(lgχ). No additional memory is needed.

76 CHAPTER 6. DECREASING THE MEMORY BOUND

Proof. The correctness follows from the description above. The initialization time is used
for the telescope stack F (see Corollary 6.2.4). �

6.4 Maintaining L in d4n/δe+ o(n) Bits

The sum of LCP values on the stack L of the new algorithms can reach Θ(n2) (for exam-
ple for the text “$an−3b$”), and the elements are not necessarily strictly monotonically
increasing or decreasing. Therefore neither the unary stack nor the telescope stack seem
like natural solutions for realizing L. However, a new parameterized representation of the
elements of L allows us to fit them on a unary stack of bit vector length 4n

δ . Here, δ is an
arbitrary constant positive integer that reduces the number of bits needed for the elements
on the stack by rounding them down to the closest multiple of δ. When retrieving stack
elements, we have to restore the information that got lost while rounding the elements,
increasing the runtime of pop operations to O(δ). Both push and top operations can still
be performed in constant time. We first explain the new representation of LCP values, the
underlying data structures of our succinct version of L, and the way we execute push, pop,
and top operations. Then, we show that our representation in fact achieves the claimed
space bounds. By the end of this section we will have proven:

6.4.1 Lemma (Succinct LCP Stack). Let δ ∈ N+ with δ ≤
√
n/(3 lgn). There is a

representation of the stack L used in the algorithms xss-bps-lcp and xss-real that allows
constant time push and top operations, as well as O(δ) pop operations, while using only
4n/δ +O(lg(n/δ) · lg lg(n/δ)) bits of memory. It can be initialized in O(lg(n/δ)) time.

6.4.1 Transformation of LCP values

Let l1, . . . , lk be the elements on the LCP stack L at any point in time, and let li with
i ∈ [1, k) be any element except for the topmost one. We define the δ-representation lδi of
li for δ ∈ N+ as:

lδi =

 bli/δc , iff li < li+1 (called absolute value)

b(li − li+1)/δc , iff li ≥ li+1 (called relative value)

For the topmost element lk we define lδk = 0. Evidently, transforming li to lδi takes con-
stant time. Note that reverting the transformation is more complicated, because (without
additional information) we do not know whether the δ-representation of an LCP value is
an absolute or a relative value. Also we lose some information due to rounding during the
transformation. Even if both lδi and li+1 are given, we only know that li is either from the
interval [δlδi , δl

δ
i +δ) (if it is an absolute value), or from the interval [li+1 +δlδi , li+1 +δlδi +δ)

6.4. MAINTAINING L IN d4N/δe+O(N) BITS 77

δ
≥δ

<δ
≥δ<δ

ltop = l14

U = lδ3, lδ6, lδ7, lδ10, l
δ
11, l

δ
12, lδ13

i

li

Figure 6.3: Storing the δ-representation of the elements l1, . . . , l14 of L on a unary stack
U . The topmost element l14 is stored in the dedicated variable ltop. Each data point
represents one element li. We use a circle marker, if lδi is an absolute value (i.e. li < li+1),
and a square marker, if lδi is a relative value (i.e. li ≥ li+1)). The dark red area contains
the elements that are smaller than δ. The light red area (combined with the dark red
area) contains the elements li with li− li+1 < δ. On the stack U we only store values with
lδi > 0. For absolute values, this means that li must be at least δ. Therefore, the absolute
values in the dark red area are not stored on U . For relative values, li − li+1 must be at
least δ. Therefore, the relative values in both the light and dark red area are not stored
on U . All elements that are stored on U have a filled marker.

(if it is a relative value). In the next section we show how to restore li from lδi and li+1 in
O(δ) time.

6.4.2 Using a Unary Stack

The core of our succint representation of L is a unary stack U of length 4n
δ . Let l1, . . . , lk

be the elements of L at any point in time, and let ld1 , . . . , ldm be exactly the elements
whose δ-representation is greater than zero (retaining the order, i.e. d1 < d2 < · · · < dm).
We store the values lδd1

, . . . , lδdm on the unary stack U , while a dedicated variable ltop stores
the topmost LCP value lk. Figure 6.3 visualizes the elements li and the stack U . Since we
maintain the variable ltop at all times, retrieving the top element of L in constant time is
trivial. We now explain how to push and pop elements such that the stack always works
as described.

push(lk+1): Assume that ltop = lk is the topmost element on L and we want to push lk+1

on top of it. Clearly, using lk+1 we can easily compute the δ-representation lδk of lk. If it
is greater than zero, then we push it onto U . In any case, we set ltop ← lk+1. This takes
constant time.

pop(): Assume that ltop = lk is the topmost element on L. After popping lk, we want
ltop = lk−1 to hold. Therefore we have to somehow restore lk−1. If its δ-representation

78 CHAPTER 6. DECREASING THE MEMORY BOUND

lδk−1 is greater than zero, then it lies on top of U . Otherwise we have no information at all
about lk−1. We only know that lk−1 is the LCP value LcpS(hk−1, hk). The topmost three
elements on H are exactly hk−1, hk and hk+1. Since we have constant time push and pop
operations on H, we can easily lookup hk−1 and hk in constant time.
We now describe how to restore lk−1 in O(δ) time using the topmost element u of U , the
current top value ltop = lk, and the indices hk−1 and hk. Depending on the transformation
lδk−1 of lk−1, one of the following cases applies:

1. The transformation lδk−1 is an absolute value, i.e. we have lδk−1 = blk−1/δc. Therefore,
lk−1 is from the interval [δlδk−1, δl

δ
k−1 + δ), as visualized in Figure 6.4 (top). If

lδk−1 > 0 holds, then we have stored the element lδk−1 on the stack U , and thus we
have u = U .top() = lδk−1. In this case, lk−1 is from the interval C1 = [δu, δu + δ).
Otherwise, we have lδk−1 = 0 and lk−1 is from the interval C2 = [0, δ).

2. The transformation lδk−1 is a relative value, i.e. we have lδk−1 = b(lk−1 − lk)/δc.
Therefore, lk−1 is from the interval [lk+δlδk−1, lk+δlδk−1+δ), as visualized in Figure 6.4
(bottom). If lδk−1 > 0 holds, then we have stored the element lδk−1 on the stack
U , and thus we have u = U .top() = lδk−1. In this case, lk−1 is from the interval
C3 = [lk + δu, lk + δu+ δ). Otherwise, we have lδk−1 = 0 and lk−1 is from the interval
C4 = [lk, lk + δ).

At this point, we neither know if lδk−1 is an absolute or a relative value, nor do we
know if lδk−1 > 0 holds. However, we can define the candidate set Call = C1 ∪ C2 ∪
C3 ∪ C4, which definitely contains lk−1. Since by definition of the stack L we have
lk−1 = LcpS(hk−1, hk), we know that the suffixes Shk−1 and Shk share the longest common
prefix S[hk−1..hk−1 + lk−1) = S[hk..hk + lk−1), and then mismatch on the next character,
i.e. we have S[hk−1 + lk−1] 6= S[hk + lk−1]. Therefore, we can use the set Call to determine
the value of lk−1:

lk−1 = min{l | l ∈ Call ∧ S[hk−1 + l] 6= S[hk + l]}

There are only |Call| ≤ 4δ = O(δ) candidates to consider, and each one of them can be
validated in constant time. Therefore, we can determine lk−1 by trying all possible values
in O(δ) time. Once we know lk−1, we can easily check if lδk−1 > 0 holds. If it does, then
lδk−1 is the topmost element on U , and we pop it from U . In any case we set ltop ← lk−1.

6.4.3 Proving the Space Bound

It remains to be shown, that 4n/δ bits are sufficient for U . Let h1, . . . , hk+1 be the elements
of H and let l1, . . . , lk with li = LcpS(hi, hi+1) be the elements of L at any point in time

6.4. MAINTAINING L IN d4N/δe+O(N) BITS 79

Absolute value lδk−1: lδk−1 = blk−1/δc C = [δlδk−1, δl
δ
k−1 + δ)

hk−1 hk hk+1
S = α β β

α α β|α|+1 −−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−
lk−−−→←−−−

δ
−−−→←−−−
δ
· · ·︸ ︷︷ ︸

lδk−1 times

−−−→←−−−
δ

−−−−−−−−−−−→←−−−−−−−−−−−
lk−1

−−−−−−−−−→←−−−−−−−−−
C

····−→

Relative value lδk−1: lδk−1 = b(lk−1 − lk)/δc C = [lk + δlδk−1, lk + δlδk−1 + δ)

hk−1 hk hk+1
S = α α β

β α|β|+1 β α|β|+1 −−−−−→←−−−−−
lk−−−−−→←−−−−−

lk
−−−→←−−−
δ
−−−→←−−−
δ
· · ·︸ ︷︷ ︸

lδk−1 times

−−−→←−−−
δ

−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−
lk−1

−−−−−−−−−−−→←−−−−−−−−−−−
lk−1 − lk

−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−
C

····−→

Figure 6.4: Candidate intervals for lk−1. The suffixes Shk and Shk+1 share a longest
common prefix β of length lk = LcpS(hk, hk+1), while the suffixes Shk−1 and Shk share
a longest common prefix α of length lk−1 = LcpS(hk−1, hk). We differentiate between
absolute values (top) and relative values (bottom). Using only the δ-representation lδk−1,
as well as lk, we can define the interval C, which contains lk−1.

during the execution of xss-real or xss-bps-lcp. For simplicity, we assume that lδi is defined
for all i ∈ [1, k), such that U contains exactly the elements lδ1, . . . , l

δ
k−1. We prove the

space bound by showing that for each lδi at least one of the following cases applies:

Case (1): The element lδi uses at most (2(hi+1 − hi) + (hi+2 − hi+1))/δ bits. Even if we
assume that this applies for every lδi , then the total number of bits used by this case
is less than 3n/δ:

(1/δ) ·
k−1∑
i=1

2(hi+1 − hi) + (hi+2 − hi+1)

< (1/δ) ·
k∑
i=1

3(hi+1 − hi)

= (1/δ) · 3(hk+1 − h1)

< (1/δ) · 3n

80 CHAPTER 6. DECREASING THE MEMORY BOUND

Case (2): The element lδi is one of the topmost
√
n elements of U . On a unary stack

of length d4n/δe (as defined in the proof of Lemma 6.2.3), each element uses at
most d2 lg(4n/δ)e bits of the bit vector. For sufficiently large n and δ ≥ 1, we have
d2 lg(4n/δ)e < 3 lgn. Assume that δ is at most

√
n/(3 lgn), then we obtain the

following upper bound for the number of bits used by the topmost
√
n elements:

√
n︸︷︷︸

number
of elements

· d2 lg(4n/δ)e︸ ︷︷ ︸
max. bits
per element

<
√
n · (3 lgn) = n/ (

√
n/(3 lgn)︸ ︷︷ ︸
≥δ

) ≤ n/δ

Clearly, if we can show that each element on U is covered by at least one of the two cases,
then we have proven the space bound. Let lδi be any element on U , and let b be the number
of bits it occupies in the bit vector of U . We now show that if Case (1) does not apply,
then Case (2) does apply. Assume that Case (1) does not apply, i.e.:

Assumption A : b > (2(hi+1 − hi) + (hi+2 − hi+1))/δ

6.4.2 Observation. The definition of lδi implies that li ≥ δlδi holds. Also, since every
element e of a unary stack as defined in the proof of Lemma 6.2.3 uses at most e bits,
we have lδi ≥ b. Combining the two inequalities, we can show that li is at least twice as
large as the length of interval [hi, hi+1):

li ≥ δlδi ≥ δb >
A

2(hi+1 − hi) + (hi+2 − hi+1) > 2(hi+1 − hi)

This observation has important consequences. Remember, that li = LcpS(hi, hi+1) is
the length of the longest common prefix between the suffixes Shi and Shi+1 . Therefore,
li > 2(hi+1 − hi) implies that index hi is part of a Lyndon run. More precisely, the
substring µ = S[hi, hi+1) repeats itself at least three times at the beginning of Shi (see
Section 5.1.1 for details). Let r3 = hi+1+|µ| be the starting position of the third repetition
and let z = hi+1 + |µ| · bli/|µ|c be the first index after the last repetition of µ.

S = S[1..hi)

hi
↓

µ

hi+1
↓

µ

r3
↓

µ µ · · · µ

z
↓

S[z..n]

Now we try to place hi+2 in the figure above. We step-by-step eliminate intervals that
may contain hi+2, until we have shown that hi+2 ∈ (hi+1, r3) holds. Then, we can show
that lδi is one of the topmost

√
n elements.

6.4. MAINTAINING L IN d4N/δe+O(N) BITS 81

Eliminating hi+2 ∈ [z,n]:
We have |µ| = hi+1 − hi. From Observation 6.4.2 we know that li > 2|µ|+ (hi+2 − hi+1)
holds. Using this inequality and the definition of z, we obtain an upper bound for hi+2:

z = hi+1 + |µ| · bli/|µ|c

≥ hi+1 + li − |µ|

> hi+1 + (2|µ|+ (hi+2 − hi+1))− |µ|

= |µ|+ hi+2 > hi+2

Eliminating hi+2 ∈ (r3, z):
This follows directly from Lemma 5.1.10. (If r3 is not an element on H, but a larger index
is, then H does not contain any element from the interval [r3, z].)

Eliminating hi+2 = r3:
Assume that hi+2 = r3 holds. Then hi is the starting position of the first repetition of µ,
hi+1 is the starting position of the second repetition, and hi+2 = r3 is the starting position
of the third repetition. Consequently, the longest common prefix between Shi+1 and Shi+2

is exactly one repetition of µ (and thus |µ| characters) shorter than the longest common
prefix between Shi and Shi+1 :

li+1 = LcpS(hi+1, hi+2) = LcpS(hi, hi+1)− |µ| = li − |µ|

This implies that lδi is a relative value because li+1 < li holds. By definition of the δ-
representation we have lδi = b(li+1 − li)/δc = b|µ|/δc ≤ (hi+1 − hi)/δ. However, this
means that lδi also uses at most (hi+1 − hi)/δ bits of the unary stack, which contradicts
assumption A .

Exploiting hi+2 ∈ (hi+1, r3):
The only case left is hi+2 ∈ (hi+1, r3). It follows directly from Lemma 5.1.9, that
the topmost element on H is smaller than r3. Therefore, hi+1 is one of the topmost
(r3 − hi+1) = (hi+1 − hi) elements. Remember, that each element on the unary stack uses
at most d2 lg(4n/δ)e bits. Under assumption A , and for sufficiently large n, we obtain
the following bound for hi+1 − hi:

hi+1 − hi <
A

δb/2 ≤ δd2 lg(4n/δ)e/2 < δ · 3 lgn ≤
√
n

The last step of this chain of inequalities only holds for δ <
√
n/(3 lgn), explaining the

limitation of δ in Lemma 6.4.1. Since we have processed less than
√
n indices after pro-

cessing hi+1, we know that lδi is one of the topmost
√
n elements on the unary stack U .

Thus we have proven that if Case (1) does not apply, then Case (2) does apply. Therefore,

82 CHAPTER 6. DECREASING THE MEMORY BOUND

d4n/δe bits are sufficient for U . Consequently, the additional lower order memory term
is O(lg(n/δ) · lg lg /(n/δ))), and the initialization time is O(lg(n/δ)) (see Lemma 6.2.3).
Thus, we have proven the correctness of Lemma 6.4.1

6.5 Combining the Pieces

The space efficient data structures of the previous sections finally allow us to lower the
memory bound of xss-real. In order to achieve the lowest possible theoretical worst-case
bounds, we use the O(

√
n · lgn) bit version of the index stack H (Lemma 6.1.1). When-

ever we have to use the reversal stack R during the amortized look-ahead, we embed it
in the unused space of the BPS, causing no additional memory usage (Lemma 6.3.1).
Finally, we use the parameterized version of the LCP stack L, which uses d4n/δe +
O(lg(n/δ) · lg lg /(n/δ))) bits of memory (Lemma 6.4.1). Apart from the stacks, xss-real
uses only O(1) words of additional memory for variables. Therefore, the total memory
usage (without input and output) is bound by d4n/δe+O(

√
n · lgn) bits.

Using the described stack representations, we can still perform constant time push and
top operations. However, popping elements from L takes O(δ) time. Since we pop at most
n elements during the entire execution of xss-real, it follows that the time bound increases
to O(δn). Thus, we have proven Theorem 4.0.1:

4.0.1 Theorem. Let S be a string of length n and let δ ∈ [1, b
√
n/(3 lgn)c]. The BPS

of the PSS tree of S can be computed in O(δn) time using d4n/δe+O(
√
n · lgn) bits of

additional memory apart from the space needed for input and output.

Chapter 7

Experimental Evaluation

7.1 Experimental Setup

We conduct our experiments on the LiDO3 cluster of the TU Dortmund1. For all bench-
marks we use a standard compute node of the cluster, which comes with an Intel Xeon
E5-2640V4 processor and 64 GB of memory. The processor runs at 2.4GHz (Intel Turbo
Boost disabled) and features 25 MB of L3 cache. The word size is w = 64 bits. The
implementation is written in C++17, and compiled with GCC using the compiler flags
-O3 -ffast-math -funroll-loops -march=native. The same compiler and flags are
used for algorithms that are part of third party libraries and repositories. Time mea-
surements are performed using std::chrono::high_resolution_clock, while memory
measurements utilize the malloc_count library2. All implemented algorithms and data
structures are publicly available under https://github.com/jonas-ellert/xss-real.

7.2 Counting Trailing Zeros

First, we evaluate the query time of trailing zero queries, using the data structures shown
in Section 6.2.1. We also measure the TZCNT instruction as a baseline. In practice we only
want to answer queries for entire computer words, i.e. we have b = 64.

Implementing the de Bruijn Method

For the de Bruijn method we use the multiplier a = 0x03f79d71b4ca8b09 (Martin’s
constant, see [Knuth, 2011, p. 142]) and the following lookup table of size 64 bytes:

1https://www.lido.tu-dortmund.de/cms/de/LiDO3/index.html
2https://github.com/bingmann/malloc_count

83

https://github.com/jonas-ellert/xss-real
https://www.lido.tu-dortmund.de/cms/de/LiDO3/index.html
https://github.com/bingmann/malloc_count

84 CHAPTER 7. EXPERIMENTAL EVALUATION

constexpr stat ic uint64_t martins_constant = 0x03f79d71b4ca8b09 ;
constexpr stat ic uint8_t lookup_ [6 4] = {

0 , 1 , 56 , 2 , 57 , 49 , 28 , 3 , 61 , 58 , 42 , 50 , 38 , 29 , 17 , 4 ,
62 , 47 , 59 , 36 , 45 , 43 , 51 , 22 , 53 , 39 , 33 , 30 , 24 , 18 , 12 , 5 ,
63 , 55 , 48 , 27 , 60 , 41 , 37 , 16 , 46 , 35 , 44 , 21 , 52 , 32 , 23 , 11 ,
54 , 26 , 40 , 15 , 34 , 20 , 31 , 10 , 25 , 14 , 19 , 9 , 13 , 8 , 7 , 6

} ;

Assuming x 6= 0, we then retrieve the number of trailing zeros as follows:

constexpr inl ine stat ic uint64_t c tz (const uint64_t x) {
return lookup_ [((x & −x) ∗ martins_constant) >> 5 8] ;

}

Note that since we are operating on entire computer words, we do not need to use the
modulo operation (cf. Section 6.2.1, h(2z) = ((a · 2z) mod 2b) >> (b− lg b)). Usually, the
modulo acts as a mask that selects the lowest b bits. However, in practice the multiplication
a·2z = (x&−x)·martins_constant overflows, and naturally only the lowest 64 bits remain.

Implementing the Binary Search

We try the values 2, 4, 8 and 16 for the parameter c of the binary search, resulting in lookup
tables of size 3, 9, 129 and 32769 bytes respectively. For example, we have the following
table for c = 4:

constexpr stat ic uint8_t lookup_ [9] = { 0 , 0 , 1 , 0 , 2 , 0 , 0 , 0 , 3 } ;

Assuming x 6= 0, we then retrieve the number of trailing zeros as follows:

constexpr stat ic uint64_t c_div_2 = c >> 1 ;
constexpr inl ine stat ic uint64_t c tz (uint64_t x) {

x &= −x ;
uint64_t b i t s = 32 ;
uint64_t mask = 0 x f f f f f f f f ;
uint64_t r e s u l t = 0 ;
while (b i t s > c_div_2) {

i f ((x & mask) == 0) {
r e s u l t += b i t s ;
x >>= b i t s ;

}
b i t s >>= 1 ;
mask >>= b i t s ;

}
return r e s u l t + lookup_ [x] ;

}

Additionally, we measure the binary search without using a lookup table.

7.2. COUNTING TRAILING ZEROS 85

Testing Methodology

We do not take the initialization time of lookup tables into account. All tables are small
enough to be built at compile time, such that no additional time is needed at run time. For
the same reason, we do not measure the memory usage of the different methods. Even the
largest table of the binary search with c = 16 only occupies 32 KiB, which is insignificant in
practice. When answering a query, we always have to check if the given word is zero. Since
we have to catch this special case for all methods (including the TZCNT instruction, which
is undefined for zero), we do not measure the overhead caused by zero-queries. Instead,
we only use non-zero queries for the evaluation, such that we do not have to catch the
special case at all.

Our benchmark works as follow: For each possible result of a trailing zero query, i.e.
for z ∈ [0, 63], we generate 230 uniformly distributed random words that have z trailing
zeros, i.e. words from the set {x | x ∈ [1, 264) ∧ TZ(x) = z}. Then, we take each method
(de Bruijn, binary search, TZCNT) and answer these 230 queries, measuring the total time.
This procedure is repeated five times, of which we take the median time as the final result.
After that, we calculate the throughput of each method in queries per nanosecond. We run
one additional set of experiments per method, during which we measure the throughput
for 230 completely random queries, i.e. without setting a fixed number of trailing zeros.

Results

Figure 7.1 shows how the methods compare. As expected, the dedicated CPU instruction
TZCNT is the fastest method, answering around 1.37 queries per nanosecond, regardless
of the query result, and even for completely random queries. The de Bruijn method is
only around 23% slower at roughly 1.05 queries per nanosecond. Again, the query result
has no influence on the query time. Looking at completely random queries for the binary
search, we see that higher values of c allow more throughput. This was expected, since
with growing c fewer steps of the binary search are needed to reach the base case. The
throughput varies between around 0.76 (for c = 16) and 0.11 (without using a lookup
table) queries per nanosecond, which is between around 27% and 89% slower than the
de Bruijn Method. It is not surprising, that the query time depends on the result of the
queries, since branching left or right during the binary search is not equally expensive.

For the binary search with small lookup tables (c = 2, c = 4, no lookup table), there is a
significant gap between the throughput for completely random queries and the throughput
for fixed result queries. Taking c = 2 as an example, we answer around 0.19 completely
random queries per nanosecond, but for any fixed result we answer more than 0.4 queries
per nanosecond. Since the small lookup tables fit into a single cache line, we can rule out

86 CHAPTER 7. EXPERIMENTAL EVALUATION

0 8 16 24 32 40 48 56 64

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of Trailing Zeros

T
hr
ou

gh
pu

t
(Q

ue
rie

s
pe

r
N
an

os
ec
on

d)
Counting Trailing Zeros (uint64_t)

Average of 230 Random Queries

TZCNT binary-lookup16 binary-lookup4
debruijn binary-lookup8 binary-lookup2

binary-no-lookup

Figure 7.1: Counting Trailing Zeros on 64 bit words. Each data point represents the
throughput in queries per nanosecond for a fixed number of trailing zeros. The thick
horizontal bars on the left indicate the throughput for completely random queries without
a fixed result. See Section 7.2 for details.

caching effects as the cause of this disparity. While we cannot be completely sure about
the actual cause, it is a reasonable assumption, that the CPU’s branch predictor performs
significantly better, if we only answer queries of a fixed result, i.e. queries that branch
completely identically during the binary search.

7.3 Introducing the Text Collection

In this section we introduce the texts that we use for most of the following experiments.
There are three groups of texts that we consider, all of which can be found in the Pizza
& Chili text collection3. The first group consists of real life texts that cover a wide range
of application areas (dna, english, pitches, proteins, sources, and xml)4. The second
group consists of highly repetitive real life texts that are less representative for most appli-
3http://pizzachili.dcc.uchile.cl/index.html
4http://pizzachili.dcc.uchile.cl/texts/

http://pizzachili.dcc.uchile.cl/index.html
http://pizzachili.dcc.uchile.cl/texts/

7.3. INTRODUCING THE TEXT COLLECTION 87

cations, but can reveal strengths and weaknesses of the algorithms that we compare (cere,
coreutils, ecoli, einstein.de, einstein.en, influenza, kernel, leaders, para)5.
Lastly, we also consider artificial texts that are generated with maximum repetitiveness
in mind (fib41, rs.13, tm29)6. Detailed information on the real and artificial repetitive
texts can be found on the official Pizza & Chili website7.

Statistics

In order to select meaningful texts for the evaluation, we collected some statistical data
that indicates how hard it is to compute the PSS tree for each instance (Table 7.1). Apart
from the text and alphabet sizes, the table shows some more specific measures that are
designed to work with our algorithms.

In the general area of string processing, there are many algorithms that struggle with
highly repetitive texts. More often than not, this is due to the very large LCP values
that occur in these texts. However, our algorithms only have to compute LCPs for a very
narrow selection of indices. We can get a better understanding of the difficulty of each text
by running the plain version xss-bps of our algorithm and determining the average and
maximum LCP value that we actually have to compute during the execution. The higher
the average LCP value, the longer we expect our algorithms to take for all necessary suffix
comparisons. Interestingly, the artificial repetitive texts only reach average LCP values
of 16 and lower (see Table 7.1). The hardest instances seem to be cere and para with
respective average values of 156 and 32 (each of these instances contains a collection of
yeast DNA). All of the other non-artificial instances only reach very small values between
0.2 and 1.05. The exceptions are leaders (a collection of CIA documents), pitches (pitch
values of MIDI files), and einstein.en (all versions of the English Wikipedia article on
Albert Einstein, up to Nov. 2006), for which we have average LCP values between 5.97
and 9.93.

Another indicator for the hardness of processing the texts is the maximum number of
elements that we reach on the stack H. If this number is high, then we expect a high
memory usage. Apart from the absolute maximum stack size per text, Table 7.1 also shows
the relative maximum stack size, which is the maximum stack size divided by n/100000.
The highest relative stack size occurs for pitches, which needs up to one element on the
stack per 10000 characters of input.

Lastly, we ran xss-real on each text and determined the number of iterations that we skip
by using the run extension and the amortized look-ahead. The table shows relative values,
5http://pizzachili.dcc.uchile.cl/repcorpus/real/
6http://pizzachili.dcc.uchile.cl/repcorpus/artificial/
7http://pizzachili.dcc.uchile.cl/repcorpus/statistics.pdf

http://pizzachili.dcc.uchile.cl/repcorpus/real/
http://pizzachili.dcc.uchile.cl/repcorpus/artificial/
http://pizzachili.dcc.uchile.cl/repcorpus/statistics.pdf

88 CHAPTER 7. EXPERIMENTAL EVALUATION

Table 7.1: Statistics on the text collection. Large average LCP values imply less through-
put for our algorithms. Large maximum stack sizes imply a higher memory usage.

xss-bps xss-bps xss-real
n computed LCPs max. stack size skippable iter.

Text MiB σ avg. max. abs. per 100k RE % AL %
fib41 256 2 15.20 63 245 987 21 0.01 0.00 98.85
rs.13 207 2 9.54 41 395 035 27 0.01 0.00 93.99
tm29 256 2 8.78 67 108 863 20 0.01 0.00 91.42
cere 440 5 156.24 46 417 34 488 7.48 7.15 2.40
coreutils 196 236 0.76 1 593 942 3072 1.50 0.07 0.82
ecoli 107 15 0.68 104 863 104 0.09 0.01 0.03
einstein.de 88 117 0.59 192 872 176 0.19 0.18 14.07
einstein.en 446 139 7.30 726 916 730 0.16 0.87 13.55
influenza 148 15 0.79 21 640 624 0.40 0.38 1.98
kernel 246 160 0.51 811 399 282 0.11 0.02 0.72
leaders 45 89 9.93 50 228 122 0.26 0.65 0.44
para 409 5 31.73 17 271 16 162 3.77 3.83 0.03
dna 385 16 0.78 1 378 596 125 0.03 0.01 0.09
english.1G 1024 237 0.20 579 923 10 057 0.94 0.00 0.07
pitches 53 133 5.97 20 336 5771 10.34 7.77 1.19
proteins 1126 27 0.37 90 246 744 0.06 2.32 1.27
sources 201 230 1.05 98 698 6952 3.30 0.36 0.20
xml 282 97 0.25 50 228 552 0.19 0.01 0.00

i.e. the percentage of iterations that we can skip. Interestingly, the run extension is not
applicable for the artificial instances. The text rs.13 is a run-rich string sequence that
contains over 0.92n runs[Franek et al., 2003]. However, the run extension only gets used
for runs of at least three repetitions, which do not exist in rs.13. The repetitive nature of
the artificial instances causes the amortized look-ahead to be very effective, skipping over
90% of all iterations. In general, we can skip more iterations for texts that have higher
LCP values, with the exception of para, where we can only skip 3.86% of the iterations
despite the high average LCP value of almost 32.

7.4 Comparing the Stacks

In terms of stack implementations, we use most of the techniques shown in Chapter 6.
The only approach that we do not consider is the O(

√
b · lgn) bit version of the index

stack H (see Section 6.1). Achieving an efficient implementation is complicated, and in
practice we expect no significant benefit from using this approach over the n + o(n) bit
telescope stack representation of H (see Section 6.2.3). We have already seen that for real
texts (and even for some highly repetitive artificial ones) the stack size stays low during

7.4. COMPARING THE STACKS 89

the entire execution of our algorithms. For the same reason, we do not embed the reversal
stack R in the BPS, but simply store it separately.

Implementing the Stacks

The provided implementations of the unary stack, the telescope stack, and the parameter-
ized LCP stack works almost exactly as described in Chapter 6. For the unary stack we
use the TZCNT instruction to count trailing zeros, which is the fastest available method (see
Section 7.2) and does not need any additional space for lookup tables. Remember, that for
the unary stack we differentiate between small elements, which have a value smaller than
2dlgne, and large elements, which are at least 2dlgne. The original motivation behind
this differentiation was, that we have to count trailing zeros at most twice while popping
elements or retrieving the topmost element. Since the TZCNT instruction allows us to count
trailing zeros for entire computer words of size 64 bits, we do not make the threshold for
small elements dependent on the input size. Instead, we simply define small elements to
have at most value 127 (and large elements to have at least value 128).

Our implementation of the stack L works exactly as described in Section 6.4. The param-
eter δ can assume any positive integer value. Additionally, we provide a slightly different
implementation, which is identified with δ = 0 from now on. Essentially, it works the
same way as the LCP stack with δ = 1, but also stores the δ-transformations with value
zero. We achieve this by simply incrementing all transformed values by one. Since this
way the sum of elements on the underlying unary stack increases by at most n, we need
n additional bits. Furthermore, we augment each stack element with a type-flag that
indicates whether it is an absolute or a relative value, which increases the memory usage
by another n bits. Therefore, the LCP stack with δ = 0 uses 6n bits of memory. We
need the same 4n bits as the LCP stack with δ = 1, plus n bits to allow the value zero,
plus n bits for the type-flags. The added type-flags are sufficient to restore each original
LCP value from its δ-transformation, and all transformations are definitely stored on the
underlying unary stack because we allow the value zero. Therefore, we do not need access
to the input text or the index stack H anymore when popping elements from L. Thus, we
expect faster stack operations than with δ = 1.

In Section 6.2.2 we claimed that in practice we could realize dynamic memory allocation
for the stacks. In fact, we provide both static and dynamic implementations. The static
version allocates n bits for H and d4n/δe bits for L prior algorithm execution (or 6n bits
for L with δ = 0). The underlying data structure is a custom bit vector implementation
that is based on an array of unsigned integers. The dynamic version allocates almost no
memory before the algorithm execution and uses two instances of std::stack<uint64_t>

to dynamically grow and shrink both sides of the unary stack.

90 CHAPTER 7. EXPERIMENTAL EVALUATION

7.4.1 Artificial Instances

First, we show how the parameter δ influences the query time and memory usage. At
the same time, we compare the difference in performance when using dynamic memory
allocation instead of static memory allocation. As we have seen in Section 7.3, the stacks
never grow very large for real texts. Therefore, in order to properly observe the influence
of the parameter δ, we have to generate artificial test instances that put enough stress on
the stacks. Since we can only pop elements of the stack L if both the index stack H as
well as the input string S are given, we have to generate test instances that consist of a
list h1, . . . , hk+1 of indices, a list l1, . . . , lk of LCP values, and a string S that matches the
indices and LCP values. The test instances must satisfy ∀i ∈ [1, k] : li = LcpS(hi, hi+1).

Generating Test Instances

Our generator expects the number k of LCP values that we want to generate, as well
as a parameter r ∈ N+ that indicates the highest possible LCP value. First, we draw k

uniformly distributed random LCP values l1, . . . , lk from the interval [0, r). Let h1 = 1,
h2 = r + 1, and hi+1 = hi + li−1 + 1 for i ∈ [2, k].

S =

hi−1
↓

α

hi−1+li−1
↓

0

hi
↓

α

hi+li−1
↓

1

hi+1
↓

Let S be a string of length hk+1 + lk = Θ(∑k
i=1 li). We fill the prefix S[1..r] with uniformly

distributed random characters from the binary alphabet {0, 1}. Then, we interpret the
generated LCP values and indices as instructions to fill the rest of the string. For each
hi with i ∈ [2, k + 1] we assign the substring S[hi..hi + li−1) = S[hi−1..hi−1 + li−1),
which enforces the shared prefix between Shi−1 and Shi . By assigning S[hi + li−1] =
1− S[hi−1 + li−1], we also enforce the mismatch after the LCP.

Since we draw the LCP values uniformly at random, it is to be expected that roughly half
of them are absolute values (as defined in Section 6.4).

Testing Methodology

Using the instance generator from the previous section, we generate a test instance of size
k = 224 for all values r ∈ {8, 32, 128, 512}. For each instance we compare the following
stack implementations, where we let δ assume all values from {0, 1, 2, 4, 8, 16, 32, 64}:

naive: Both H and L are represented by an instance of std::stack. All values are stored
in plain binary representation (and the parameter δ does nothing).

7.4. COMPARING THE STACKS 91

︸ ︷︷ ︸
r = 8

︸ ︷︷ ︸
r = 32

︸ ︷︷ ︸
r = 128

︸ ︷︷ ︸
r = 512

0

5

10

15

20

25

30

35

40

45

50
static

dynamic
δ = 0

1
2 4 8

16
32

64

T
hr
ou

gh
pu

t
(O

pe
ra
tio

ns
pe

r
M
ic
ro
se
co
nd

)
Performing Operations on H and L
Pushing and Popping 224 Index/LCP Pairs

Figure 7.2: Throughput of the different stack implementations depending on δ and r
(see Section 7.4.1 for details). Green bars represent dynamic stacks, while orange bars
represent static ones. The bars are grouped by the value of r, and for each group they are
sorted ascendingly by the value of δ.

static(δ): We use the telescope stack from Corollary 6.2.4 for H, and the succinct LCP
stack from Lemma 6.4.1 with parameter δ for L. Both stacks use static memory
allocation.

dynamic(δ): Same as static(δ), but both stacks use dynamic memory allocation.

For each combination of stack implementation and test instance we proceed as follows: We
push all indices and LCP values of the instance onto the respective stacks, and then pop
them again, measuring the combined total time for pushing and popping. Each experiment
is repeated five times, of which we take the median as the final result. Using the final
result we compute the average throughput in stack operations per microsecond (where one
operation means either pushing an index/LCP pair, or popping one). For the dynamic(δ)
implementation we also measure the memory usage of L after pushing all elements.

92 CHAPTER 7. EXPERIMENTAL EVALUATION

Results

Figure 7.2 shows the throughput of the different stacks grouped by the value of r. The
diagram does not include the naive implementation, for which we measured around 82
operations per microsecond for all values of r. Choosing δ = 0 yields the best results by a
wide margin, reaching a throughput between 47 (r = 8) and 35 (r = 512) operations per
microsecond in the static case, and between 39 (r = 8) and 21 (r = 512) operations per
microsecond in the dynamic case. This is at most 75% slower than the naive stacks. We
never have to sacrifice more than 41% of throughput when choosing the dynamic version
over the static one. As expected, higher values of δ achieve less throughput. Particularly,
we lose up to 52% of throughput when changing from δ = 0 to δ = 1, which shows that
adding the type-flags and storing transformations with value zero is worth the additional
effort.

For the smallest range r = 8 we can observe a plateau in the diagram: Choosing values of
δ that are greater than eight does not decrease the throughput any further. This is not
surprising, since for δ = 8 and r = 8 the δ-transformation of all elements on L becomes
zero, which essentially means that the underlying unary stack stays empty and we have
to recompute all LCP values from scratch when popping elements. Since regardless of δ
this recomputation always takes the same time, we do not become slower for increasing
δ. The plateau becomes smaller for r = 32, and completely disappears for r = 128 and
r = 512. Generally, the stacks perform better for smaller r, i.e. for smaller LCP values.
Taking into account that the average LCP values of real texts are small (recall Table 7.1),
this is a favorable property.

Next, we look at the memory usage of the dynamic LCP stack. On the naive stack we
need either 32 bits or 64 bits per LCP value, depending on how many bits are required
to address the input string. As seen in Figure 7.3, the dynamic implementation needs
significantly less space for smaller values of r. Even for δ = 0 we need only 4.2 and 12.2
bits per element for r = 8 and r = 32 respectively. Once again, considering the low LCP
values in real texts, this is a strong result. In the worst case, we still need only 99.9 bits
per element (δ = 0, r = 512). As explained before, using δ = 0 instead of δ = 1 increases
the number of bits per element exactly by two.

For all values of r, except for r = 512, the memory usage decreases linearly with increasing
δ, i.e. multiplying δ by two cuts the memory usage in half. Once we start seeing more
large elements (r = 512), the benefit of using larger values of δ becomes smaller.

Summarizing the results for artificial instances, the different stack implementations behave
exactly as expected. Increasing δ reduces both throughput and memory usage. Using the
dynamic implementation causes an acceptable amount of overhead.

7.4. COMPARING THE STACKS 93

︸ ︷︷ ︸
r = 8

︸ ︷︷ ︸
r = 32

︸ ︷︷ ︸
r = 128

︸ ︷︷ ︸
r = 512

0

20

40

60

80

100 δ = 0 1

2

4

8

16
3264

naive (32 bits)

naive (64 bits)

Bi
ts

pe
r
El
em

en
t

Memory Usage of L
Average of 224 Elements

Figure 7.3: Memory usage of the different implementations of the stack L depending on
δ and r (see Section 7.4.1 for details). The results are grouped by the value of r, and for
each group the bars are sorted ascendingly by the value of δ.

7.4.2 Real Texts

Next, we analyze how the stacks perform in a more realistic setting. As observed before,
the texts of our collection do not need many elements on the stacks. This motivates us to
introduce one additional version of our stacks:

dynamic-buffered(δ): Same as dynamic(δ), but uses an additional dynamically sized buffer
of at most n bits. The buffer contains the topmost elements on H and L in plain
binary representation, which allows very fast operations. Only once the buffer is
completely full, we take the bottommost half of the buffered elements and move
them onto a dynamic(δ) stack. When the buffer becomes completely empty, we fill
half of it with the topmost elements from the dynamic(δ) stack. We expect that on
real texts the buffer never becomes full. Thus, we should observe a high throughput.

94 CHAPTER 7. EXPERIMENTAL EVALUATION

Testing Methodology

In order to compare the practical performance of the stacks, we plug each implementation
into xss-real and measure the throughput that we achieve while computing the BPS of
the PSS tree. For this benchmark we use the text xml, which turned out to achieve
the highest overall throughput, as well as the text leaders, which turned out to achieve
the lowest overall throughput. Additionally, we consider pc-avg, which is the average of
the results for all texts from Table 7.1 (where each text weighs in equally, regardless of
text length). For each text combined with each stack implementation we run xss-real five
times, measuring the total execution time and taking the median as the final result. From
the execution time we compute the average throughput in MiB/s. Also, we measure the
maximum additional memory usage, which is the highest memory usage that we observed
at any point during the algorithm execution, minus the space needed for input and output.
All of our texts are stored using one byte per character, while the BPS has size 2n bits.
Thus, input and output need a total of 10n bits of memory.

Results

Figure 7.4 shows how the different stack implementation compare. We see the throughput
in MiB/s as well as the additional memory usage in n bits. As expected, the static version
needs almost exactly 7n bits of additional memory for δ = 0, and 4n/δ + n bits for all
other values of δ. This holds for the texts xml and leaders, and also for all other texts
of Table 7.1. Conveniently, the naive, dynamic and dynamic-buffered stacks allow xss-real
to run without significant memory overhead. In fact, there is not a single text in our
collection for which we need more than n/70 additional bits of memory. If the text uses
one byte per character, then this is equivalent to around 0.16% of the input size, which is
negligible in practice.

In terms of throughput, the naive implementation is the fastest, achieving around 50 MiB/s
for xml, around 32 MiB/s for leaders, and an average of almost 45 MiB/s for pc-all. We
achieve similar results with the dynamic-buffered stacks, which are less than 15% slower
than the naive implementation for the text xml, less than 10% slower for leaders, and
less than 12% slower for pc-avg. As seen in all plots, the throughput achieved with the
dynamic-buffered stacks does not decrease with growing δ, indicating that the buffer never
becomes full.

The static and (not buffered) dynamic implementations typically reach between 30 and 55%
of the naive throughput, but never less than 60% for δ = 0. Compared to the artificial
test instances, the performance gap between static and dynamic is much smaller. Choosing

7.4. COMPARING THE STACKS 95

10
20
30
40
50 δ = 0 1 2 4 8 16 32 64

xml
Throughput
in MiB/s

Throughput and Memory Usage of xss-real
with Different Stack Implementations

︸︷︷︸
naive

︸ ︷︷ ︸
static

︸ ︷︷ ︸
dynamic

︸ ︷︷ ︸
dynamic-buffered

7
5
3
1xml

Additional
Memory
in n Bits

10

20

30
δ = 0 1 2 4 8 16 32 64

leaders
Throughput
in MiB/s

︸︷︷︸
naive

︸ ︷︷ ︸
static

︸ ︷︷ ︸
dynamic

︸ ︷︷ ︸
dynamic-buffered

7
5
3
1leaders

Additional
Memory
in n Bits

10
20
30
40

δ = 0 1 2 4 8 16 32 64

pc-avg
Throughput
in MiB/s

︸︷︷︸
naive

︸ ︷︷ ︸
static

︸ ︷︷ ︸
dynamic

︸ ︷︷ ︸
dynamic-buffered

7
5
3
1pc-avg

Additional
Memory
in n Bits

Figure 7.4: Throughput and memory usage of xss-real with different stack implemen-
tations and δ ∈ {0, 1, 2, 4, 8, 16, 32, 64}. The results are grouped by the stack types. For
each type, the bars are ordered ascendingly by the value of the parameter δ.

96 CHAPTER 7. EXPERIMENTAL EVALUATION

dynamicmemory allocation over staticmemory allocation usually decreases the throughput
by around 10%.

For xml, the parameter δ does not influence the throughput, which is not surprising because
the average LCP is only 0.25. On the other hand, high values of δ cause lower throughputs
for leaders because the average LCP of 9.93 is relatively high.

Summarizing the results for real instances, it seems like the naive implementation is the
best choice for our text collection. It clearly achieves the highest throughput while im-
posing no significant memory overhead. However, an important aspect of xss-real is its
guaranteed worst case memory bound. Therefore, we will only use dynamic-buffered(0),
dynamic-buffered(4), dynamic(0), as well as dynamic(4) during the rest of the evaluation,
which offer compelling worst-case memory bounds and a high throughput. While the
parameter δ offers an interesting theoretical trade-off between memory requirement and
execution time, the low LCP values of real texts make the choice of δ almost irrelevant in
practice (especially when using the dynamic-buffered stacks).

7.5 Comparison Against Existing Algorithms

In this section, we compare the performance of a variety of Lyndon array construction
algorithms. We consider the following approaches:

Algorithms from Chapter 4 and Chapter 5. We combine xss-bps, xss-bps-lcp, and
xss-real with the dynamic-buffered(0), dynamic-buffered(4), dynamic(0), and dynamic(4)
stacks. The result of these algorithms is the BPS of the PSS tree, while all other al-
gorithms compute the actual Lyndon array or the NSS array. In order to allow a fair
comparison, we also construct the support data structure for fast queries. This way, all
algorithms produce a representation of the Lyndon array that allows constant time ac-
cess. For the support data structure we use an implementation of Sadakane and Navarro’s
range min-max tree [Sadakane and Navarro, 2010] that is provided in the Succinct Data
Structure Library (SDSL) [Gog et al., 2014]8.

Algorithms from the SDSL. As mentioned in Chapter 4, the algorithm xss-array is
essentially identical to the PSV & NSV algorithms that are implemented in the first
version of the SDSL9, but with naive suffix comparisons instead of element comparisons.
We consider the following modifications of the SDSL NSV algorithm:

• sdsl-naive: Uses naive suffix comparisons instead of element comparisons.
8https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/bp_support_sada.hpp
9https://github.com/simongog/sdsl/blob/master/include/sdsl/algorithms.hpp,
see functions calculate_psv and calculate_nsv

https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/bp_support_sada.hpp
https://github.com/simongog/sdsl/blob/master/include/sdsl/algorithms.hpp

7.5. COMPARISON AGAINST EXISTING ALGORITHMS 97

• sdsl-prezza: Achieves O(lgn) time suffix comparisons by using a probabilistic LCE
data structure that is based on Karp-Rabin fingerprinting [Policriti and Prezza,
2016]. Since this data structure is in-place, it requires no additional memory. We
utilize an implementation by Nicola Prezza10. The version sdsl-1k-prezza realizes
suffix comparisons by first naively comparing up to 1000 characters directly in the
input text, and then only deploying the LCE data structure, if there was no mismatch
in the first 1000 characters. Note that for sdsl-1k-prezza we keep both the LCE data
structure and the input text in memory.

• sdsl-herlez: Similar to sdsl-prezza, but uses the LCE data structure presented in
[Prezza, 2018]. We utilize an implementation by Alexander Herlez11. Analogous
to sdsl-1k-prezza, there is a version sdsl-1k-herlez that performs up to 1000 naive
character comparisons per suffix comparison.

• sdsl-isa-nsv: Builds the suffix array using the algorithm DivSufSort12, then constructs
the inverse suffix array, and finally runs the SDSL NSV algorithm on the inverse suffix
array (see [Franek et al., 2016, Algorithm NSVISA]). Even though DivSufSort has
no linear worst-case time bound, it appears to be the fastest suffix sorting algorithm
in practice[Fischer and Kurpicz, 2017]13.

All of these algorithms produce the NSS array. At this point it shall be mentioned, that we
could also equip the SDSL NSV algorithm with a data structure that allows constant time
LCE queries (and thus constant time suffix comparisons). However, these data structures
usually depend on the inverse suffix array (see for example [Fischer and Heun, 2006]).
Instead of computing the inverse suffix array and the LCE data structure, it is faster to
directly run sdsl-isa-nsv (which only requires the inverse suffix array).

Baier’s Algorithm. As discussed in Section 1.2.3, Baier’s algorithm is the only linear
time Lyndon array construction algorithm that does not require the suffix array as a
prerequisite, but computes the Lyndon array as a prerequisite of the suffix array. In
the following, g-saca is Baier’s original algorithm that computes the suffix array14, and
g-saca-lyn is a modified version of the first phase of Baier’s algorithm that only computes
the Lyndon array15.

Non-Elementary Algorithms. All other linear time Lyndon array construction algo-
rithms depend on the suffix array. Therefore, an inherent lower bound for their execution
time is given by the fastest suffix sorting algorithm. Also, at some point they need to
10https://github.com/nicolaprezza/rk-lce
11https://github.com/herlez/lce-test
12https://github.com/y-256/libdivsufsort
13At the time of writing (July 2019)
14https://github.com/waYne1337/gsaca
15https://github.com/felipelouza/lyndon-array/tree/master/external/gsaca_cl

https://github.com/nicolaprezza/rk-lce
https://github.com/herlez/lce-test
https://github.com/y-256/libdivsufsort
https://github.com/waYne1337/gsaca
https://github.com/felipelouza/lyndon-array/tree/master/external/gsaca_cl

98 CHAPTER 7. EXPERIMENTAL EVALUATION

keep both the Lyndon array and the suffix array in memory. Assuming that the arrays
use a 32-bit integer per entry, this means that the maximum memory usage is at least
64n bits. In the following experiments we represent the non-elementary algorithms with a
single entry non-ele-lyn, for which we use the throughput of DivSufSort, as well as a fixed
amount of 64n bits of memory. Clearly, using non-ele-lyn as a representative is in favor of
the non-elementary algorithms.

7.5.1 Testing Methodology

For this benchmark, we use the text english.1G, which offers the lowest average LCP
value of only 0.2, as well as the text cere, which offers the highest average LCP value of
156.24. Additionally, we consider pc-avg, which is the average of the results for all texts
from Table 7.1 (where each text weighs in equally, regardless of text length). For each
text we run each algorithm five times, measuring the total execution time and taking the
median as the final result. From the execution time we compute the average throughput
in MiB/s. Also, we measure the maximum additional memory usage, which is the highest
memory usage that we observe at any point during the algorithm execution, minus the
space needed for input and output. All of our texts are stored using one byte per character.
Thus, the algorithms that compute the BPS of the PSS tree use 10n bits of memory for
input and output. All other algorithms compute the Lyndon array or the NSS array in
32-bit integer format, i.e. they use 40n bits for input and output.

7.5.2 Results

Figure 7.5 shows how the different algorithms compare. First, we only look at the memory
usage. In general, all of the considered algorithms use almost exactly the same amount of
additional memory regardless of the text that we are looking at. In Section 7.4, we already
observed that the additional memory usage of xss-bps, xss-bps-lcp, and xss-real is close to
zero for all texts. This also holds for sdsl-naive, as well as the two in-place LCE variants
sdsl-herlez and sdsl-prezza. If we store the LCE data structures separately, i.e. not in-place,
then up to 8n bits of additional memory are needed for sdsl-1k-herlez and sdsl-1k-prezza.
The non-elementary approach sdsl-isa-nsv needs around 24n bits of additional memory.
This was to be expected, because the peak memory usage occurs when both the inverse
suffix array and the Lyndon array are kept in memory at the same time, which requires 64n
bits. As explained earlier, we also have a total memory usage of 64n bits for non-ele-lyn,
which equals 24n bits of additional memory usage. Baier’s algorithm g-saca (and its
modification g-saca-lyn) has the by far highest additional memory usage of 96n bits.

7.5. COMPARISON AGAINST EXISTING ALGORITHMS 99

10
20
30
40
50
60

g-
sa
ca
-ly
n

g-
sa
ca

no
n-
ele
-ly
n

english.1G
Throughput
in MiB/s

Lyndon Array Construction
Throughput and Memory Usage of Different Algorithms

96

64

32
8

bu
f(0

)

bu
f(0

)

bu
f(4

)

bu
f(4

)

dy
n(

0)

dy
n(

0)

dy
n(

4)

dy
n(

4)
bu
f

dy
n

︸ ︷︷ ︸
xss-real

︸ ︷︷ ︸
xss-bps-lcp

︸ ︷︷ ︸
xss-bps ︸ ︷︷ ︸

sdsl

na
ive

he
rle
z

1k
-h
erl
ez

pr
ez
za

1k
-p
rez

za
isa
-n
sv

english.1G
Additional
Memory
in n Bits

10

20

30

40

g-
sa
ca
-ly
n

g-
sa
ca

no
n-
ele
-ly
ncere

Throughput
in MiB/s

96

64

32
8

bu
f(0

)

bu
f(0

)

bu
f(4

)

bu
f(4

)

dy
n(

0)

dy
n(

0)

dy
n(

4)

dy
n(

4)
bu
f

dy
n

︸ ︷︷ ︸
xss-real

︸ ︷︷ ︸
xss-bps-lcp

︸ ︷︷ ︸
xss-bps ︸ ︷︷ ︸

sdsl

na
ive

he
rle
z

1k
-h
erl
ez

pr
ez
za

1k
-p
rez

za
isa
-n
sv

cere
Additional
Memory
in n Bits

10
20
30
40
50

g-
sa
ca
-ly
n

g-
sa
ca

no
n-
ele
-ly
n

pc-avg
Throughput
in MiB/s

96

64

32
8

bu
f(0

)

bu
f(0

)

bu
f(4

)

bu
f(4

)

dy
n(

0)

dy
n(

0)

dy
n(

4)

dy
n(

4)
bu
f

dy
n

︸ ︷︷ ︸
xss-real

︸ ︷︷ ︸
xss-bps-lcp

︸ ︷︷ ︸
xss-bps ︸ ︷︷ ︸

sdsl

na
ive

he
rle
z

1k
-h
erl
ez

pr
ez
za

1k
-p
rez

za
isa
-n
sv

pc-avg
Additional
Memory
in n Bits

Figure 7.5: Throughput and memory usage of different Lyndon array construction al-
gorithms. The hatched bars for xss-real, xss-bps-lcp, and xss-bps indicate the throughput
without computing the support data structure, while the solid bars indicate the through-
put including the construction of the support data structure.

100 CHAPTER 7. EXPERIMENTAL EVALUATION

Next, we look at the throughput of the elementary algorithms for english.1G and pc-avg.
In general, the results are very similar, indicating that english.1G is a good representative
for the text collection at hand. Interestingly, there is only a slight difference in throughput
between xss-bps-lcp and xss-real (assuming that both algorithms use the same stack imple-
mentations). The dynamic-buffered stacks with δ = 0 are the fastest option, reaching over
30 MiB/s of throughput for both xss-bps-lcp and xss-real. If we choose dynamic stacks with
δ = 4 instead, then the throughput decreases by around 40%, which is still more than 18
MiB/s. The naive algorithm xss-bps achieves roughly the same throughput as xss-real and
xss-bps-lcp for pc-avg, and even a slightly higher throughput for english.1G. This shows,
that maintaining the LCP stack L is not worth the additional effort, if the LCP values
are low. The fastest algorithm for both english.1G and pc-avg is sdsl-naive with around
55 and 46 MiB/s respectively. It also outperforms the variants sdsl-herlez, sdsl-1k-herlez,
sdsl-prezza, and sdsl-1k-prezza on all texts, showing that the LCE data structures at hand
are not practical for the specific algorithmic setting.

If we look at the text cere, then the picture changes. The throughput of all algorithms,
except for xss-real, drops below 7 MiB/s. In contrast, xss-real performs almost as well
as for english.1G and pc-avg, still reaching over 30 MiB/s when using dynamic-buffered
stacks with δ = 0, and reaching over 15 MiB/s when using dynamic stacks with δ = 4.

Finally, we consider Baier’s algorithm and the non-elementary algorithms. For english.1G,
cere, and pc-avg, all of these algorithms achieve less than 8 MiB/s of throughput. In the
average case, sdsl-isa-nsv is only 22% slower than non-ele-lyn, which indicates that once the
suffix array is given, it is not much additional effort to compute the Lyndon array. Both
g-saca and g-saca-lyn are slower than sdsl-isa-nsv and non-ele-lyn.

On average, xss-real with dynamic-buffered stacks and δ = 0 achieves four times more
throughput than non-ele-lyn. The biggest difference in performance occurs for the text
rs.13, where xss-real is over eight times faster than non-ele-lyn. On the other hand, the
smallest difference in performance occurs for the text leaders, where xss-real is still over
33% faster than non-ele-lyn. This is also the text for which xss-real achieves its lowest
throughput of around 24.5 MiB/s, while non-ele-lyn achieves its highest throughput of
around 18.5 MiB/s. The results for all texts (including the ones that are not displayed in
Figure 7.5) can be found in Appendix B.

7.5.3 Conclusion (Comparison Against Other Algorithms)

The algorithm xss-real with dynamic-buffered stacks and δ = 0 performs very well in prac-
tice. On all texts of Table 7.1, it is both significantly faster and more memory efficient
than the non-elementary algorithms. On average, it achieves four times more throughput

7.6. SCALABILITY 101

while using almost no additional memory. For texts with small LCP values, the algorithm
sdsl-naive is the fastest option.

7.6 Scalability

7.6.1 Repetitive Artificial Texts

In this section, we present some additional benchmarks that show the scalability of xss-real.
First, we use some highly repetitive artificial texts that are built on Lyndon runs. There
are three instance types that we consider:

• run-p1: Increasing Lyndon runs with period one, i.e. an−1z. Increasing runs are
harder to process than decreasing ones, because we have to push all starting positions
of repetitions onto H (see Section 5.1.2). Since the period of this particular run is
one, we have to push almost n indices.

• run-p10: Increasing Lyndon runs with period ten, i.e. (abcdefghij)n/10.

• run-rec-r10: Recursive Lyndon runs of ten repetitions. For example, the instance
of length n = 11110 has the form (a(b(cd10)10)10)10. In order to obtain instances of
arbitrary length, we may pad the string with additional repetitions.

These strings are of particular interest, because they yield very high artificial LCP values.
In fact, even for only a few megabytes of input, it is practically impossible to compute
the Lyndon array for run-p1 and run-p2 using xss-bps-lcp, xss-bps, or sdsl-naive. Also,
the algorithms sdsl-herlez and sdsl-prezza achieve very low throughputs (in the order of
KiB/s rather than MiB/s). Therefore, we do not even attempt to compare xss-real with
the other algorithms, but only show how the performance of xss-real scales with the input
size. Ideally, we want the same throughput for different sizes of the same instance type.

Testing Methodology

In terms of stack implementations, we equip xss-real with dynamic-buffered(0), dynamic-
buffered(4), dynamic(0), and dynamic(4) stacks. As before, we repeat each experiment five
times and take the median as the final result. The considered input sizes per instance are
128, 256, 512, 1024, 2048, 4096 and 8192 MiB (using one byte per character).

102 CHAPTER 7. EXPERIMENTAL EVALUATION

20
40
60
80

100
run-p1

Throughput
in MiB/s

Lyndon Array Construction with xss-real
for Highly Repetitive Artificial Texts

︸ ︷︷ ︸
dyn.-buf.(0)

︸ ︷︷ ︸
dyn.-buf.(4)

︸ ︷︷ ︸
dynamic(0)

︸ ︷︷ ︸
dynamic(4)

1

3

5

12
8

25
6

51
2

10
24

20
48

40
96

81
92

MiB

run-p1
Additional
Memory
in n Bits

100
200
300
400
500

run-p10
Throughput
in MiB/s

︸ ︷︷ ︸
dyn.-buf.(0)

︸ ︷︷ ︸
dyn.-buf.(4)

︸ ︷︷ ︸
dynamic(0)

︸ ︷︷ ︸
dynamic(4)

1
2
3

12
8

25
6

51
2

10
24

20
48

40
96

81
92

MiB

run-p10
Additional
Memory
in n Bits

250
500
750
1000
1250

run-rec-r10
Throughput
in MiB/s

︸ ︷︷ ︸
dyn.-buf.(0)

︸ ︷︷ ︸
dyn.-buf.(4)

︸ ︷︷ ︸
dynamic(0)

︸ ︷︷ ︸
dynamic(4)

1
10000

2
10000

3
10000

12
8 25

6 51
2

10
24

20
48

40
96

81
92

MiB

run-rec-r10
Additional
Memory
in n Bits

Figure 7.6: Throughput and memory usage of xss-real for different input sizes of highly
repetitive artificial texts. Hatched bars indicate the throughput without computing the
support data structure, while solid bars indicate the throughput including the computation
of the support data structure. The results are grouped by stack implementation. For each
of the stack implementations, the bars are order ascendingly by the input size. We consider
the input sizes 128, 256, 512, 1024, 2048, 4096, and 8192 MiB.

7.6. SCALABILITY 103

Results

Figure 7.6 displays the throughput and additional memory usage of xss-real for the three
instance types. In the following, we only consider the throughput without computing
the support data structure (i.e. the hatched bars in the plot). This way, we can more
accurately assess the performance differences between different stack implementations,
instance types, and instance sizes.

First, we only focus on the results for run-rec-r10. The throughput for different input
sizes varies slightly, but there appears to be no correlation with the input size. Regardless
of the stack implementation, we always reach a very high throughput of over 1.25 GiB/s,
which demonstrates the efficiency of the run extension. In terms of memory usage, we
need at most 0.0003n additional bits apart from input and output, which is insignificant
in practice. Doubling the input size cuts the relative additional memory usage in half.
Therefore, the absolute additional memory usage is constant regardless of the input size.

Next, we focus on run-p1 and run-p10. If we look at any of the stack implementations,
xss-real scales very well, achieving almost the same throughput for all input sizes. For
the dynamic-buffered stacks there is a slightly higher throughput for smaller instances.
However, even if we change from 128 MiB to 8 GiB of input, the throughput decreases
by at most 15%. In terms of memory usage, each stack implementation scales perfectly,
using the same relative amount of additional memory for all input sizes. Due to the high
number of elements that we have to push onto the stacks (roughly n elements for run-p1

and roughly n/10 elements for run-p10), the buffer of the dynamic-buffered implementation
becomes full, and we have to move elements from the buffer to a dynamic stack. Therefore,
it is not surprising that the throughput for dynamic is higher than for dynamic-buffered.
The largest throughput difference occurs for δ = 4 and instance type run-p1, where
changing from dynamic-buffered to dynamic increases the throughput by around 70%.

Finally, we discuss some interesting aspects that are not related to scaling, but are still
worth mentioning. First of all, we can observe a significant amount of additional memory
usage for run-p1 and run-p10. The highest usage occurs for run-p1 with dynamic-buffered
stacks and δ = 0, which causes an additional memory usage of 5.16n bits, which is relatively
close to the theoretical maximum of 8n bits (n bits for H, 6n bits for L, n bits for the
buffer). Without the buffer, we need almost exactly n bits less. Changing from δ = 0 to
δ = 4 reduces the memory usage by slightly over 3n bits for both the dynamic-buffered and
the dynamic stacks. Similar results can be observed for the run-p10 instances.

The arguably most peculiar result of the experiments is, that choosing δ = 4 over δ = 0
increases the throughput for run-p1 and run-p10 instances. This is surprising, because
in all previous benchmarks we observed less throughput for higher values of δ. The exact

104 CHAPTER 7. EXPERIMENTAL EVALUATION

cause of this irregularity is unknown (due to time constraints it was not possible to find a
conclusive answer).

7.6.2 Real Texts

Lastly, we also take a look at the scalability of xss-real for large real texts. We only consider
dynamic-buffered stacks with δ = 0, which is the most practical configuration for real texts.
The test instances at hand are:

• dna-large: Our test instance uses a variety of FASTQ files16 from the 1000 Genomes
project17 that were cleaned such that the effective alphabet size is four, i.e. our test
instance contains only the characters ACGT. The size of the final instance is around
210 GiB.

• proteins-large: The Universal Protein Resource (UniProt)18 offers a large collec-
tion of protein sequences. Our test instance consists of two files19, from which all
non-sequence information like whitespaces was removed. The resulting instance has
a size of around 47 GiB.

• cc-large: Common Crawl20 is a non profit organization that provides a text corpus
obtained by crawling the internet. Our test instance was generated from a collection
of multiple files21. The WARC meta information was removed22 and the files were
concatenated to a single text of around 184 GiB.

• wiki-large: The Wikipedia is a popular online encyclopedia. Our test instance
consists of the textual information of all Wikipedia pages in German, English, Span-
ish, and French, where the content was fetched on March 3, 201923. The resulting
instance has a size of around 230 GiB.

16ftp://ftp.sra.ebi.ac.uk/vol1/fastq/DRR000/DRR#ID, where #ID is in the range from 000001 to 000426_1
17http://www.internationalgenome.org/
18https://www.uniprot.org/
19ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete
uniprot_#ID.dat.gz, where #ID is either sprot or trembl

20http://commoncrawl.org
21crawl-data/CC-MAIN-2019-09/segments/1550247479101.30/wet/CC-MAIN-20190215183319-
20190215205319-#ID.warc.wet, where #ID assumes all values in the range from 00000 to 000600

22https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.1/
23https://dumps.wikimedia.org/#IDwiki/20190320/#IDwiki-20190320-pages-meta-current.xml.bz2, where

#ID is de, en, es, or fr

http://www.internationalgenome.org/
https://www.uniprot.org/
http://commoncrawl.org
https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.1/

7.6. SCALABILITY 105

10

20

30

40

Throughput
in MiB/s

Lyndon Array Construction with xss-real
for Large Real Texts

︸ ︷︷ ︸
dna-l.

︸ ︷︷ ︸
proteins-l.

︸ ︷︷ ︸
cc-l.

︸ ︷︷ ︸
wiki-l.

1
100

2
100

1 2 4 8 16 32
GiB

Additional
Memory
in n Bits

Figure 7.7: Throughput and memory usage of xss-real with dynamic-buffered stacks and
δ = 0 for large real texts. The results are grouped by text. For each text, we consider the
prefixes of size 1, 2, 4, 8, 16, and 32 GiB. The bars are ordered ascendingly by prefix size.

Testing Methodology

We consider prefixes of size 1, 2, 4, 8, 16, and 32 GiB for each input text. For each text
and prefix size, we run xss-real five times, taking the median time as the final result. As
before, we compute the throughput in MiB/s and the additional memory in n bits.

Results

Figure 7.7 shows how xss-real scales for the different input sizes. We need less than 0.025n
bits of memory for all texts and input sizes. In general, xss-real achieves a through-
put between 36 and 41 MiB/s (without the computation of the support data structure).
This equals around 30 MiB/s including the computation of the support data structure,
which matches our previous observations for small real texts. There appears to be no
significant correlation between the input size and the throughput for dna-large and
proteins-large. In contrast, we see a positive correlation for cc-large, where larger
input sizes achieve a higher throughput. However, doubling the input size increases the
throughput by at most 6%. The opposite can be observed for wiki-large, where we lose
some throughput when increasing input sizes. However, we never lose more than 3.5% of
throughput when doubling the input size.

106 CHAPTER 7. EXPERIMENTAL EVALUATION

7.6.3 Conclusion (Scalability)

In general, xss-real scales very well with the input size of both repetitive artificial and real
texts. The throughput varies only slightly, even when significantly changing the input
size. At this point it is also worth mentioning, that when processing real texts of size
32 GiB, the total memory usage including input and output never exceeded 40.05 GiB.
This demonstrates the practical advantage of the succinct Lyndon array representation
for large inputs. The actual Lyndon array for the same input size needs lg(32 · 230) = 35
bits per entry, which equals around 150 GiB of memory. The total memory usage of a
non-elementary algorithm that uses the suffix array would have been at least 300 GiB.

Chapter 8

Conclusion

We presented the first elementary algorithm that computes a representation of the Lyndon
array in linear time. Representing the Lyndon array as a PSS tree allows us to store it in
2n+o(n) bits, which is asymptotically optimal. Despite the compact size, we can simulate
constant time access to the Lyndon array, and even answer more sophisticated queries like
range minimum suffix queries in constant time. This is another advantage over the naive
representation of the Lyndon array, which cannot answer these queries efficiently.

In practice, the new construction algorithm is not only over four times faster than the
existing non-elementary algorithms, but also needs significantly less memory. On most
real texts, the additional memory usage is less than 1% of the input size. In terms of
theoretical bounds, the algorithm uses at most d4n/δe + O(

√
n lgn) bits of memory and

runs inO(δn) time, where δ is a freely choosable parameter. This is a big improvement over
the non-elementary algorithms, for which the space requirements are usually expressed in
multiples of n bytes, rather than in fractions of n bits.

8.0.1 Future Work

Even though the new construction algorithm yields compelling practical results, it is com-
plicated in theoretical detail. The existence of a linear time elementary algorithm gives
reason to believe, that a simpler solution is possible. Also, it would be interesting to see
a version of xss-real that computes the actual Lyndon array instead of the BPS of the
PSS tree. The next logical step would be using xss-real to accelerate the first phase of
Baier’s suffix sorting algorithm. Since the phase computes a partially sorted version of the
Lyndon array, we would need to find an efficient way of establishing this order either on
the PSS tree or on the (non-sorted) Lyndon array.

Another interesting question is, if there are efficient Lyndon array construction algorithms
in other models of computation, e.g. in the external memory model or in the area of

107

108 CHAPTER 8. CONCLUSION

parallel computing. Particularly, since there already exist optimal parallel algorithms for
the highly related NSV and PSV problems [Berkman et al., 1993], it seems likely that the
construction of the NSS and PSS arrays is efficiently parallelizable.

Lastly, there are not yet many practical applications that are known for the Lyndon array.
With faster construction algorithms, it might become more feasible as a prerequisite for
other algorithms and data structures. It is an open question, to which extend the Lyndon
array can be used as a tool in classical string processing fields like text indexing and
compression. Hopefully, it will become equally useful and important as the suffix array.

Appendix A

Detecting Extended Lyndon Runs

In this section, we explain how to efficiently detect if a string is an extended Lyndon
according to Definition 5.2.1. Recall, that such a string has the form S = suf(µ) · µt · pre(µ)
with t ≥ 2, where µ is a Lyndon word, and suf(µ) and pre(µ) are a proper suffix and prefix
of µ respectively.

S = suf(µ) µ µ · · · µ µ︸ ︷︷ ︸
t times

pre(µ)

We use a simple modification of [Duval, 1983, Algorithm 2.1] to realize the detection mech-
anism. Originally, Duval’s algorithm computes the uniquely defined Lyndon factorization
(sometimes called Lyndon decomposition) of a string:

A.0.1 Lemma (Chen et al., 1958). Let S be a non-empty string. There exists a de-
composition of S into non-empty factors s1, s2, . . . , sm such that all of the following con-
ditions hold:

1. S = s1 · s2 · . . . · sm

2. ∀i ∈ [1,m] : si is a Lyndon word

3. ∀i ∈ [2,m] : si−1 ≥lex si

There is exactly one such factorization for each string.

Now we show, that the longest factor in the Lyndon factorization of an extended Lyndon
run is exactly the repeating Lyndon word µ of the run. This makes it easy to detect if a
string is an extended Lyndon run: We can simply compute the Lyndon factorization and
determine the length of the longest factor. After that, a trivial postprocessing is sufficient
to determine if the string actually is an extended Lyndon run.

109

110 APPENDIX A. DETECTING EXTENDED LYNDON RUNS

A.0.2 Lemma. Let S = suf(µ) · µt · pre(µ) be an extended Lyndon run. Let x1, . . . , xk1

be the Lyndon factorization of suf(µ), and let y1, . . . , yk2 be the Lyndon factorization of
pre(µ). Then the Lyndon factorization of S is given by:

S = x1 · . . . · xk1 · µ · µ · . . . · µ · µ︸ ︷︷ ︸
t times

· y1 · . . . · yk2

Proof. Clearly, the first two conditions of Lemma A.0.1 are satisfied. We only have to prove
the third one. Since we defined x1, . . . , xk1 and y1, . . . , yk2 to be the Lyndon factorizations
of suf(µ) and pre(µ) respectively, we already know that ∀i ∈ [2, k1] : xi−1 ≥lex xi and
∀i ∈ [2, k2] : yi−1 ≥lex yi hold. Also, we trivially have µ ≥ µ. Therefore, in order to
prove that the third condition of Lemma A.0.1 is satisfied, we only have to show that
xk1 ≥lex µ ≥lex y1 holds. Since xk1 is a non-empty suffix of suf(µ) and thus also a non-
empty proper suffix of µ, it follows from Lemma 2.1.7 that xk1 >lex µ holds. Since y1 is a
prefix of pre(µ) and thus also a prefix of µ, it follows (by definition of the lexicographical
order) that µ >lex y1 holds. Therefore, the third property of Lemma A.0.1 is satisfied. �

If we look at the factors xi and yi of the factorization in the lemma, then each one of them
is shorter than µ, which means that µ is the longest factor of the factorization. Next, we
explain how to exploit this property to detect if a string is an extended Lyndon run.

A.0.1 Algorithmic Approach

We start by taking a closer look at Duval’s algorithm. Let S be a string with Lyndon
factorization s1, . . . , sm. In Duval’s original version of the algorithm, each factor is rep-
resented by its end position, i.e. the algorithm outputs a list d1, . . . , dm of indices with
∀i ∈ [1,m] : di = ∑i

j=1|sj |. Our algorithm for the detection of extended Lyndon runs uses
this list as a prerequisite. Pseudocode is provided in Algorithm A.1.

Given any string that is not a Lyndon run, the algorithm outputs ⊥. If however an
extended Lyndon run is given, the algorithm outputs the period |µ| of the run, as well as
the starting position |suf(µ)|+ 1 of the first full repetition of µ. The algorithmic approach
is simple: First, we only try to find the longest factor and its starting position. This can
be achieved by processing the indices d1, . . . , dm from left to right. Clearly, the length of
factor si is exactly di − di−1 (if we define d0 = 0). The starting position of factor si is
di−1 + 1. Initially, the longest known factor is s1 with length l = d1 and starting position
z = 1 (lines 2–3). Then, we look at one factor at a time (line 4) and update the values of
l and z, whenever we find a factor that is longer than all previous ones (lines 5–7). After
the last iteration of the loop, we know the length and starting position of the longest
factor. Note that if the given string actually is an extended Lyndon run, then the starting
position z belongs to the first occurrence of µ. This holds, because we process the factors

111

in left-to-right order, and we specifically do not update z when finding a factor of equal
length.

Next, we have to verify if the computed values of l and z belong to an extended Lyndon
run. Since such a run must have at least two repetitions, the period cannot be larger than
bn/2c. Therefore, we first check if 2l > n holds, and return ⊥ if that is the case (lines
8–9). Otherwise, we perform a single scan over S and check for each character if it equals
the character that is located l positions before (lines 10–11). If we find a mismatch, then
we return ⊥ (line 12). Otherwise, the string is an extended Lyndon run and we return l
and z (line 13).

Algorithm A.1 Detection of Extended Lyndon Runs
Input: A string S of length n
Output: If S is an extended Lyndon run: Period |µ| and suffix length |suf(µ)|.
Output: If S is not an extended Lyndon run: ⊥.
1: d1, . . . , dm ← end positions of all factors of S
2: l← d1
3: z ← 1
4: for i ∈ [2,m] in ascending order do
5: if di − di−1 > l then
6: l← di − di−1
7: z ← di−1 + 1

8: if 2l > n then
9: return ⊥

10: for i ∈ [l + 1, n] do
11: if S[i− l] 6= S[i] then
12: return ⊥

13: return l, z

A.0.3 Lemma. Algorithm A.1 detects if a string of length n is an extended Lyndon run
in O(n) time using O(1) words of memory apart from input and output.

Proof. The correctness follows from Lemma A.0.2 and the description above. We only have
to prove the time and space bounds. In terms of execution time, we use Duval’s algorithm
to compute the indices d1, . . . , dm, which takes O(n) time [Duval, 1983, Algorithm 2.1,
Theorem 2.1]. This clearly dominates the execution time of Algorithm A.1. It remains
to be shown that O(1) words of memory are sufficient. Duval’s algorithm computes the
indices d1, . . . , dm in a greedy manner, i.e. it outputs the indices one at a time and in
left-to-right order. Since Algorithm A.1 also processes the indices in left-to-right order, it
is never necessary to keep more than two indices in memory at the same time.

112 APPENDIX A. DETECTING EXTENDED LYNDON RUNS

Therefore, we can interleave the execution of Duval’s algorithm and Algorithm A.1 such
that we only compute the next index di once it is actually needed. Apart from input and
ouput, Duval’s algorithm uses O(1) words of memory [Duval, 1983, Theorem 2.1]. Since
Algorithm A.1 only needs to keep the variables l, z, and two indices di and di−1 in memory,
the additional memory usage is bound by O(1) words. �

Appendix B

Additional Experimental Results

The following pages contain the complete results for the experiments from Section 7.5.
Each algorithm was executed five times per text. The median is the final result. The
throughput of xss-real, xss-bps-lcp, and xss-bps is given both without constructing the sup-
port data structure (value in parentheses), and with computing the support data structure.

113

114 APPENDIX B. ADDITIONAL EXPERIMENTAL RESULTS

Throughput Memory in n bits
Text Algorithm in MiB/s additional / total
fib41 xss-real (dyn.-buf., δ = 0) (43.40) 33.69 0.0002 10.0002
fib41 xss-real (dyn.-buf., δ = 4) (40.32) 31.80 0.0002 10.0002
fib41 xss-real (dynamic, δ = 0) (33.77) 27.58 0.0001 10.0001
fib41 xss-real (dynamic, δ = 4) (31.77) 26.24 0.0001 10.0001
fib41 xss-bps-lcp (dyn.-buf., δ = 0) (45.86) 35.15 0.0002 10.0002
fib41 xss-bps-lcp (dyn.-buf., δ = 4) (43.29) 33.62 0.0001 10.0001
fib41 xss-bps-lcp (dynamic, δ = 0) (34.15) 27.84 0.0001 10.0001
fib41 xss-bps-lcp (dynamic, δ = 4) (21.56) 18.86 0.0001 10.0001
fib41 xss-bps (dyn.-buf.) (33.19) 27.19 0.0001 10.0001
fib41 xss-bps (dynamic) (30.83) 25.59 0.0000 10.0000
fib41 sdsl-naive 34.19 0.0000 40.0000
fib41 sdsl-prezza 1.43 0.0000 40.0000
fib41 sdsl-1k-prezza 18.53 2.0000 42.0000
fib41 sdsl-herlez 1.17 0.0000 40.0000
fib41 sdsl-1k-herlez 24.68 8.0000 48.0000
fib41 sdsl-isa-nsv 3.82 24.0000 64.0000
fib41 g-saca-lyn 12.58 96.0000 136.0000
fib41 g-saca 5.32 96.0000 136.0000
fib41 non-ele-lyn 4.26 0.0079 40.0079
rs.13 xss-real (dyn.-buf., δ = 0) (48.23) 36.52 0.0003 10.0003
rs.13 xss-real (dyn.-buf., δ = 4) (44.69) 34.46 0.0002 10.0002
rs.13 xss-real (dynamic, δ = 0) (36.71) 29.51 0.0001 10.0001
rs.13 xss-real (dynamic, δ = 4) (33.36) 27.31 0.0001 10.0001
rs.13 xss-bps-lcp (dyn.-buf., δ = 0) (53.36) 39.39 0.0002 10.0002
rs.13 xss-bps-lcp (dyn.-buf., δ = 4) (50.13) 37.60 0.0002 10.0002
rs.13 xss-bps-lcp (dynamic, δ = 0) (36.42) 29.32 0.0001 10.0001
rs.13 xss-bps-lcp (dynamic, δ = 4) (22.47) 19.55 0.0001 10.0001
rs.13 xss-bps (dyn.-buf.) (44.44) 34.31 0.0001 10.0001
rs.13 xss-bps (dynamic) (39.80) 31.47 0.0000 10.0000
rs.13 sdsl-naive 47.11 0.0000 40.0000
rs.13 sdsl-prezza 1.70 0.0000 40.0000
rs.13 sdsl-1k-prezza 21.20 2.0000 42.0000
rs.13 sdsl-herlez 1.26 0.0000 40.0000
rs.13 sdsl-1k-herlez 31.74 8.0000 48.0000
rs.13 sdsl-isa-nsv 3.94 24.0000 64.0000
rs.13 g-saca-lyn 6.66 96.0000 136.0000
rs.13 g-saca 3.53 96.0000 136.0000
rs.13 non-ele-lyn 4.39 0.0097 40.0097
tm29 xss-real (dyn.-buf., δ = 0) (45.88) 35.18 0.0002 10.0002
tm29 xss-real (dyn.-buf., δ = 4) (42.39) 33.10 0.0002 10.0002
tm29 xss-real (dynamic, δ = 0) (34.71) 28.22 0.0001 10.0001
tm29 xss-real (dynamic, δ = 4) (31.60) 26.13 0.0001 10.0001
tm29 xss-bps-lcp (dyn.-buf., δ = 0) (56.35) 41.03 0.0002 10.0002
tm29 xss-bps-lcp (dyn.-buf., δ = 4) (52.55) 38.98 0.0001 10.0001
tm29 xss-bps-lcp (dynamic, δ = 0) (39.05) 31.02 0.0001 10.0001
tm29 xss-bps-lcp (dynamic, δ = 4) (23.99) 20.70 0.0001 10.0001
tm29 xss-bps (dyn.-buf.) (48.02) 36.43 0.0001 10.0001
tm29 xss-bps (dynamic) (42.51) 33.17 0.0000 10.0000
tm29 sdsl-naive 48.34 0.0000 40.0000
tm29 sdsl-prezza 1.75 0.0000 40.0000
tm29 sdsl-1k-prezza 21.13 2.0000 42.0000
tm29 sdsl-herlez 1.26 0.0000 40.0000
tm29 sdsl-1k-herlez 31.22 8.0000 48.0000
tm29 sdsl-isa-nsv 4.24 24.0000 64.0000
tm29 g-saca-lyn 6.39 96.0000 136.0000
tm29 g-saca 3.40 96.0000 136.0000
tm29 non-ele-lyn 4.88 0.0078 40.0078

115

Throughput Memory in n bits
Text Algorithm in MiB/s additional / total
cere xss-real (dyn.-buf., δ = 0) (38.50) 30.56 0.0100 10.0100
cere xss-real (dyn.-buf., δ = 4) (38.52) 30.58 0.0100 10.0100
cere xss-real (dynamic, δ = 0) (28.19) 23.69 0.0003 10.0003
cere xss-real (dynamic, δ = 4) (17.10) 15.34 0.0001 10.0001
cere xss-bps-lcp (dyn.-buf., δ = 0) (6.59) 6.31 0.0100 10.0100
cere xss-bps-lcp (dyn.-buf., δ = 4) (6.52) 6.25 0.0100 10.0100
cere xss-bps-lcp (dynamic, δ = 0) (6.18) 5.93 0.0003 10.0003
cere xss-bps-lcp (dynamic, δ = 4) (5.41) 5.22 0.0001 10.0001
cere xss-bps (dyn.-buf.) (4.69) 4.54 0.0050 10.0050
cere xss-bps (dynamic) (4.64) 4.50 0.0001 10.0001
cere sdsl-naive 4.51 0.0048 40.0048
cere sdsl-prezza 1.16 0.0000 40.0000
cere sdsl-1k-prezza 2.87 3.0048 43.0048
cere sdsl-herlez 0.63 0.0048 40.0048
cere sdsl-1k-herlez 1.33 8.0047 48.0048
cere sdsl-isa-nsv 5.32 24.0048 64.0048
cere g-saca-lyn 3.90 96.0000 136.0000
cere g-saca 2.53 96.0000 136.0000
cere non-ele-lyn 6.88 0.0046 40.0046
coreutils xss-real (dyn.-buf., δ = 0) (39.94) 31.43 0.0022 10.0022
coreutils xss-real (dyn.-buf., δ = 4) (39.41) 31.11 0.0021 10.0021
coreutils xss-real (dynamic, δ = 0) (29.08) 24.29 0.0006 10.0006
coreutils xss-real (dynamic, δ = 4) (20.80) 18.23 0.0006 10.0006
coreutils xss-bps-lcp (dyn.-buf., δ = 0) (41.35) 32.30 0.0022 10.0022
coreutils xss-bps-lcp (dyn.-buf., δ = 4) (39.33) 31.06 0.0021 10.0021
coreutils xss-bps-lcp (dynamic, δ = 0) (30.66) 25.39 0.0006 10.0006
coreutils xss-bps-lcp (dynamic, δ = 4) (21.48) 18.75 0.0006 10.0006
coreutils xss-bps (dyn.-buf.) (47.80) 36.11 0.0011 10.0011
coreutils xss-bps (dynamic) (44.27) 34.06 0.0005 10.0005
coreutils sdsl-naive 60.54 0.0008 40.0008
coreutils sdsl-prezza 1.54 0.0009 40.0009
coreutils sdsl-1k-prezza 8.35 8.0009 48.0009
coreutils sdsl-herlez 1.37 0.0009 40.0009
coreutils sdsl-1k-herlez 38.26 8.0008 48.0009
coreutils sdsl-isa-nsv 6.83 24.0008 64.0008
coreutils g-saca-lyn 3.62 96.0000 136.0000
coreutils g-saca 2.71 96.0000 136.0000
coreutils non-ele-lyn 8.26 0.0103 40.0103
ecoli xss-real (dyn.-buf., δ = 0) (37.02) 29.77 0.0005 10.0005
ecoli xss-real (dyn.-buf., δ = 4) (36.91) 29.70 0.0005 10.0005
ecoli xss-real (dynamic, δ = 0) (26.67) 22.69 0.0003 10.0003
ecoli xss-real (dynamic, δ = 4) (16.35) 14.76 0.0002 10.0002
ecoli xss-bps-lcp (dyn.-buf., δ = 0) (39.63) 31.43 0.0004 10.0004
ecoli xss-bps-lcp (dyn.-buf., δ = 4) (37.21) 29.89 0.0004 10.0004
ecoli xss-bps-lcp (dynamic, δ = 0) (28.77) 24.19 0.0002 10.0002
ecoli xss-bps-lcp (dynamic, δ = 4) (16.92) 15.23 0.0002 10.0002
ecoli xss-bps (dyn.-buf.) (42.44) 33.18 0.0002 10.0002
ecoli xss-bps (dynamic) (38.63) 30.80 0.0001 10.0001
ecoli sdsl-naive 46.42 0.0024 40.0024
ecoli sdsl-prezza 1.80 0.0000 40.0000
ecoli sdsl-1k-prezza 13.15 4.0024 44.0024
ecoli sdsl-herlez 1.38 0.0024 40.0024
ecoli sdsl-1k-herlez 33.83 8.0024 48.0024
ecoli sdsl-isa-nsv 5.50 24.0024 64.0024
ecoli g-saca-lyn 4.17 96.0000 136.0000
ecoli g-saca 2.75 96.0000 136.0000
ecoli non-ele-lyn 7.25 0.0187 40.0187

116 APPENDIX B. ADDITIONAL EXPERIMENTAL RESULTS

Throughput Memory in n bits
Text Algorithm in MiB/s additional / total
einstein.de xss-real (dyn.-buf., δ = 0) (42.00) 32.92 0.0006 10.0006
einstein.de xss-real (dyn.-buf., δ = 4) (41.34) 32.51 0.0006 10.0006
einstein.de xss-real (dynamic, δ = 0) (29.58) 24.77 0.0004 10.0004
einstein.de xss-real (dynamic, δ = 4) (22.26) 19.42 0.0004 10.0004
einstein.de xss-bps-lcp (dyn.-buf., δ = 0) (43.11) 33.60 0.0006 10.0006
einstein.de xss-bps-lcp (dyn.-buf., δ = 4) (40.77) 32.16 0.0006 10.0006
einstein.de xss-bps-lcp (dynamic, δ = 0) (31.50) 26.10 0.0003 10.0003
einstein.de xss-bps-lcp (dynamic, δ = 4) (22.04) 19.26 0.0003 10.0003
einstein.de xss-bps (dyn.-buf.) (48.10) 36.55 0.0003 10.0003
einstein.de xss-bps (dynamic) (43.53) 33.85 0.0001 10.0001
einstein.de sdsl-naive 55.12 0.0001 40.0001
einstein.de sdsl-prezza 1.68 0.0000 40.0000
einstein.de sdsl-1k-prezza 9.18 7.0002 47.0002
einstein.de sdsl-herlez 1.39 0.0002 40.0002
einstein.de sdsl-1k-herlez 38.20 8.0002 48.0002
einstein.de sdsl-isa-nsv 6.80 24.0001 64.0001
einstein.de g-saca-lyn 3.48 96.0000 136.0000
einstein.de g-saca 2.52 96.0000 136.0000
einstein.de non-ele-lyn 8.51 0.0227 40.0227
einstein.en xss-real (dyn.-buf., δ = 0) (41.29) 32.27 0.0003 10.0003
einstein.en xss-real (dyn.-buf., δ = 4) (40.56) 31.83 0.0003 10.0003
einstein.en xss-real (dynamic, δ = 0) (29.72) 24.75 0.0004 10.0004
einstein.en xss-real (dynamic, δ = 4) (22.04) 19.18 0.0003 10.0003
einstein.en xss-bps-lcp (dyn.-buf., δ = 0) (34.32) 27.85 0.0003 10.0003
einstein.en xss-bps-lcp (dyn.-buf., δ = 4) (32.85) 26.88 0.0003 10.0003
einstein.en xss-bps-lcp (dynamic, δ = 0) (26.71) 22.63 0.0004 10.0004
einstein.en xss-bps-lcp (dynamic, δ = 4) (19.41) 17.16 0.0003 10.0003
einstein.en xss-bps (dyn.-buf.) (33.98) 27.63 0.0001 10.0001
einstein.en xss-bps (dynamic) (31.66) 26.07 0.0002 10.0002
einstein.en sdsl-naive 37.66 0.0066 40.0066
einstein.en sdsl-prezza 1.64 0.0066 40.0066
einstein.en sdsl-1k-prezza 8.18 8.0066 48.0066
einstein.en sdsl-herlez 1.38 0.0066 40.0066
einstein.en sdsl-1k-herlez 33.81 8.0066 48.0066
einstein.en sdsl-isa-nsv 5.50 24.0066 64.0066
einstein.en g-saca-lyn 2.84 96.0000 136.0000
einstein.en g-saca 2.11 96.0000 136.0000
einstein.en non-ele-lyn 6.87 0.0045 40.0045
influenza xss-real (dyn.-buf., δ = 0) (39.18) 30.99 0.0007 10.0007
influenza xss-real (dyn.-buf., δ = 4) (38.81) 30.76 0.0007 10.0007
influenza xss-real (dynamic, δ = 0) (27.73) 23.36 0.0002 10.0002
influenza xss-real (dynamic, δ = 4) (17.16) 15.38 0.0002 10.0002
influenza xss-bps-lcp (dyn.-buf., δ = 0) (42.29) 32.90 0.0007 10.0007
influenza xss-bps-lcp (dyn.-buf., δ = 4) (39.88) 31.43 0.0007 10.0007
influenza xss-bps-lcp (dynamic, δ = 0) (29.78) 24.80 0.0002 10.0002
influenza xss-bps-lcp (dynamic, δ = 4) (17.53) 15.68 0.0001 10.0001
influenza xss-bps (dyn.-buf.) (44.72) 34.36 0.0004 10.0004
influenza xss-bps (dynamic) (41.30) 32.30 0.0001 10.0001
influenza sdsl-naive 51.71 0.0002 40.0002
influenza sdsl-prezza 1.80 0.0000 40.0000
influenza sdsl-1k-prezza 13.45 4.0003 44.0003
influenza sdsl-herlez 1.38 0.0003 40.0003
influenza sdsl-1k-herlez 36.19 8.0003 48.0003
influenza sdsl-isa-nsv 6.28 24.0002 64.0002
influenza g-saca-lyn 4.18 96.0000 136.0000
influenza g-saca 2.75 96.0000 136.0000
influenza non-ele-lyn 8.04 0.0136 40.0136

117

Throughput Memory in n bits
Text Algorithm in MiB/s additional / total
kernel xss-real (dyn.-buf., δ = 0) (41.33) 32.30 0.0003 10.0003
kernel xss-real (dyn.-buf., δ = 4) (40.89) 32.04 0.0003 10.0003
kernel xss-real (dynamic, δ = 0) (28.48) 23.88 0.0002 10.0002
kernel xss-real (dynamic, δ = 4) (20.47) 17.98 0.0001 10.0001
kernel xss-bps-lcp (dyn.-buf., δ = 0) (43.60) 33.68 0.0003 10.0003
kernel xss-bps-lcp (dyn.-buf., δ = 4) (41.46) 32.38 0.0003 10.0003
kernel xss-bps-lcp (dynamic, δ = 0) (30.55) 25.32 0.0002 10.0002
kernel xss-bps-lcp (dynamic, δ = 4) (21.06) 18.44 0.0001 10.0001
kernel xss-bps (dyn.-buf.) (49.12) 36.88 0.0001 10.0001
kernel xss-bps (dynamic) (43.32) 33.51 0.0001 10.0001
kernel sdsl-naive 58.16 0.0000 40.0000
kernel sdsl-prezza 1.56 0.0001 40.0001
kernel sdsl-1k-prezza 8.27 8.0001 48.0001
kernel sdsl-herlez 1.39 0.0001 40.0001
kernel sdsl-1k-herlez 39.65 8.0001 48.0001
kernel sdsl-isa-nsv 6.39 24.0000 64.0000
kernel g-saca-lyn 3.32 96.0000 136.0000
kernel g-saca 2.49 96.0000 136.0000
kernel non-ele-lyn 8.50 0.0082 40.0082
leaders xss-real (dyn.-buf., δ = 0) (29.28) 24.58 0.0014 10.0014
leaders xss-real (dyn.-buf., δ = 4) (32.36) 26.73 0.0013 10.0013
leaders xss-real (dynamic, δ = 0) (22.11) 19.32 0.0010 10.0010
leaders xss-real (dynamic, δ = 4) (16.26) 14.71 0.0009 10.0009
leaders xss-bps-lcp (dyn.-buf., δ = 0) (33.38) 27.41 0.0010 10.0010
leaders xss-bps-lcp (dyn.-buf., δ = 4) (31.68) 26.26 0.0009 10.0009
leaders xss-bps-lcp (dynamic, δ = 0) (20.93) 18.42 0.0008 10.0008
leaders xss-bps-lcp (dynamic, δ = 4) (16.57) 14.95 0.0007 10.0007
leaders xss-bps (dyn.-buf.) (30.49) 25.44 0.0005 10.0005
leaders xss-bps (dynamic) (27.93) 23.62 0.0005 10.0005
leaders sdsl-naive 31.97 0.0003 40.0003
leaders sdsl-prezza 0.55 0.0000 40.0000
leaders sdsl-1k-prezza 8.46 7.0004 47.0004
leaders sdsl-herlez 1.12 0.0003 40.0003
leaders sdsl-1k-herlez 27.77 8.0003 48.0003
leaders sdsl-isa-nsv 12.15 24.0003 64.0003
leaders g-saca-lyn 5.67 96.0000 136.0000
leaders g-saca 3.28 96.0000 136.0000
leaders non-ele-lyn 18.44 0.0448 40.0448
para xss-real (dyn.-buf., δ = 0) (38.00) 30.25 0.0051 10.0051
para xss-real (dyn.-buf., δ = 4) (38.00) 30.25 0.0051 10.0051
para xss-real (dynamic, δ = 0) (27.47) 23.18 0.0002 10.0002
para xss-real (dynamic, δ = 4) (16.64) 14.96 0.0001 10.0001
para xss-bps-lcp (dyn.-buf., δ = 0) (19.82) 17.48 0.0051 10.0051
para xss-bps-lcp (dyn.-buf., δ = 4) (19.23) 17.02 0.0051 10.0051
para xss-bps-lcp (dynamic, δ = 0) (16.37) 14.74 0.0002 10.0002
para xss-bps-lcp (dynamic, δ = 4) (11.83) 10.95 0.0001 10.0001
para xss-bps (dyn.-buf.) (16.29) 14.67 0.0025 10.0025
para xss-bps (dynamic) (15.66) 14.16 0.0001 10.0001
para sdsl-naive 16.41 0.0024 40.0024
para sdsl-prezza 1.44 0.0000 40.0000
para sdsl-1k-prezza 6.42 3.0024 43.0024
para sdsl-herlez 0.94 0.0024 40.0024
para sdsl-1k-herlez 4.36 8.0024 48.0024
para sdsl-isa-nsv 5.19 24.0024 64.0024
para g-saca-lyn 3.86 96.0000 136.0000
para g-saca 2.53 96.0000 136.0000
para non-ele-lyn 6.71 0.0049 40.0049

118 APPENDIX B. ADDITIONAL EXPERIMENTAL RESULTS

Throughput Memory in n bits
Text Algorithm in MiB/s additional / total
dna xss-real (dyn.-buf., δ = 0) (34.33) 27.86 0.0002 10.0002
dna xss-real (dyn.-buf., δ = 4) (34.16) 27.75 0.0002 10.0002
dna xss-real (dynamic, δ = 0) (26.32) 22.34 0.0001 10.0001
dna xss-real (dynamic, δ = 4) (15.86) 14.32 0.0001 10.0001
dna xss-bps-lcp (dyn.-buf., δ = 0) (36.39) 29.20 0.0001 10.0001
dna xss-bps-lcp (dyn.-buf., δ = 4) (34.37) 27.88 0.0001 10.0001
dna xss-bps-lcp (dynamic, δ = 0) (28.30) 23.75 0.0001 10.0001
dna xss-bps-lcp (dynamic, δ = 4) (16.36) 14.73 0.0001 10.0001
dna xss-bps (dyn.-buf.) (40.42) 31.74 0.0001 10.0001
dna xss-bps (dynamic) (37.97) 30.20 0.0000 10.0000
dna sdsl-naive 45.92 0.0001 40.0001
dna sdsl-prezza 1.77 0.0000 40.0000
dna sdsl-1k-prezza 11.29 5.0001 45.0001
dna sdsl-herlez 1.38 0.0001 40.0001
dna sdsl-1k-herlez 33.74 8.0001 48.0001
dna sdsl-isa-nsv 4.75 24.0001 64.0001
dna g-saca-lyn 3.43 96.0000 136.0000
dna g-saca 2.27 96.0000 136.0000
dna non-ele-lyn 5.81 0.0052 40.0052
english.1G xss-real (dyn.-buf., δ = 0) (39.57) 31.21 0.0013 10.0013
english.1G xss-real (dyn.-buf., δ = 4) (38.45) 30.51 0.0013 10.0013
english.1G xss-real (dynamic, δ = 0) (29.13) 24.33 0.0003 10.0003
english.1G xss-real (dynamic, δ = 4) (21.32) 18.63 0.0003 10.0003
english.1G xss-bps-lcp (dyn.-buf., δ = 0) (41.15) 32.19 0.0013 10.0013
english.1G xss-bps-lcp (dyn.-buf., δ = 4) (38.72) 30.69 0.0013 10.0013
english.1G xss-bps-lcp (dynamic, δ = 0) (31.42) 25.92 0.0003 10.0003
english.1G xss-bps-lcp (dynamic, δ = 4) (22.19) 19.30 0.0003 10.0003
english.1G xss-bps (dyn.-buf.) (46.80) 35.55 0.0006 10.0006
english.1G xss-bps (dynamic) (43.49) 33.61 0.0003 10.0003
english.1G sdsl-naive 55.16 0.0000 40.0000
english.1G sdsl-prezza 1.65 0.0000 40.0000
english.1G sdsl-1k-prezza 8.33 8.0000 48.0000
english.1G sdsl-herlez 1.39 0.0000 40.0000
english.1G sdsl-1k-herlez 38.54 8.0000 48.0000
english.1G sdsl-isa-nsv 4.56 24.0000 64.0000
english.1G g-saca-lyn 2.51 96.0000 136.0000
english.1G g-saca 1.75 96.0000 136.0000
english.1G non-ele-lyn 5.16 0.0020 40.0020
pitches xss-real (dyn.-buf., δ = 0) (40.22) 31.81 0.0143 10.0143
pitches xss-real (dyn.-buf., δ = 4) (40.03) 31.69 0.0142 10.0142
pitches xss-real (dynamic, δ = 0) (29.45) 24.67 0.0007 10.0007
pitches xss-real (dynamic, δ = 4) (19.36) 17.18 0.0006 10.0006
pitches xss-bps-lcp (dyn.-buf., δ = 0) (34.85) 28.35 0.0143 10.0143
pitches xss-bps-lcp (dyn.-buf., δ = 4) (33.22) 27.26 0.0142 10.0142
pitches xss-bps-lcp (dynamic, δ = 0) (24.34) 20.98 0.0007 10.0007
pitches xss-bps-lcp (dynamic, δ = 4) (17.52) 15.71 0.0004 10.0004
pitches xss-bps (dyn.-buf.) (34.71) 28.26 0.0071 10.0071
pitches xss-bps (dynamic) (33.40) 27.39 0.0002 10.0002
pitches sdsl-naive 40.46 0.0049 40.0049
pitches sdsl-prezza 1.25 0.0049 40.0050
pitches sdsl-1k-prezza 7.40 8.0049 48.0050
pitches sdsl-herlez 1.22 0.0049 40.0049
pitches sdsl-1k-herlez 25.15 8.0049 48.0049
pitches sdsl-isa-nsv 8.51 24.0049 64.0049
pitches g-saca-lyn 4.86 96.0000 136.0000
pitches g-saca 3.81 96.0000 136.0000
pitches non-ele-lyn 11.66 0.0377 40.0377

119

Throughput Memory in n bits
Text Algorithm in MiB/s additional / total
proteins xss-real (dyn.-buf., δ = 0) (41.49) 32.41 0.0001 10.0001
proteins xss-real (dyn.-buf., δ = 4) (41.04) 32.13 0.0001 10.0001
proteins xss-real (dynamic, δ = 0) (29.68) 24.72 0.0001 10.0001
proteins xss-real (dynamic, δ = 4) (21.30) 18.62 0.0001 10.0001
proteins xss-bps-lcp (dyn.-buf., δ = 0) (42.86) 33.23 0.0001 10.0001
proteins xss-bps-lcp (dyn.-buf., δ = 4) (40.71) 31.93 0.0001 10.0001
proteins xss-bps-lcp (dynamic, δ = 0) (31.57) 26.02 0.0001 10.0001
proteins xss-bps-lcp (dynamic, δ = 4) (21.84) 19.03 0.0001 10.0001
proteins xss-bps (dyn.-buf.) (49.00) 36.82 0.0001 10.0001
proteins xss-bps (dynamic) (44.05) 33.95 0.0001 10.0001
proteins sdsl-naive 56.80 0.0001 40.0001
proteins sdsl-prezza 1.75 0.0000 40.0000
proteins sdsl-1k-prezza 11.73 5.0000 45.0001
proteins sdsl-herlez 1.39 0.0001 40.0001
proteins sdsl-1k-herlez 38.65 8.0000 48.0001
proteins sdsl-isa-nsv 4.36 24.0001 64.0001
proteins g-saca-lyn 2.47 96.0000 136.0000
proteins g-saca 1.79 96.0000 136.0000
proteins non-ele-lyn 4.80 0.0018 40.0018
sources xss-real (dyn.-buf., δ = 0) (40.58) 31.84 0.0046 10.0046
sources xss-real (dyn.-buf., δ = 4) (40.19) 31.59 0.0046 10.0046
sources xss-real (dynamic, δ = 0) (28.95) 24.21 0.0015 10.0015
sources xss-real (dynamic, δ = 4) (20.70) 18.15 0.0014 10.0014
sources xss-bps-lcp (dyn.-buf., δ = 0) (41.55) 32.43 0.0046 10.0046
sources xss-bps-lcp (dyn.-buf., δ = 4) (39.66) 31.27 0.0046 10.0046
sources xss-bps-lcp (dynamic, δ = 0) (29.69) 24.72 0.0015 10.0015
sources xss-bps-lcp (dynamic, δ = 4) (21.19) 18.53 0.0014 10.0014
sources xss-bps (dyn.-buf.) (46.92) 35.61 0.0023 10.0023
sources xss-bps (dynamic) (43.29) 33.48 0.0014 10.0014
sources sdsl-naive 59.04 0.0001 40.0001
sources sdsl-prezza 1.54 0.0001 40.0001
sources sdsl-1k-prezza 8.34 8.0001 48.0001
sources sdsl-herlez 1.38 0.0001 40.0001
sources sdsl-1k-herlez 39.81 8.0001 48.0001
sources sdsl-isa-nsv 7.23 24.0001 64.0001
sources g-saca-lyn 3.46 96.0000 136.0000
sources g-saca 2.60 96.0000 136.0000
sources non-ele-lyn 9.31 0.0100 40.0100
xml xss-real (dyn.-buf., δ = 0) (44.34) 34.15 0.0004 10.0004
xml xss-real (dyn.-buf., δ = 4) (43.11) 33.41 0.0003 10.0003
xml xss-real (dynamic, δ = 0) (31.84) 26.22 0.0003 10.0003
xml xss-real (dynamic, δ = 4) (23.37) 20.19 0.0003 10.0003
xml xss-bps-lcp (dyn.-buf., δ = 0) (45.74) 34.97 0.0004 10.0004
xml xss-bps-lcp (dyn.-buf., δ = 4) (43.68) 33.75 0.0003 10.0003
xml xss-bps-lcp (dynamic, δ = 0) (31.05) 25.68 0.0003 10.0003
xml xss-bps-lcp (dynamic, δ = 4) (24.27) 20.86 0.0003 10.0003
xml xss-bps (dyn.-buf.) (57.12) 41.26 0.0002 10.0002
xml xss-bps (dynamic) (51.50) 38.24 0.0003 10.0003
xml sdsl-naive 77.23 0.0000 40.0000
xml sdsl-prezza 1.64 0.0000 40.0000
xml sdsl-1k-prezza 9.68 7.0000 47.0000
xml sdsl-herlez 1.39 0.0000 40.0000
xml sdsl-1k-herlez 48.39 8.0000 48.0000
xml sdsl-isa-nsv 6.98 24.0000 64.0000
xml g-saca-lyn 3.11 96.0000 136.0000
xml g-saca 2.34 96.0000 136.0000
xml non-ele-lyn 8.66 0.0071 40.0071

120 APPENDIX B. ADDITIONAL EXPERIMENTAL RESULTS

Bibliography

U. Baier. Linear-time suffix sorting - A new approach for suffix array construction. Master’s
thesis, Ulm University, 2015. URL https://www.uni-ulm.de/fileadmin/website_

uni_ulm/iui.inst.190/Mitarbeiter/baier/gsaca.pdf.

U. Baier. Linear-time suffix sorting - A new approach for suffix array construction. In
Proceedings of the 27th Annual Symposium on Combinatorial Pattern Matching (CPM
2016), Tel Aviv, Israel, June 2016. URL https://doi.org/10.4230/LIPIcs.CPM.

2016.23.

H. Bannai, T. I, S. Inenaga, Y. Nakashima, M. Takeda, and K. Tsuruta. The “Runs”
theorem. SIAM Journal on Computing, 46(5):1501–1514, 2017. URL https://doi.

org/10.1137/15M1011032.

D. Benoit, E. D. Demaine, J. I. Munro, R. Raman, V. Raman, and S. S. Rao. Representing
trees of higher degree. Algorithmica, 43(4):275–292, 2005. URL https://doi.org/10.

1007/s00453-004-1146-6.

O. Berkman, B. Schieber, and U. Vishkin. Optimal doubly logarithmic parallel algorithms
based on finding all nearest smaller values. Journal of Algorithms, 14(3):344–370, 1993.
URL https://doi.org/10.1006/jagm.1993.1018.

M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm.
Technical report, Digital Equipment Corporation, 1994.

K. T. Chen, R. H. Fox, and R. C. Lyndon. Free differential calculus, IV. the quotient
groups of the lower central series. Annals of Mathematics, 68(1):81–95, 1958. URL
https://doi.org/10.2307/1970044.

M. Crochemore and L. M. Russo. Cartesian and Lyndon trees. Theoretical Computer
Science, In Press, Corrected Proof, 2018. URL https://doi.org/10.1016/j.tcs.

2018.08.011.

P. Davoodi, R. Raman, and S. R. Satti. On succinct representations of binary trees.
Mathematics in Computer Science, 11(2):177–189, Jun 2017. URL https://doi.org/

10.1007/s11786-017-0294-4.

121

https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.190/Mitarbeiter/baier/gsaca.pdf
https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.190/Mitarbeiter/baier/gsaca.pdf
https://doi.org/10.4230/LIPIcs.CPM.2016.23
https://doi.org/10.4230/LIPIcs.CPM.2016.23
https://doi.org/10.1137/15M1011032
https://doi.org/10.1137/15M1011032
https://doi.org/10.1007/s00453-004-1146-6
https://doi.org/10.1007/s00453-004-1146-6
https://doi.org/10.1006/jagm.1993.1018
https://doi.org/10.2307/1970044
https://doi.org/10.1016/j.tcs.2018.08.011
https://doi.org/10.1016/j.tcs.2018.08.011
https://doi.org/10.1007/s11786-017-0294-4
https://doi.org/10.1007/s11786-017-0294-4

122 BIBLIOGRAPHY

N. G. de Bruijn. A combinatorial problem. In Proceedings of the Koninklijke Nederlandse
Akademie van Wetenschappen, pages 758–764, 1946.

O. Delpratt, N. Rahman, and R. Raman. Engineering the LOUDS succinct tree rep-
resentation. In Proceedings of the 5th International Workshop on Experimental and
Efficient Algorithms (WEA 2006), pages 134–145, Cala Galdana, Spain, May 2006.
URL https://doi.org/10.1007/11764298_12.

J. P. Duval. Factorizing words over an ordered alphabet. Journal of Algorithms, 4(4):
363–381, 1983. URL https://doi.org/10.1016/0196-6774(83)90017-2.

J. Fischer. Optimal succinctness for range minimum queries. In Proceedings of the 9th
Latin American Symposium on Theoretical Informatics (LATIN 2010), pages 158–169,
Oaxaca, Mexico, Apr. 2010. URL https://doi.org/10.1007/978-3-642-12200-2_

16.

J. Fischer. Combined data structure for previous- and next-smaller-values. Theoretical
Computer Science, 412(22):2451–2456, 2011.

J. Fischer and V. Heun. Theoretical and practical improvements on the RMQ-problem,
with applications to LCA and LCE. In Proceedings of the 17th Annual Symposium
on Combinatorial Pattern Matching (CPM 2006), pages 36–48, Barcelona, Spain, July
2006. URL https://doi.org/10.1007/11780441_5.

J. Fischer and F. Kurpicz. Dismantling DivSufSort. In Proceedings of the 25th Prague
Stringology Conference (PSC 2017), pages 62–76, Prague, Czech Republic, Aug. 2017.

J. Fischer, V. Mäkinen, and G. Navarro. An(other) entropy-bounded compressed suffix
tree. In Proceedings of the 19th Annual Symposium on Combinatorial Pattern Matching
(CPM 2008), pages 152–165, Pisa, Italy, June 2008.

C. Flye Sainte-Marie. Solution to question nr. 48. L’Intermédiaire des Mathématiciens,
1894.

F. Franek, R. Simpson, and W. Smyth. The maximum number of runs in a string. In
Proceedings of the 14th Australasian Workshop on Combinatorial Algorithms (AWOCA
2003), Seoul, Korea, July 2003.

F. Franek, A. S. M. S. Islam, M. S. Rahman, and W. F. Smyth. Algorithms to compute the
Lyndon array. In Proceedings of the 20th Prague Stringology Conference (PSC 2016),
pages 172–184, Prague, Czech Republic, Aug. 2016.

F. Franek, A. Paracha, and W. F. Smyth. The linear equivalence of the suffix array and the
partially sorted Lyndon array. In Proceedings of the 21st Prague Stringology Conference
(PSC 2017), pages 77–84, Prague, Czech Republic, Aug. 2017.

https://doi.org/10.1007/11764298_12
https://doi.org/10.1016/0196-6774(83)90017-2
https://doi.org/10.1007/978-3-642-12200-2_16
https://doi.org/10.1007/978-3-642-12200-2_16
https://doi.org/10.1007/11780441_5

BIBLIOGRAPHY 123

F. Franek, M. Liut, and W. F. Smyth. On Baier’s sort of maximal Lyndon substrings.
In Proceedings of the 22nd Prague Stringology Conference (PSC 2018), pages 63–78,
Prague, Czech Republic, Aug. 2018.

S. Gog, T. Beller, A. Moffat, and M. Petri. From theory to practice: Plug and play
with succinct data structures. In Proceedings of the 13th International Symposium
on Experimental Algorithms (SEA 2014), pages 326–337, Copenhagen, Denmark, June
2014. URL https://doi.org/10.1007/978-3-319-07959-2_28.

K. Goto and H. Bannai. Simpler and faster lempel ziv factorization. In Proceedings of the
2013 Data Compression Conference (DCC 2013), pages 133–142, Snowbird, UT, USA,
Mar. 2013. URL https://doi.org/10.1109/DCC.2013.21.

T. Hagerup. Sorting and searching on the word ram. In Proceedings of the 15th Annual
Symposium on Theoretical Aspects of Computer Science (STACS 1998), pages 366–398,
Paris, France, Feb. 1998. URL https://doi.org/10.1007/BFb0028575.

C. Hierholzer and C. Wiener. Ueber die möglichkeit, einen linienzug ohne wiederholung
und ohne unterbrechung zu umfahren. Mathematische Annalen, 6(1):30–32, 1873. URL
https://doi.org/10.1007/BF01442866.

C. Hohlweg and C. Reutenauer. Lyndon words, permutations and trees. Theoret-
ical Computer Science, 307(1):173 – 178, 2003. URL https://doi.org/10.1016/

S0304-3975(03)00099-9.

G. Jacobson. Space-efficient static trees and graphs. In Proceedings of the 30th Annual
Symposium on Foundations of Computer Science (FOCS 1989), pages 549–554, Re-
search Triangle Park, NC, USA, Oct. 1989. URL https://doi.org/10.1109/SFCS.

1989.63533.

D. E. Knuth. The Art of Computer Programming, Volume 4A: Combinatorial Algorithms,
Part 1. Addison-Wesley Professional, 2011. ISBN 0201038048.

C. Leiserson, H. Prokop, and K. Randall. Using de Bruijn sequences to index a 1 in
a computer word, 1970. URL http://supertech.csail.mit.edu/papers/debruijn.

pdf. Published at the MIT Laboratory for Computer Science.

F. A. Louza, W. Smyth, G. Manzini, and G. P. Telles. Lyndon array construction during
Burrows–Wheeler inversion. Journal of Discrete Algorithms, 50:2–9, May 2018. URL
https://doi.org/10.1016/j.jda.2018.08.001.

F. A. Louza, S. Mantaci, G. Manzini, M. Sciortino, and G. P. Telles. Inducing the Lyndon
array, 2019. URL https://arxiv.org/abs/1905.12987. Version [v1].

https://doi.org/10.1007/978-3-319-07959-2_28
https://doi.org/10.1109/DCC.2013.21
https://doi.org/10.1007/BFb0028575
https://doi.org/10.1007/BF01442866
https://doi.org/10.1016/S0304-3975(03)00099-9
https://doi.org/10.1016/S0304-3975(03)00099-9
https://doi.org/10.1109/SFCS.1989.63533
https://doi.org/10.1109/SFCS.1989.63533
http://supertech.csail.mit.edu/papers/debruijn.pdf
http://supertech.csail.mit.edu/papers/debruijn.pdf
https://doi.org/10.1016/j.jda.2018.08.001
https://arxiv.org/abs/1905.12987

124 BIBLIOGRAPHY

U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches. In
Proceedings of the 1st Annual Symposium on Discrete Algorithms (SODA 1990), pages
319–327, Philadelphia, PA, USA, 1990. URL http://dl.acm.org/citation.cfm?id=

320176.320218.

U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches.
SIAM Journal on Computing, 22(5):935–948, 1993. URL https://doi.org/10.1137/

0222058.

J. I. Munro and V. Raman. Succinct representation of balanced parentheses and static
trees. SIAM Journal on Computing, 31(3):762–776, 2001. URL https://doi.org/10.

1137/s0097539799364092.

G. Nong. Practical linear-time O(1)-workspace suffix sorting for constant alphabets. ACM-
Transactions on Information Systems, 31(3):15:1–15:15, 2013. URL https://doi.org/

10.1145/2493175.2493180.

S. G. Park, A. Amir, G. M. Landau, and K. Park. Cartesian tree matching and indexing,
2019. URL https://arxiv.org/abs/1905.08974. To be released in: Proceedings of
the 30th Annual Symposium on Combinatorial Pattern Matching (CPM 2019).

A. Policriti and N. Prezza. Fast longest common extensions in small space, 2016. URL
https://arxiv.org/abs/1607.06660.

N. Prezza. In-place sparse suffix sorting. In Proceedings of the 29th Annual Symposium
on Discrete Algorithms (SODA 2018), pages 1496–1508, New Orleans, LA, USA, Jan.
2018. URL https://doi.org/10.1137/1.9781611975031.98.

K. Sadakane and G. Navarro. Fully-functional succinct trees. In Proceedings of the 21st
Annual Symposium on Discrete Algorithms (SODA 2010), pages 134–149, Austin, TX,
USA, Jan. 2010. URL https://doi.org/10.1137/1.9781611973075.13.

http://dl.acm.org/citation.cfm?id=320176.320218
http://dl.acm.org/citation.cfm?id=320176.320218
https://doi.org/10.1137/0222058
https://doi.org/10.1137/0222058
https://doi.org/10.1137/s0097539799364092
https://doi.org/10.1137/s0097539799364092
https://doi.org/10.1145/2493175.2493180
https://doi.org/10.1145/2493175.2493180
https://arxiv.org/abs/1905.08974
https://arxiv.org/abs/1607.06660
https://doi.org/10.1137/1.9781611975031.98
https://doi.org/10.1137/1.9781611973075.13

EIDESSTATTLICHE VERSICHERUNG 125

Eidesstattliche Versicherung

Ellert, Jonas

Name, Vorname

157195

Matr.-nr.

Ich versichere hiermit an Eides statt, dass ich die vorliegende Masterarbeit mit dem Titel

Efficient Computation of Nearest Smaller Suffixes

selbstständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt sowie wörtliche und sinngemäße Zitate
kenntlich gemacht. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungs-
behörde vorgelegen.

Dortmund, den 6. Juli 2019

Ort, Datum

Platzhalter

Unterschrift

Belehrung:

Wer vorsätzlich gegen eine die Täuschung über Prüfungsleistungen betreffende Regelung
einer Hochschulprüfungsordnung verstößt, handelt ordnungswidrig. Die Ordnungswidrig-
keit kann mit einer Geldbuße von bis zu 50.000,00 e geahndet werden. Zuständige Verwal-
tungsbehörde für die Verfolgung und Ahndung von Ordnungswidrigkeiten ist der Kanzler/
die Kanzlerin der Technischen Universität Dortmund. Im Falle eines mehrfachen oder
sonstigen schwerwiegenden Täuschungsversuches kann der Prüfling zudem exmatrikuliert
werden. (§ 63 Abs. 5 Hochschulgesetz - HG -)

Die Abgabe einer falschen Versicherung an Eides statt wird mit Freiheitsstrafe bis zu 3
Jahren oder mit Geldstrafe bestraft.

Die Technische Universität Dortmund wird gfls. elektronische Vergleichswerkzeuge (wie
z.B. die Software „turnitin“) zur Überprüfung von Ordnungswidrigkeiten in Prüfungsver-
fahren nutzen.

Die oben stehende Belehrung habe ich zur Kenntnis genommen:

Dortmund, den 6. Juli 2019

Ort, Datum

Platzhalter
Unterschrift

126

	Introduction
	Overview
	Related Work
	Nearest Smaller Values
	Succinct Representations of Trees and the Lyndon Array
	Lyndon Array Construction Algorithms

	Preliminaries
	Strings & Lyndon Words
	The Lyndon Array & Nearest Smaller Suffix Arrays
	Ordinal Trees
	Subtrees
	Tree Traversal

	Previous Smaller Suffix Trees
	Introducing the PSS Tree
	Building the NSS Array from the PSS Tree
	Succinct Representation of the PSS Tree
	Storing the Tree as a Balanced Parentheses Sequence
	Answering NSS and PSS Queries
	Answering Range Minimum Suffix Queries
	Proving Optimal Succinctness

	Constructing the PSS Tree
	Computing the NSS & PSS Array
	Pointer Jumping Technique
	Computing the NSS & PSS Array Simultaneously

	Computing the BPS of the PSS Tree
	Introducing a Separate LCP Stack
	Skipping Previously Computed Prefixes
	Applying the New Knowledge to the Algorithm
	Analyzing the Cost

	Achieving Linear Time
	Run Extension
	Properties of Lyndon Runs
	Extending Increasing Runs
	Extending Decreasing Runs
	Skipping (*) Iterations
	Presence of Lyndon Run Indices on H

	Amortized Look-Ahead
	Finding an Anchor
	Properties of the Anchor
	Skipping Iterations

	Algorithmic Summary

	Decreasing the Memory Bound
	Maintaining H in O(n lgn) Bits
	Maintaining H in n + O(lgn lglgn) Bits
	Counting Trailing Zeros
	Succinct Unary Stack
	Succinct Telescope Stack

	Embedding R in the BPS
	Maintaining L in *4n / + o(n) Bits
	Transformation of LCP values
	Using a Unary Stack
	Proving the Space Bound

	Combining the Pieces

	Experimental Evaluation
	Experimental Setup
	Counting Trailing Zeros
	Introducing the Text Collection
	Comparing the Stacks
	Artificial Instances
	Real Texts

	Comparison Against Existing Algorithms
	Testing Methodology
	Results
	Conclusion

	Scalability
	Repetitive Artificial Texts
	Real Texts
	Conclusion

	Conclusion
	Future Work

	Detecting Extended Lyndon Runs
	Algorithmic Approach

	Additional Experimental Results
	Bibliography
	Eidesstattliche Versicherung

