Tutorial for

Introduction to Computational Intelligence in Winter 2015/16

Günter Rudolph, Vanessa Volz
Lecture website: https://tinyurl.com/CI-WS2015-16

Sheet 6, Block III

28 January 2016
Due date: 10 February 2016, 2pm
Discussion: 11/12 February 2016

Exercise 6.1: Basic Probability Theory (4 Points)

Consider standard-bit-mutation on a bitstring of length n where the probability of flipping is $p=1 / n$ for each bit.
a) Calculate the probability that a certain bit is flipped at least once within t mutations.
b) Calculate the probability that exactly k bits of the bitstring are flipped in one mutation.
c) Given a bitstring x, calculate the probability that a certain bitstring y is the result of one mutation of x. Hint: Use the Hamming distance to relate bitstrings to each other.
d) Calculate the expected number of flipped bits per mutation.

Exercise 6.2: Real-valued Optimization (3 Points)

Download and install the R-package cmaes (install.packages ("cmaes")). This package also contains the three test problems f_sphere, f_rastrigin, and f_rosenbrock (to be minimized). Compare the CMA-ES algorithm with the optimizer rbga in the package genalg (install.packages("genalg")) on these three problems. Repeat each algorithm at least 10 times for $n=10$ decision variables. The number of function evaluations shall be fixed to 10000 and the search space be restricted to $[-5,5]^{n}$. Average the obtained function values of the best solutions. Plot, report, and interpret the results.

Exercise 6.3: SMS-EMOA (9 Points)

You are playing a paladin in a video game and have three different attacks available. The mana needed to cast a spell and the damage caused are detailed in the table:

name	damage [HP]	mana [MP]
Avenger's Shield	4	1
Hammer of Wrath	3	1
Holy Nova	4	3

You have 5 mana available. Your goal is to select a combination of attacks that maximises the damage output while at the same time minimising mana consumption.
a) Plot the objective values of all possible solutions. Identify the non-dominated set. In a scenario with an opponent with 4 health points, which attack combination would you choose?
b) Assume you wanted to solve the problem as a single-objective minimisation problem and use the sum of the two objectives as a fitness value. Calculate the fitness value for all solutions. Discuss if there are any problems with aggregating the objective values with a weighted some for this problem.
c) You now want to solve the problem as a multi-objective minimisation problem using the SMSEMOA algorithm. Use a populations size of $\mu=3$ with random initialisation, uniform crossover and global mutation with $p_{m}=\frac{1}{n}$ (n is the length of your genes). For a budget of 7 function evaluations calculate the result of the SMS-EMOA-run by hand. Detail all calculation steps and assume your random number generator results in the sequence of numbers in file randNo.txt.

Exercise 6.4: Variation operator Design (4 Points)

a) Approximate the entropy of the following distributions using their R implementations and verify that the normal distribution has the maximum value:

- normal distribution with mean $\mu=0$ and variance $\sigma^{2}=4: N(0,2)$
- student-t distribution with $\frac{8}{3}$ degrees of freedom
- laplace distribution with location $\mu=0$ and scale $b=\sqrt{2}$

```
dLaPlace = function (x, mu, b){
    return((1/(2*b))*exp(-abs(x-mu)/b))
}
```

Listing 1: laPlaceDensity.R
b) The parameters of the above functions are selected so that all distributions have a mean of 0 and a variance of 4 . Why is that necessary when comparing the values of their entropy?

