Tutorial for

Introduction to Computational Intelligence in Winter 2015/16

Günter Rudolph, Vanessa Volz
Lecture website: https://tinyurl.com/CI-WS2015-16

Sheet 6, Block III
28 January 2016
Due date: 10 February 2016, 2pm
Discussion: 11/12 February 2016

Exercise 6.1: Basic Probability Theory (4 Points)

Consider standard-bit-mutation on a bitstring of length n where the probability of flipping is $p=1 / n$ for each bit.
a) Calculate the probability that a certain bit is flipped at least once within t mutations.
b) Calculate the probability that exactly k bits of the bitstring are flipped in one mutation.
c) Given a bitstring x, calculate the probability that a certain bitstring y is the result of one mutation of x. Hint: Use the Hamming distance to relate bitstrings to each other.
d) Calculate the expected number of flipped bits per mutation.

Solution:

a) $1-\left(1-\frac{1}{n}\right)^{t}$
b) $\binom{n}{k}\left(\frac{1}{n}\right)^{k}\left(1-\frac{1}{n}\right)^{n-k}$
c) $\left(\frac{1}{n}\right)^{H(x, y)}\left(1-\frac{1}{n}\right)^{n-H(x, y)}$
d) $\sum_{i=1}^{n} p_{i}=n \frac{1}{n}=1$

Exercise 6.2: Real-valued Optimization (3 Points)
Download and install the R-package cmaes (install. packages ("cmaes")). This package also contains the three test problems f_sphere, f_rastrigin, and f_rosenbrock (to be minimized). Compare the CMA-ES algorithm with the optimizer rbga in the package genalg (install.packages("genalg")) on these three problems. Repeat each algorithm at least 10 times for $n=10$ decision variables. The number of function evaluations shall be fixed to 10000 and the search space be restricted to $[-5,5]^{n}$. Average the obtained function values of the best solutions. Plot, report, and interpret the results.

Exercise 6.3: SMS-EMOA (9 Points)

You are playing a paladin in a video game and have three different attacks available. The mana needed to cast a spell and the damage caused are detailed in the table:

name	damage [HP]	mana [MP]
Avenger's Shield	4	1
Hammer of Wrath	3	1
Holy Nova	4	3

You have 5 mana available, but you can still only cast one spell once at most. Your goal is to select a combination of attacks that maximises the damage output while at the same time minimising mana consumption.

Figure 1: Solutions plot, non-dominated points are red
a) Plot the objective values of all possible solutions. Identify the non-dominated set. In a scenario with an opponent with 4 health points, which attack combination would you choose?
b) Assume you wanted to solve the problem as a single-objective minimisation problem and use a sum of the two objectives as a fitness value. Calculate the fitness value for all solutions. Discuss if there are any problems with aggregating the objective values with a weighted sum for this problem.
c) You now want to solve the problem as a multi-objective minimisation problem using the SMSEMOA algorithm. Use a populations size of $\mu=3$ with random initialisation, uniform crossover and global mutation with $p_{m}=\frac{1}{n}$ (n is the length of your genes). For a budget of 7 function evaluations calculate the result of the SMS-EMOA-run by hand. Detail all calculation steps and assume your random number generator results in the sequence of numbers in file randNo.txt.

Solution:

a) non-dominated set: $(1,1,1)(1,0,1)(1,1,0)(1,0,0)(0,0,0)$, Scenario $4 \mathrm{HP}:(1,0,0)$, plot in figure 1
b) The problem is $(1,0,1)$ because with a weighted sum resulting in a linear function specifying the optimum, its value would never be found because together with the neighbouring non-dominated points, it forms a concave shape.
c) \quad random initialisation, 1 if random value greater 0.5

$$
\begin{aligned}
& *(0,0,1)(\text { rv 1-3) } \\
& *(1,0,0)(\text { rv 4-6) }
\end{aligned}
$$

$$
\text { * }(0,1,0)(\text { rv } 7-9)
$$

- function evaluations $(3):(-4,3)(-4,1)(-3,1)$
- random parent selection: $(1,3)$ (rv 10-11)
- crossover ($0,1,1$) (rv 12-14)
- mutation (0,1,1) (rv 15-17)
- function evaluation (4): $(-7,4)$
- Ranking: $(1,0,0)$ and $(0,1,1)$ have rank 1 , others rank 2
- Hypervolume contribution, refPoint is $(1,6): \operatorname{hv}(0,0,1)=3, \operatorname{hv}(0,1,0)=8$
- resulting population: $(1,0,0)(0,1,0)(0,1,1)$
- random parent selection: $(1,2)$ (rv 18-19)
- crossover (0,0,0) (rv 20-22)
- mutation $(0,0,1)$ (rv 23-25)
- function evaluation (5): $(-4,3)$
- child was eliminated before, so resulting population: $(1,0,0)(0,1,0)(0,1,1)$
- random parent selection: $(2,1)$ (rv 26-27)
- crossover $(1,1,0)$ (rv 28-30)
- mutation (1,1,1) (rv 31-33)
- function evaluation (6): $(-11,5)$
- Ranking: only $(0,1,0)$ has rank 2 , rest 1
- Resulting population $(1,0,0)(0,1,1)(1,1,1)$
- random parent selection $(1,3)$ (rv 34-35)
- crossover $(1,1,0)$ (rv 36-38)
- mutation $(0,1,1)$ (rv 39-31)
- function evaluation $(7):(-7,4)$
- child same as parent, so resulting population: $(1,0,0)(0,1,1)(1,1,1)$
- stop after 7 function evaluations

Exercise 6.4: Variation operator Design (4 Points)

a) Approximate the entropy of the following distributions using their R implementations and verify that the normal distribution has the maximum value:

- normal distribution with mean $\mu=0$ and variance $\sigma^{2}=4: N(0,2)$
- student-t distribution with $\frac{8}{3}$ degrees of freedom
- laplace distribution with location $\mu=0$ and scale $b=\sqrt{2}$

```
dLaPlace = function(x, mu, b){
    return((1/(2*b))*exp(-abs(x-mu)/b))
}
```

Listing 1: laPlaceDensity.R
b) The parameters of the above functions are selected so that all distributions have a mean of 0 and a variance of 4 . Why is that necessary when comparing the values of their entropy?

Solution:

- normal: 2.112086 with absolute error <0.00014, analytic: $\frac{1}{2} \log \left(2 \pi e \sigma^{2}\right) \approx 2.112086$
- student t: 1.819824 with absolute error $<5.6 * 10^{-5}$, analytic: $\frac{d f+1}{2}\left[\psi\left(\frac{1+d f}{2}\right)-\psi\left(\frac{d f}{2}\right)\right]+$ $\log \left[\sqrt{d f} B\left(\frac{d f}{2}, \frac{1}{2}\right)\right] \approx 1.819824$, with digamma function ψ, beta function B and degrees of freedom $d f$.
- la place: 2.039721 with absolute error $<9.8 * 10^{-5}$, analytic: $\log (2 b e) \approx 2.039721$
- Normal distribution is max entropy if σ, θ are known, so the comparison in a) to verify that it is the maximum entropy distribution only makes sense for given σ, θ.

