

CURRENT RESEARCH ON EXPLORATORY LANDSCAPE ANALYSIS

HEIKE TRAUTMANN. MIKE PREUSS.

EXPLORATORY LANDSCAPE ANALYSIS

- effective and sophisticated approach to characterize properties of optimization problems
- overall aim: recommendation of individually best suited algorithm for unseen optimization problems (algorithm selection)
- research so far provides set of features that requires only small amount of (additional) function evaluations

FEATURES AND PROPERTIES

Current research on Exploratory Landscape Analysis Heike Trautmann. Mike Preuss.

PAPER HISTORY

Kerschke, Preuss, Hernandez, Schütze, Sun, Grimme, Rudolph, Bischl, Trautmann. <u>Cell</u> <u>Mapping Techniques for Exploratory Landscape Analysis</u>. In *EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation V*, Springer, 2014.

Bischl, Mersmann, Trautmann, Preuss. <u>Algorithm selection based on exploratory</u> <u>landscape analysis and cost-sensitive learning</u>. In *GECCO 2012*, pp. 313-320. ACM, 2012

Mersmann, Bischl, Trautmann, Preuss, Weihs, Rudolph. <u>Exploratory Landscape Analysis</u>. In *GECCO '11: Proceedings of the 13th annual conference on Genetic and evolutionary computation*, pp. 829-836, 2011.

Mersmann, Preuss, Trautmann. <u>Benchmarking Evolutionary Algorithms: Towards</u> <u>Exploratory Landscape Analysis</u>. In *Parallel Problem Solving from Nature – PPSN XI, Proceedings, Lecture Notes in Computer Science, Volume 6238/2011*, pp. 73-82, Springer, 2011

Bartz-Beielstein, Preuss. <u>Experimental Analysis of Optimization Algorithms: Tuning and</u> <u>Beyond</u>. In *Theory and Principled Methods for Designing Metaheuristics*, Springer, 2013.

PREVIOUS RESULTS 2011-2013

- ELA features enable selecting good algorithm from a portfolio
- algorithm selection works remarkably well for new functions (evaluated by leave-one-function-out cross-validation)
- some low-level feature groups (local search and curvature) need many additional evaluations -> find cheaper features
- some properties (global structure, multi-modality and variable scaling) important for characterization of problem landscape
 -> find cheaper features for those properties

ELA WITH CELL MAPPING FEATURES

(EVOLVE PAPER 2014)

- overall task: improvement of existing feature set
- new features based on cell mapping concept
- only small (initial) problem sample
- no new cost when used together with original ELA features
- focus on better capturing important high-level properties (multi-modality, global structure)

(GENERALIZED) CELL MAPPING

- discretize search space into hypercubes
- I000 observations randomly distributed over 10x10 cells
- overall idea: differences between cells provide new insight
- each cell represented by prototype according to 3 aggregations methods:
 - minimum function value
 - mean of objective values
 - objective of point closest to cell center
- 2 new feature groups:
 - 32 generalized cell mapping features
 - 12 features based only on discretization into hypercubes

GCM FEATURES

- we estimate transition probabilities via sampling
- related to Markov chains: attractor cells, certain transient cells (to 1 attractor), uncertain transient cells (to n attractors)
- derive GCM features: number of attractors, basin sizes, etc.

Current research on Exploratory Landscape Analysis Heike Trautmann. Mike Preuss.

EXAMPLE: RASTRIGIN FUNCTION

GCM FEATURE PROBLEMS

- need enough samples per cell
- a lot of information is not used
- difficult to transfer to 3+ D

-> strong need for more features that exploit the sample better

Visualisation of a 2D-BBOB-function (Function ID = 3, Instance ID = 1, Replication = 1)

ADDITIONAL FEATURES

- use discretized decision space
- aim at: global structure, homogeneity, multi-modality
- features "measure":
 - homogeneity of the gradients
 - Iocation of best and worst point within a cell
 - variation in objective values
 - convexity vs. concavity of the landscape
- \Rightarrow 12 features (due to different aggregation methods)

GRADIENT HOMOGENEITY

sum of directed and normalized (estimated) gradients per cell

LOCATION OF BEST AND WORST VALUES

- angle between best value, cell center and worst value
- distance from center to best / worst point

EXPERIMENTS AND RESULTS

classified seven high-level properties via ELA features,
GCM features, and both

- combination of both worked best for 5 / 7 properties
- especially global structure, homogeneity and multi-modality recognition much better due to new features
- only basin size and variable scaling not improved
- particularly good: angle and gradient homogeneity features

EXPERIMENTS AND RESULTS

Misclassification Error per Property

Current research on Exploratory Landscape Analysis Heike Trautmann. Mike Preuss.

FURTHER WORK

- extend features for higher-dimensional problems
- employ new features for algorithm selection
- develop new features that also describe the remaining high-level properties
- Efficient feature selection approaches
- -> journal paper on ELA methodology
- extend features/algorithm selection for
 - multimodal problems
 - multi-objective problems

ELA FOR MULTIOBJECTIVE PROBLEMS

 Proposal submitted by Trautmann, Grimme, Bischl, Kerschke within

Group of Eight Australia-Germany (Go88) Joint Research Cooperation Scheme

together with

Prof. Dr. Kate Smith Miles Monash University, School of Mathematical Science

• Funding Period: 01/2015-12/2016

PROJECT OVERVIEW

Evaluation of new components

PROBLEM-BASED ALGORITHM SELECTION AND DESIGN FOR MULTI-OBJECTIVE OPTIMIZATION

- (1) analysis on what makes MOO problems difficult
- (2) design of experimental "measures" to numerically characterize MOO problems
- (3) identification and visualization of strengths and weaknesses of state-of-the-art MOO algorithms
- (4) methodology to assist the algorithm selection on (possibly expensive) real-world problems
- (5) methodology to assist the design of tailored algorithms for real-world problems, e.g. manufacturing processes

TAKE HOME

- CELL MAPPING FEATURES IMPROVE CLASSIFICATION FOR SOME HIGH-LEVEL PROPERTIES
- FUTURE GOALS: LESS FUNCTION EVALUATIONS, BETTER ACCURACY
- ELA SHALL BE APPLIED TO MULTIMODAL/MULTI-OBJECTIVE OPTIMIZATION

THE IS RESEARCH NETWORK

www.ercis.org

CIS

European Research Center for Information Systems