
Vorläufiges Skriptum VL
Text-Indexierung und Information Retrieval

Wintersemester 2013/14
Johannes Fischer (TU Dortmund)

last update: 15.10.2013

Disclaimer 1

Dieses Skript wird den Studierenden an der TU Dortmund im Voraus zur Verfügung gestellt. Die
Inhalte werden im Laufe des Semesters aber noch angepasst, insbesondere in Bezug auf Information
Retrieval. Die horizontale Linie kennzeichnet den bisher tatsächlich behandelten Stoff.

Disclaimer 2

Students attending my lectures are often astonished that I present the material in a much livelier
form than in this script. The reason for this is the following:

This is a script, not a text book.

It is meant to accompany the lecture, not to replace it! We do examples on all concepts,
definitions, theorems and algorithms in the lecture, but usually not this script. In this sense, it is
not a good idea to study the subject soley by reading this script.

1 Recommended Reading

In the order of relevance for this lecture:

1. E. Ohlebusch: Bioinformatics Algorithms: Sequence Analysis, Genome Rearrangements, and
Phylogenetic Reconstruction. Oldenbusch Verlag, 2013.

2. D. Adjeroh, T. Bell, and A. Mukherjee: The Burrows-Wheeler Transform: Data Compression,
Suffix Arrays and Pattern Matching. Springer, 2008.

3. D. Gusfield: Algorithms on Strings, Trees, and Sequences. Cambridge University Press, 1997.

2 Tries

Definition 1. Let S = {S1, . . . , Sk} be a set of k strings over the alphabet Σ of siye σ = |Σ|. A trie
on S is a rooted tree S = (V,E) with edge labels from Σ that fulfills the following two constraints:

1. ∀v ∈ V : all outgoing edges from v start with a different a ∈ Σ.

2. For all Si ∈ S there is a leaf ` such that Si is a prefix of the concatenation of the labels on
the root-to-` path.

3. For all leaves ` ∈ V there is a string Si ∈ S such the root-to-` path spells out exactly Si.

1

We often deal with compacted tries, which can be defined similarly to Def. 1, with the difference
that the edge labels are now from Σ+, and with an additional constraint:

4. Apart from the root, all nodes have out-degree 6= 1.

Tries support existential queries (“Is pattern P one of the strings in S?”), prefix queries (“Which
strings in S have P as a prefix?”), and also predecessor queries (“If P is none of the strings in S,
which ones are lexicographically closest?”). All of those queries work in a top-down manner, starting
at the root and trying to match further characters in P on the way town. The search time of all
these operations depends mainly on the way the outgoing edges of a trie node are implemented;
this is what we consider next.

Let v be a node in the trie.

1. We can simply scan all of v’s outgoing edges to find the next character of P . This results in
O(|P | · σ) search time. The space of the trie is O(n+ k) = O(n) for n =

∑k
i=1 |si| being the

total size of the strings in S.

2. The outgoing edges are implemented as arrays of size σ. This results in optimal O(|P |) search
time, but the space shoots up to O(|P | · σ).

3. We can use either a hash table at every node, or a global hash table using (node,character)
pairs as keys. In any case, this results in optimal O(|P |) search time, but only with high
probability. Also, predecessor searches are not supported. The space is O(n).

4. The outgoing edges are implemented as arrays of size sv, where sv denotes the number of
v’s children. Using binary search over these arrays, this results in total O(|P | log σ) search
time. The overall space is O(n) (WHY?). Note that if the trie is dynamic, the arrays can be
replaced by balanced binary search trees, yielding the same running times.

5. Modifying the previous approach, we can use weight-balanced binary search trees (WB-BST),
where each trie node v has a weight wv equal to the number of leaves below v (hence, the
number of string stored in v’s subtree). Then the binary search tree at every trie node v with
children v1, . . . , vx is formed by splitting the weights wv1 , . . . , wvx into two halves as good
as possible, respecting the lexicographic order of the corresponding characters. This creates
the root of the WB-BST. The process continues recursively in the left and right children
of the root. We then proved in the lecture that following at most 2 edges in the WB-BST
either advances one character in P , or reduced the number of strings to be considered by 1/3.
Since the latter situation can happen only log3/2 k times, this results in a total search time
of O(|P |+ log k), while the space remains linear.

6. Here comes the climax! Divide the trie into an upper top tree and several lower bottom trees
by declaring all maximally deep nodes with weight at least σ as leaves of the top tree. Then
use approach (5) for the nodes in the bottom trees; since their size is now O(σ), this results
in O(|P | + log σ) time. In the top tree, all branching nodes (meaning thay have at least 2
children) are handled by approach (2) above. Since the number of branching nodes in the top
tree are at most O(n/σ), this results in O(n) total space for the entire trie. Non-branching
nodes of the top tree are simply stored by noting the character of their only outgoing edge.
In sum, we get O(|P |+ log σ) time, and O(n) space.

2

3 Suffix Trees and Arrays

3.1 Suffix Trees

In this section we will introduce suffix trees, which, among many other things, can be used to solve
the string matching task (find pattern P of length m in a text T of length n in O(n + m) time).
We already know that other methods (Boyer-Moore, e.g.) solve this task in the same time. So why
do we need suffix trees?

The advantage of suffix trees over the other string-matching algorithms (Boyer-Moore, KMP,
etc.) is that suffix trees are an index of the text. So, if T is static and there are several patterns
to be matched against T , the O(n)-task for building the index needs to be done only once, and
subsequent matching-tasks can be done in O(m) time. If m << n, this is a clear advantage over the
other algorithms.

Throughout this section, let T = t1t2 . . . tn be a text over an alphabet Σ of size σ. We use the
notation Ti...j as an abbreviation of titi+1 . . . tj , the substring of T ranging from i to j.

Definition 2. The i’th suffix of T is the substring Ti...n and is denoted by T i.

Definition 3. The suffix tree of T is a compact trie over all suffixes {T 1, T 2, . . . , Tn}.

The following definitions make it easier to argue about suffix trees and compact tries in general:

Definition 4. Let S = (V,E) be a compact trie.

• For v ∈ V , v denotes the concatenation of all path labels from the root of S to v.

• |v| is called the string-depth of v and is denoted by d(v).

• S is said to display α ∈ Σ∗ iff ∃v ∈ V, β ∈ Σ∗ : v = αβ.

• If v = α for v ∈ V, α ∈ Σ∗, we also write α to denote v.

• words(S) denotes all strings in Σ∗ that are displayed by S: words(S) = {α ∈ Σ∗ : S displays α}

[NB. With these new definitions, an alternative definition of suffix trees would be: “The suffix
tree of T is a compact trie that displays exactly the subwords of T .”]

For several reasons, we shall find it useful that each suffix ends in a leaf of S. This can be
accomplished by adding a new character $ 6∈ Σ to the end of T , and build the suffix tree over T$.

From now on, we assume that T terminates with a $, and we define $ to be lexicographically
smaller than all other characters in Σ: $ < a for all a ∈ Σ. This gives a one-to-one correspondence
between T ’s suffixes and the leaves of S, which implies that we can label the leaves with a function
l by the start index of the suffix they represent: l(v) = i ⇐⇒ v = T i.

3.2 Searching in Suffix Trees

Let P be a pattern of length m. Throughout the whole lecture, we will be concerned with the two
following problems:

Problem 1. Counting: Return the number of matches of P in T . Formally, return the size of
OP = {i ∈ [1, n] : Ti...i+m−1 = P}

3

Problem 2. Reporting: Return all occurrences of P in T , i. e., return the set OP .

With suffix trees, the counting-problem can be solved in O(m log σ) time: traverse the tree from
the root downwards, in each step locating the correct outgoing edge, until P has been scanned
completely. More formally, suppose that P1...i−1 have already been parsed for some 1 ≤ i < m,
and our position in the suffix tree S is at node v (v = P1...i−1). We then find v’s outgoing edge e
whose label starts with Pi. This takes O(log σ) time. We then compare the label of e character-by-
character with Pi...m, until we have read all of P (i = m), or until we have reached position j ≥ i
for which P1...j is a node v′ in S, in which case we continue the procedure at v′. This takes a total
of O(m log σ) time. Suppose the search procedure has brought us successfully to a node v, or to
the incoming edge of node v. We then output the size of Sv, the subtree of S rooted at v. This can
be done in constant time, assuming that we have labeled all nodes in S with their subtree sizes.
This answers the counting query. For the reporting query, we output the labels of all leaves in Sv
(recall that the leaves are labeled with text positions).

Theorem 1. The suffix tree allows to answer counting queries in O(m log σ) time, and reporting
queries in O(m log σ + |OP |) time.

An important implementation detail is that the edge labels in a suffix tree are represented by
a pair (i, j), 1 ≤ i ≤ j ≤ n, such that Ti...j is equal to the corresponding edge label. This ensures
that an edge label uses only a constant amount of memory.

From this implementation detail and the fact that S contains exactly n leaves and hence less
than n internal nodes, we can formulate the following theorem:

Theorem 2. A suffix tree occupies O(n) space in memory.

3.3 Suffix- and LCP-Arrays

We will now introduce two arrays that are closely related to the suffix tree, the suffix array A and
the LCP-array H.

Definition 5. The suffix array A of T is a permutation of {1, 2, . . . , n} such that A[i] is the i-th
smallest suffix in lexicographic order: TA[i−1] < TA[i] for all 1 < i ≤ n.

The following observation relates the suffix array A with the suffix tree S.

Observation 1. If we do a lexicographically-driven depth-first search through S (visit the children
in lexicographic order of the first character of their corresponding edge-label), then the leaf-labels
seen in this order give the suffix-array A.

The second array H builds on the suffix array:

Definition 6. The LCP-array H of T is defined such that H[1] = 0, and for all i > 1, H[i] holds
the length of the longest common prefix of TA[i] and TA[i−1].

To relate the LCP-array H with the suffix tree S, we need to define the concept of lowest
common ancestors:

Definition 7. Given a tree S = (V,E) and two nodes v, w ∈ V , the lowest common ancestor of
v and w is the deepest node in S that is an ancestor of both v and w. This node is denoted by
lca(v, w).

4

Observation 2. The string-depth of the lowest common ancestor of the leaves labeled A[i] and
A[i − 1] is given by the corresponding entry H[i] of the LCP-array, in symbols: ∀i > 1 : H[i] =

d(lca(TA[i], TA[i−1])).

3.4 Searching in Suffix Arrays

We can use a plain suffix array A to search for a pattern P , using the ideas of binary search, since
the suffixes in A are sorted lexicographically and hence the occurrences of P in T form an interval
in A. The algorithm below performs two binary searches. The first search locates the starting
position s of P ’s interval in A, and the second search determines the end position r. A counting
query returns r − s+ 1, and a reporting query returns the numbers A[s], A[s+ 1], . . . , A[r].

Algorithm 1: function SAsearch(P1...m)

l← 1; r ← n+ 1;
while l < r do

q ← b l+r2 c;
if P >lex TA[q]...min{A[q]+m−1,n} then

l← q + 1;
else

r ← q;
end

end
s← l; l−−; r ← n;
while l < r do

q ← d l+r2 e;
if P =lex TA[q]...min{A[q]+m−1,n} then

l← q;
else

r ← q − 1;
end

end
return [s, r];

Note that both while-loops in Alg. 1 make sure that either l is increased or r is decreased, so they
are both guaranteed to terminate. In fact, in the first while-loop, r always points one position behind
the current search interval, and r is decreased in case of equality (when P = TA[q]...min{A[q]+m−1,n}).
This makes sure that the first while-loop finds the leftmost position of P inA. The second loop works
symmetrically. Note further that in the second while-loop it is enough to check for lexicographical
equality, as the whole search is done in the interval of A where all suffixes are lexicographically no
less than P .

Theorem 3. The suffix array allows to answer counting queries in O(m log n) time, and reporting
queries in O(m log n+ |OP |) time.

5

3.5 Construction of Suffix Trees from Suffix- and LCP-Arrays

Assume for now that we are given T , A, and H, and we wish to construct S, the suffix tree of T .
We will show in this section how to do this in O(n) time. Later, we will also see how to construct
A and H only from T in linear time. In total, this will give us an O(n)-time construction algorithm
for suffix trees.

The idea of the algorithm is to insert the suffixes into S in the order of the suffix array:
TA[1], TA[2], . . . , TA[n]. To this end, let Si denote the partial suffix tree for 0 ≤ i ≤ n (Si is the
compact Σ+-tree with words(Si) = {TA[k]...j : 1 ≤ k ≤ i, A[k] ≤ j ≤ n}). In the end, we will have
S = Sn.

We start with S0, the tree consisting only of the root (and thus displaying only ε). In step i+1,
we climb up the rightmost path of Si (i.e., the path from the leaf labeled A[i] to the root) until we
meet the deepest node v with d(v) ≤ H[i+ 1]. If d(v) = H[i+ 1], we simply insert a new leaf x to
Si as a child of v, and label (v, x) by TA[i+1]+H[i+1]. Leaf x is labeled by A[i + 1]. This gives us
Si+1.

Otherwise (i.e., d(v) < H[i + 1]), let w be the child of v on Si’s rightmost path. In order to
obtain Si+1, we split up the edge (v, w) as follows.

1. Delete (v, w).

2. Add a new node y and a new edge (v, y). (v, y) gets labeled by TA[i]+d(v)...A[i]+H[i+1]−1.

3. Add (y, w) and label it by TA[i]+H[i+1]...A[i]+d(w)−1.

4. Add a new leaf x (labeled A[i+ 1]) and an edge (y, x). Label (y, x) by TA[i+1]+H[i+1].

The correctness of this algorithm follows from observations 1 and 2 above. Let us now consider
the execution time of this algorithm. Although climbing up the rightmost path could take O(n)
time in a single step, a simple amortized argument shows that the running time of this algorithm
can be bounded by O(n) in total: each node traversed in step i (apart from the last) is removed
from the rightmost path and will not be traversed again for all subsequent steps j > i. Hence, at
most 2n nodes are traversed in total.

Theorem 4. We can construct T ’s suffix tree in linear time from T ’s suffix- and LCP-array.

3.6 Linear-Time Construction of Suffix Arrays

Now we explain the induced sorting algorithm for constructing suffix arrays. Its basic idea is to sort
a certain subset of suffixes recursively, and then use this result to induce the order of the remaining
suffixes.

• Ge Nong, Sen Zhang, Wai Hong Chan: Two Efficient Algorithms for Linear Time Suffix
Array Construction. IEEE Trans. Computers 60(10): 1471–1484 (2011).

Definition 8. For 1 ≤ i < n, suffix T i is said to be S-type if T i <lex T
i+1, and L-type otherwise.

The last suffix is defined to be S-type. For brevity, we also use the terms S- and L-suffixes for
suffixes of the corresponding type.

6

The type of each suffix can be determined in linear time by a right-to-left scan of T : first, Tn

is declared as S-type. Then, for every i from n− 1 to 1, T i is classified by the following rule:

T i is S-type iff either ti < ti+1, or ti = ti+1 and T i+1 is S-type.

We further say that an S-suffix T i is of type S* iff T i−1 is of type L. (Note that the S-suffixes
still include the S*-suffixes in what follows.)

In A, all suffixes starting with the same character c ∈ Σ form a consecutive interval, called the
c-bucket henceforth. Observe that in any c-bucket, the L-suffixes precede the S-suffixes. Conse-
quently, we can sub-divide buckets into S-type buckets and L-type buckets.

Now the induced sorting algorithm can be explained as follows:

1. Sort the S*-suffixes. This step will be explained in more detail below.

2. Put the sorted S*-suffixes into their corresponding S-buckets, without changing their order.

3. Induce the order of the L-suffixes by scanning A from left to right: for every position i in A,
if TA[i]−1 is L-type, write A[i] − 1 to the current head of the L-type c-bucket (c = tA[i]−1),
and increase the current head of that bucket by one. Note that this step can only induce “to
the right” (the current head of the c-bucket is larger than i).

4. Induce the order of the S-suffixes by scanning A from right to left : for every position i in A,
if TA[i]−1 is S-type, write A[i]− 1 to the current end of the S-type c-bucket (c = tA[i]−1), and
decrease the current end of that bucket by one. Note that this step can only induce “to the
left,” and might intermingle S-suffixes with S*-suffixes.

It remains to explain how the S*-suffixes are sorted (step 1 above). To this end, we define:

Definition 9. An S*-substring is a substring Ti..j with i 6= j of T such that both T i and T j are
S*-type, but no suffix in between i and j is also of type S*.

Let R1, R2, . . . , Rn′ denote these S*-substrings, and σ′ be the number of different S*-substrings.
We assign a name vi ∈ [1, σ′] to any such Ri, such that vi < vj if Ri <lex Rj and vi = vj if Ri = Rj .
We then construct a new text T ′ = v1 . . . vn′ over the alphabet [1, σ′], and build the suffix array
A′ of T ′ by applying the inducing sorting algorithm recursively to T ′ if σ′ < n′ (otherwise there is
nothing to sort, as then the order of the S*-suffixes is given by the order of the S*-substrings). The
crucial property to observe here is that the order of the suffixes in T ′ is the same as the order of
the respective S*-suffixes in T ; hence, A′ determines the sorting of the S*-suffixes in T . Further, as
at most every second suffix in T can be of type S*, the complete algorithm has worst-case running
time T (n) = T (n/2) + O(n) = O(n), provided that the naming of the S*-substrings also takes
linear time, which is what we explain next.

The naming of the S*-substrings is similar to the inducing of the S-suffixes in the induced sorting
algorithm (steps 2–4 above), with the difference that in step 2 we put the unsorted S*-suffixes into
their corresponding buckets (hence they are only sorted according to their first character). Steps
3 and 4 work exactly as described above. At the end of step 4, we can assign names to the S*-
substrings by comparing adjacent S*-suffixes naively until we find a mismatch or reach their end;
this takes overall linear time.

Theorem 5. We can construct the suffix array for a text of length n in O(n) time.

7

3.7 Linear-Time Construction of LCP-Arrays

We now explain how the induced sorting algorithm (Sect. 3.6) can be modified to also compute
the LCP-array. The basic idea is that whenever we place two S- or L-suffixes T i−1 and T j−1 at
adjacent places k − 1 and k in the final suffix array (steps 3 and 4 in the algorithm), the length of
their longest common prefix can be induced from the longest common prefix of the suffixes T i and
T j . As the latter suffixes are exactly those that caused the inducing of T i−1 and T j−1, we already
know their LCP-value ` (by the order in which we fill A), and can hence set H[k] to `+ 1.

3.7.1 Basic Algorithm

We now describe the algorithm in more detail. We augment the steps of the induced sorting
algorithm as follows:

1′. Compute the LCP-values of the S*-suffixes (see Sect. 3.7.3).

2′. Whenever we place an S*-suffix into its S-bucket, we also store its LCP-value at the correspond-
ing position in H.

3′. Suppose that the inducing step just put suffix TA[i]−1 into its L-type c-bucket at position k.
If TA[i]−1 is the first suffix in its L-bucket, we set H[k] to 0. Otherwise, suppose further that
in a previous iteration i′ < i the inducing step placed suffix TA[i′]−1 at k − 1 in the same c-
bucket. Then if i′ and i are in different buckets, the suffixes TA[i] and TA[i′] start with different
characters, and we set H[k] to 1, as the suffixes TA[i]−1 and TA[i′]−1 share only a common
character c at their beginnings. Otherwise (i′ and i are in the same c′-bucket), the length `
of the longest common prefix of the suffixes TA[i] and TA[i′] is given by the minimum value in
H[i′ + 1, i], all of which are in the same c′-bucket and have therefore already been computed in
previous iterations. We can hence set H[k] to `+ 1.

4′. As in the previous step, suppose that the inducing step just put suffix TA[i]−1 into its S-type
c-bucket at position k. Suppose further that in a previous iteration i′ > i the inducing step
placed suffix TA[i′]−1 at k + 1 in the same c-bucket (if k is the last position in its S-bucket,
we skip the following steps). Then if i′ and i are in different buckets, their suffixes start with
different characters, and we set H[k + 1] to 1, as the suffixes TA[i]−1 and TA[i′]−1 share only
a common character c at their beginnings. Otherwise (i′ and i are in the same c′-bucket), the
length ` of the longest common prefix of the suffixes TA[i] and TA[i′] is given by the minimum
value in H[i + 1, i′], all of which are in the same c′-bucket and have therefore already been
computed. We can hence set H[k + 1] to `+ 1.

(We will resolve the problem of computing the LCP-value between the last L-suffix and the first
S-suffix in a bucket at the end of this section.)

3.7.2 Finding Minima

To find the minimum value in H[i′ + 1, i] or H[i + 1, i′] (steps 3′ and 4′ above), we have several
alternatives. The simplest idea is to scan the whole interval from i′ + 1 to i; this results in overall
O(n2) running time. A better alternative would be to keep an array M of size σ, such that the
minimum is always given by M [c] if we induce an LCP-value in bucket c. To keep M up-to-date,

8

after each step i we first set M [c] to H[i], and further update all other entries in M that are larger
than H[i] by H[i]; this approach has O(nσ) running time. A further refinement of this technique
stores the values in M in sorted order and uses binary search on M to find the minima; this results
in overall O(n log σ) running time.

In subsequent sections, we will see how to preprocess an arbitrary static array of length n into a
data structure of size O(n) such that subsequently we can find the minimum in arbitrary ranges in
the array in O(1) time (so called range minimum queries or RMQs). With some changes, this data
structure can also be applied to our dynamic LCP-array, as briefly outlined next for step 3′ (the
adjustments for step 4′ or obvious). Recall that the queries lie within a single bucket (called c′),
and every bucket is subdivided into an L- and an S-bucket. The idea is to also subdivide the query
into an L- and an S-query, and return the minimum of the two. The S-queries are simple to handle:
in step 3′, only S*-suffixes will be scanned, and these are static. Hence, we can preprocess every S-
type bucket with a static data structure for constant-time range minima, using overall linear space.
The L-queries are more difficult, as elements keep being written to them during the scan. However,
these updates occur in a very regular fashion, namely in a left-to-right manner. This makes the
problem much simpler. Also, the sizes of the arrays to be prepared for RMQs are known in advance
(namely the sizes of the L-buckets). As we shall see later, the data structure for constant-time
RMQs consists of precomputed queries for suitably-sized subarrays. Hence, whenever a subarray
to be precomputed for RMQs has been entirely filled, we precompute the answer to this RMQ. As
only completely filled subarrays will be queried, this is enough to answer all occurring RMQs.

3.7.3 Computing LCP-Values of S*-suffixes

This section describes how to compute the LCP-values of the suffixes in the sample set (step 1′

above). The recursive call to compute the suffix array A′ for the text T ′ (the text formed by the
names of the S*-substrings) also yields the LCP-array H ′ for T ′. The problem is that these LCP-
values refer to characters vi in the reduced alphabet [1, σ′], which correspond to S*-substrings Ri in
T . Hence, we need to “scale” every LCP-value in H ′ by the lengths of the actual S*-substrings that
constitute this longest common prefix: a value H ′[k] refers to the substring vA′[k] . . . vA′[k]+H′[k]−1

of T ′, and actually implies an LCP-value of at least
∑H′[k]−1

i=0 |RA′[k]+i| between the corresponding
S*-suffixes in T . We say “at least” because also the first mismatching reduced characters vA′[k]+H′[k]

and vA′[k−1]+H′[k] could contribute some actual characters to the true LCP; we will come back to
this issue at the end of this section.

A naive implementation of the sum
∑H′[k]−1

i=0 |RA′[k]+i| could again result in O(n2) running
time, consider the text T = abab . . . ab. However, we can make use of the fact that the suffixes
of T ′ appear lexicographically ordered in T ′: when “scaling” H ′[k], we know that the first m =
min(H ′[k − 1], H ′[k]) S*-substrings match, and can hence compute the actual LCP-value as

H′[k]−1∑
i=0

|RA′[k]+i| =
m−1∑
i=0

|RA′[k]+i|︸ ︷︷ ︸
already computed

+

H′[k]−1∑
i=m

|RA′[k]+i| .

This way, by an amortized argument it is easy to see that each character in T contributes to at
most 2 additions, resulting in an overall O(n) running time.

The final thing to do is to account for the fact that the first mismatching reduced characters
vA′[k]+H′[k] and vA′[k−1]+H′[k] could contribute some actual characters to the true LCP. Stated

9

differently, we need to know the LCP-values of arbitrary pairs of S*-substrings. To this end, we
take the sorted S*-substrings in order, and compute the LCP of neighbouring entries naively in
overall O(n) time (this step can actually be incorporated without any extra costs into the naming
step of the SA-construction). Then the LCP of any two S*-substrings corresponds to the minimum
LCP-value between the two strings in the sorted list, which can be found in O(1) time with a data
structure for constant-time RMQs (to be discussed later).

3.7.4 Computing LCP-values at the L/S-Seam

There is one subtlety in the above inducing algorithm we have withheld so far, namely that of
computing the LCP-values between the last L-suffix and the first S-suffix in a given c-bucket (we
call this position the L/S-seam). More precisely, when reaching an L/S-seam in step 3′, we have
to re-compute the LCP-value between the first S*-suffix in the c-bucket (if it exists) and the last
L-suffix in the same c-bucket (the one that we just induced), in order to induce correct LCP-values
when stepping through the S*-suffixes in subsequent iterations. Likewise, when placing the very
first S-suffix in its c-bucket in step 4′, we need to compute the LCP-value between this induced
S-suffix and the largest L-suffix in the same c-bucket. (Note that step 4 might place an S-suffix
before all S*-suffixes, so we cannot necessarily re-use the LCP-value computed at the L/S-seam in
step 3′.)

The following lemma shows that the LCP-computation at L/S-seams is particularly easy:

Lemma 6. Let T i be an L-suffix, T j an S-suffix, and ti = c = tj (the suffixes are in the same
c-bucket in A). Further, let ` ≥ 1 denote the length of the longest common prefix of T i and T j.
Then

Ti...i+`−1 = c` = Tj...j+`−1 .

Proof. Assume that ti+k = c′ = ti+k for some 2 ≤ k < ` and c′ 6= c. Then if c′ < c, both T i and T j

are of type L, and otherwise (c′ > c), they are both of type S. In any case, this is a contradiction
to the assumption that T i is of type L, and T j of type S.

In words, the above lemma states that the longest common prefix at the L/S-seam can only
consist of equal characters. Therefore, a naive computation of the LCP-values at the L/S-seam
is sufficient to achieve overall linear running time: every character ti contributes at most to the
computation at the L/S-seam in the ti-bucket, and not in any other c-bucket for c 6= ti.

Theorem 7. We can construct the LCP array for a text of length n in O(n) time.

4 Range Minimum Queries

Range Minimum Queries (RMQs) are a versatile tool for many tasks in exact and approximate
pattern matching, as we shall see at various points in this lecture. They ask for the position of the
minimum element in a specified sub-array, formally defined as follows.

Definition 10. Given an array H[1, n] of n integers (or any other objects from a totally ordered
universe) and two indices 1 ≤ i ≤ j ≤ n, rmqH(i, j) is defined as the position of the minimum in
H’s sub-array ranging from i to j, in symbols: rmqH(i, j) = argmini≤k≤j H[k].

10

We often omit the subscript H if the array under consideration is clear from the context.
Of course, an RMQ can be answered in a trivial manner by scanning H[i, j] (H’s sub-array

ranging from position i to j) for the minimum each time a query is posed. In the worst case, this
takes O(n) query time.

However, if H is static and known in advance, and there are several queries to be answered
on-line, it makes sense to preprocess H into an auxiliary data structure (called index or scheme)
that allows to answer future queries faster. As a simple example, we could precompute all possible(
n+1

2

)
RMQs and store them in a table M of size O(n2) — this allows to answer future RMQs in

O(1) time by a single lookup at the appropriate place in M .
We will show in this section that this naive approach can be dramatically improved, as the

following proposition anticipates:

Proposition 8. An array of length n can be preprocessed in time O(n) such that subsequent range
minimum queries can be answered in optimal O(1) time.

4.1 Linear Equivalence of RMQs and LCAs

Recall the definition of range minimum queries (RMQs): rmqD(`, r) = argmin`≤k≤rD[k] for an
array D[1, n] and two indices 1 ≤ ` ≤ r ≤ n. We show in this section that a seemingly unrelated
problem, namely that of computing lowest common ancestors (LCAs) in static rooted trees, can
be reduced quite naturally to RMQs.

Definition 11. Given a rooted tree T with n nodes, lcaT (v, w) for two nodes v and w denotes the
unique node ` with the following properties:

1. Node ` is an ancestor of both v and w.

2. No descendant of ` has property (1).

Node ` is called the lowest common ancestor of v and w.

The reduction of an LCA-instance to an RMQ-instance works as follows:

• Let r be the root of T with children u1, . . . , uk.

• Define T ’s inorder tree walk array I = I(T) recursively as follows:

– If k = 0, then I = [r].

– If k = 1, then I = I(Tu1) ◦ [r].

– Otherwise, I = I(Tu1) ◦ [r] ◦ I(Tu2) ◦ [r] ◦ · · · ◦ [r] ◦ I(Tuk), where “◦” denotes array
concatenation. Recall that Tv denotes T ’s subtree rooted at v.

• Define T ’s depth array D = D(T) (of the same length as I) such that D[i] equals the tree-
depth of node I[i].

• Augment each node v in T with a “pointer” pv to an arbitrary occurrence of v in I (pv = j
only if I[j] = v).

Lemma 9. The length of I (and of D) is between n (inclusively) and 2n (exclusively).

11

Proof. By induction on n.

n = 1: The tree T consists of a single leaf v, so I = [v] and |I| = 1 < 2n.

≤ n→ n+ 1: Let r be the root of T with children u1, . . . , uk. Let ni denote the number of nodes
in Tui . Recall I = I(Tu1) ◦ [r] ◦ · · · ◦ [r] ◦ I(Tuk). Hence,

|I| = max(k − 1, 1) +
∑

1≤i≤k
|I(Tui)|

≤ max(k − 1, 1) +
∑

1≤i≤k
(2ni − 1) (by the induction hypothesis)

= max(k − 1, 1)− k + 2
∑

1≤i≤k
ni

≤ 1 + 2
∑

1≤i≤k
ni

= 1 + 2(n− 1)

< 2n .

Here comes the desired connection between LCA and RMQ:

Lemma 10. For any pair of nodes v and w in T , lcaT (v, w) = I[rmqD(pv, pw)].

Proof. Consider the inorder tree walk I = I(T) of T . Assume pv ≤ pw (otherwise swap). Let `
denote the LCA of v and w, and let u1, . . . , uk be `’s children. Look at

I(T`) = I(Tu1) ◦ · · · ◦ I(Tux) ◦ [`] ◦ · · · ◦ [`] ◦ I(Tuy) ◦ · · · ◦ I(Tuk)

such that v ∈ Tux and w ∈ Tuy (v = ` or w = ` can be proved in a similar manner).
Note that I(T`) appears in I exactly the same order, say from a to b: I[a, b] = I(T`). Now let

d be the tree depth of `. Because `’s children ui have a greater tree depth than d, we see that D
attains its minima in the range [a, b] only at positions i where the corresponding entry I[i] equals
`. Because pv, pw ∈ [a, b], and because the inorder tree walk visits ` between ux and uy, we get the
result.

To summarize, if we can solve RMQs in O(1) time using O(n) space, we also have a solution
for the LCA-problem within the same time- and space-bounds.

Interestingly, this reduction also works the other way around: a linear-space data structure for
O(1) LCAs implies a linear-space data structure for O(1) RMQs. To this end, we need the concept
of Cartesian Trees:

Definition 12. Let A[1, s] be an array of size n. The Cartesian Tree C(A) of A is a labelled binary
tree, recursively defined as follows:

• Create a root node r and label it with p = argmin1≤i≤nA[i].

• The left and right children of r are the roots of the Cartesian Trees C(A[1, p−1]) and C(A[p+
1, n]), respectively (if existent).

12

Constructing the Cartesian Tree according to this definition requires O(n2) time (scanning
for the minimum in each recursive step), or maybe O(n log n) time after an initial sorting of A.
However, there is also a linear time algorithm for constructing C(A), which we describe next.

Let Ci denote the Cartesian Tree for A[1, i]. Tree C1 just consists of a single node r labelled with
1. We now show how to obtain Ci+1 from Ci. Let the rightmost path of Ci be the path v1, . . . , vk in
Ci, where v1 is the root, and vk is the node labelled i. Let li be the label of node vi for 1 ≤ i ≤ k.

To get Ci+1, climb up the rightmost path (from vk towards the root v1) until finding the first
node vy where the corresponding entry in A is not larger than A[i+ 1]:

A[ly] ≤ A[i+ 1], and A[lz] > A[i+ 1] for all y < z ≤ k .

Then insert a new node w as the right child of vy (or as the root, if vy does not exist), and label w
with i+ 1. Node vy+1 becomes the left child of w. This gives us Ci+1.

The linear running time of this algorithm can be seen by the following amortized argument:
each node is inserted onto the rightmost path exactly once. All nodes on the rightmost path (except
the last, vy) traversed in step i are removed from the rightmost path, and will never be traversed
again in steps j > i. So the running time is proportional to the total number of removed nodes
from the rightmost path, which is O(n), because we cannot remove more nodes than we insert.

How is the Cartesian Tree related to RMQs?

Lemma 11. Let A and B be two arrays with equal Cartesian Trees. Then rmqA(`, r) = rmqB(`, r)
for all 1 ≤ ` ≤ r ≤ n.

Proof. By induction on n.

n = 1: C(A) = C(B) consists of a single node labelled 1, and rmq(1, 1) = 1 in both arrays.

≤ n→ n+ 1: Let v be the root of C(A) = C(B) with label µ. By the definition of the Cartesian
Tree,

argmin
1≤k≤n

A[k] = µ = argmin
1≤k≤n

B[k] . (1)

Because the left (and right) children of C(A) and C(B) are roots of the same tree, this implies
that the Cartesian Trees C(A[1, µ−1]) and C(B[1, µ−1]) (and C(A[µ+1, n]) and C(B[µ+1, n]))
are equal. Hence, by the induction hypothesis,

rmqA(`, r) = rmqB(`, r)∀1 ≤ ` ≤ r < µ, and rmqA(`, r) = rmqB(`, r)∀µ < ` ≤ r ≤ n. (2)

In total, we see that rmqA(`, r) = rmqB(`, r) for all 1 ≤ ` ≤ r ≤ n, because a query must
either contain position µ (in which case, by (1), µ is the answer to both queries), or it must
be completely to the left/right of µ (in which case (2) gives what we want).

4.2 O(1)-RMQs with O(n log n) Space

We already saw that with O(n2) space, O(1)-RMQs are easy to realize by simply storing the answers
to all possible RMQs in a two-dimensional table of size n×n. We show in this section a little trick
that lowers the space to O(n log n).

13

The basic idea is that it suffices to precompute the answers only for query lengths that are a
power of 2. This is because an arbitrary query rmqD(l, r) can be decomposed into two overlapping
sub-queries of equal length 2h with h = blog2(r − l + 1)c:

m1 = rmqD(l, l + 2h − 1) and m2 = rmqD(r − 2h + 1, r)

The final answer is then given by rmqD(l, r) = argminµ∈{m1,m2}D[µ]. This means that the pre-
computed queries can be stored in a two-dimensional table M [1, n][1, blog2 nc], such that

M [x][h] = rmqD(x, x+ 2h − 1)

whenever x+ 2h − 1 ≤ n. Thus, the size of M is O(n log n). With the identity

M [x][h] = rmqD(x, x+ 2h − 1)

= argmin{D[i] : i ∈ {x, . . . , x+ 2h − 1}}
= argmin{D[i] : i ∈ {rmqD(x, x+ 2h−1 − 1),rmqD(x+ 2h−1, x+ 2h − 1)}}
= argmin{D[i] : i ∈ {M [x][h− 1],M [x+ 2h−1][h− 1]}} ,

we can use dynamic programming to fill M in optimal O(n log n) time.

4.3 O(1)-RMQs with O(n) Space

We divide the input array D into blocks B1, . . . , Bm of size s := log2 n
4 (where m = dns e denotes

the number of blocks): B1 = D[1, s], B2 = D[s+ 1, 2s], and so on. The reason for this is that any
query rmqD(l, r) can be decomposed into at most three non-overlapping sub-queries:

• At most one query spanning exactly over several blocks.

• At most two queries completely inside of a block.

We formalize this as follows: Let i = d lse and j = d rse be the block numbers where l and r occur,
respectively. If i = j, then we only need to answer one in-block-query to obtain the final result.
Otherwise, rmqD(l, r) is answered by rmqD(l, r) = argminµ∈{m1,m2,m3}D[µ], where the mi’s are
obtained as follows:

• m1 = rmqD(l, is)

• m2 = rmqD(is+ 1, (j − 1)s) (only necessary if j > i+ 1)

• m3 = rmqD((j − 1)s+ 1, r)

We first show how to answer queries spanning exactly over several blocks (i.e., finding m2).

4.3.1 Queries Spanning Exactly over Blocks

Define a new array D′[1,m], such that D′[i] holds the minimum inside of block Bi: D′[i] =
min(i−1)s<j≤isD[j]. We then prepare D′ for constant-time RMQs with the algorithm from Sect.
4.2, using

O(m logm) = O(
n

s
log(

n

s
)) = O(

n

log n
log

n

log n
) = O(n)

space.
We also define a new array W [1,m], such that W [i] holds the position where D′[i] occurs in

D: W [i] = argmin(i−1)s<j≤isD[j]. A query of the form rmqD(is+ 1, (j − 1)s) is then answered by
W [rmqD′(i+ 1, j − 1)].

14

4.3.2 Queries Completely Inside of Blocks

We are left with answering “small” queries that lie completely inside of blocks of size s. These are
actually more complicated to handle than the “long” queries from Sect. 4.3.1.

The consequence of this is that we only have to precompute in-block RMQs for blocks with
different Cartesian Trees, say in a table called P . But how do we know in O(1) time where to look
up the results for block Bi? We need to store a “number” for each block in an array T [1,m], such
that T [i] gives the corresponding row in the lookup-table P .

Lemma 12. A binary tree T with s nodes can be represented uniquely in 2s+ 1 bits.

Proof. We first label each node in T with a ’1’ (these are not the same labels as for the
Cartesian Tree!). In a subsequent traversal of T , we add “missing children” (labelled ’0’) to every
node labelled ’1’, such that in the resulting tree T ′ all leaves are labelled ’0’. We then list the
0/1-labels of T ′ level-wise (i.e., first for the root, then for the nodes at depth 1, then for depth 2,
etc.). This uses 2s+ 1 bits, because in a binary tree without nodes of out-degree 1, the number of
leaves equals the number of internal nodes plus one.

It is easy to see how to reconstruct T from this sequence. Hence, the encoding is unique.
So we perform the following steps:

1. For every block Bi, we compute the bit-encoding of C(Bi) and store it in T [i]. Because
s = logn

4 , every bit-encoding can be stored in a single computer word.

2. For every possible bit-vector t of length 2s + 1 that describes a binary tree on s nodes, we
store the answers to all RMQs in the range [1, s] in a table:

P [t][l][r] = rmqB(l, r) for some array B of size s whose Cartesian Tree has bit-encoding t

Finally, to answer a query rmqD(l, r) which is completely contained within a block i = d lse = d rse,
we simply look up the result in P [T [i]][l − (i− 1)s][r − (i− 1)s].

To analyze the space, we see that T occupies m = n/ log n = O(n) words. It is perhaps more
surprising that also P occupies only a linear number of words, namely order of

22s · s · s =
√
n · log2 n = O(n) .

Construction time of the data structures isO(ms) = O(n) for T , andO(22s·s·s·s) = O(
√
n·log3 n) =

O(n) for P (the additional factor s accounts for finding the minimum in each precomputed query
interval).

This finishes the description of the algorithm.

5 Repeats

Definition 13. Let T = t1t2 . . . tn be a text of length n. A triple (i, j, `) with 1 ≤ i < j ≤ n− `+ 1
is called repeat if Ti...i+`−1 = Tj...j+`−1.

We look at three different tasks:

1. Output all triples (i, j, `) that are a repeat according to Def. 13.

15

2. Output all strings α ∈ Σ? such that there is a repeat (i, j, `) with Ti...i+`−1 = α(= Tj...j+`−1).

3. Like (2), but instead of outputting α just output a pair (l, r) with α = Tl...r.

Task (1) yields probably many triples (consider T = an), whereas the returned strings in task
(2) may probably be very long. The ouput in task (3) may be seen as a space-efficient representation
of (2). Nevertheless, in most cases we are happy with repeats that cannot be extended, as captured
in the following section.

5.1 Maximal Repeats

Definition 14. A repeat (i, j, `) is called

• left-maximal, if ti−1 6= tj−1.

• right-maximal, if ti+` 6= tj+`.

• maximal, if it is both left- and right-maximal.

To make this definition valid for the text borders, we extend T with t0 = £ to the left, and
with tn+1 = $ to the right (£, $ 6∈ Σ).

Observation 3. If (i, j, `) is a right-maximal repeat, then there must be an internal node v in T ’s
suffix tree S with v = Ti...i+`−1. For otherwise S could not display both Ti...i+` and Tj...j+`, which
must be different due to ti+` 6= tj+`.

Let
RT = {α ∈ Σ? : there is a maximal repeat (i, j, `) with Ti...i+`−1 = α}

be the set of T ’s maximal repeat strings (task (2) above). Then the observation above shows that
|RT | < n, as there are only n leaves and hence less than n internal nodes in the suffix tree. Hence,
for task (3) we should be able to come up with a O(n)-time algorithm.

It remains to show how left-maximality can be checked efficiently.

Definition 15. Let S be T ’s suffix tree. A node v in S is called left-diverse if there are at least two
leaves b1 and b2 below v such that t`(b1)−1 6= t`(b2)−1. [Recall that `(·) denotes the leaf label (=suffix
number)]. Character t`(v)−1 is called v’s left-character.

Lemma 13. A repeat (i, j, `) is maximal iff there is left-diverse node v in T ’s suffix tree S with
v = Ti...i+`−1.

Proof. It remains to care about left-maximality.

“⇒” Let (i, j, `) be maximal. Let v be the node in S with v = Ti...i+`−1, which must exist due to
right-maximality. Due to left-maximality, we know ti−1 6= tj−1. Hence there are two different
leaves b1 and b2 below with `(b1) = i and `(b2) = j. So v is left-diverse.

“⇐” analogous.

This yields the following algorithm to compute RT :

In a depth-first search through S do:

16

– Let v be the current node.

– If v is a leaf: propagate v’s left-character to its parent.

– If v is internal with children v1, . . . , vk:

∗ If one of the vi’s is left-diverse, or if at least two of the vi’s have a different left-
character: output v and propagate “left-diverse” to the parent.

∗ Otherwise, propagate the unique left-character of the vi’s to the parent.

We formulated the above algorithm to solve task (2) above, but it can easily be adapted to task
(1) or (3). Note in particular the linear running time for (3). For (1), we also have to propagate
lists of positions La(v) to the parent, where La(v) contains all leaf labels below v that have a ∈ Σ
as their left-character. These lists have to be concatenated in linear time (using linked lists with
additional pointers to the ends), and in each step we have to output the Cartesian product of La(v)
and Lb(v) for all a, b ∈ Σ, a 6= b. The resulting algorithm is still optimal (in an output-sensitive
meaning).

5.2 Super-Maximal Repeats

The maximal repeats in Def. 14 can still contain other maximal repeats, as the example T =
axybxxyyyaxyb shows (both xy and axyb are maximal repeats, for example). This is prevented by
the following definition:

Definition 16. A maximal repeat (i, j, `) is called super-maximal if there is no maximal repeat
(i′, j′, `′) such that Ti...i+`−1 is a proper subword of Ti′...i′+`−1.

The algorithmic difference to the previous section is that we only have to consider internal
nodes whose children are all leaves. Hence, we can also report all k super-maximal repeats in
output-optimal time O(n+ k).

5.3 Longest Common Substrings

As a last simple example of repeated sequences, consider the following problem: We are given two
strings T1 and T2. Our task is to return the longest string α ∈ Σ? which occurs in both T1 and T2.

Computer-science pioneer Don Knuth conjectured in the late 60’s that no linear-time algorithm
for this problem can exist. However, he was deeply wrong, as suffix trees make the solution almost
trivial: Build a suffix tree S for T = T1#T2. In a DFS through S (where v is the current node),
propagate to v’s parent from which of the Ti’s the suffixes below v come (either from T1, T2, or
from both). During the DFS, remember the node w of greatest string depth which has suffixes
from both T1 and T2 below it. In the end, w is the solution. Total time is O(n) for n = |T1|+ |T2|.

6 Tandem Repeats and Related Repetitive Structures

As usual, let T = t1t2 . . . tn be a string of length n over an alphabet Σ. Our ultimate goal will be
to find all tandem repeats in T , i.e. subwords of the form αα for some α ∈ Σ+. Recall that Ti...j is
a shorthand for titi+1 . . . tj , and is defined to be the empty string ε if j < i.

17

6.1 Longest Common Prefixes and Suffixes

An indispensable tool in pattern matching are efficient implementations of functions that compute
longest common prefixes and longest common suffixes of two strings. We will be particularly
interested in longest common prefixes of suffixes from the same string T :

Definition 17. For a text T of length n and two indices 1 ≤ i, j ≤ n, lcpT (i, j) denotes the
length of the longest common prefix of the suffixes starting at position i and j in T , in symbols:
lcpT (i, j) = max{` ≥ 0 : Ti...i+`−1 = Tj...j+`−1}.

Note that lcp(·) only gives the length of the matching prefix; if one is actually interested in the
prefix itself, this can be obtained by Ti...i+lcp(i,j)−1.

Note also that the LCP-array H from Sect. 3.3 holds the lengths of longest common prefixes of
lexicographically consecutive suffixes: H[i] = lcp(A[i], A[i− 1]). Here and in the remainder of this
chapter, A is again the suffix array of text T .

But how do we get the lcp-values of suffixes that are not in lexicographic neighborhood? The
key to this is to employ RMQs over the LCP-array, as shown in the next lemma (recall that A−1

denotes the inverse suffix array of T).

Lemma 14. Let i 6= j be two indices in T with A−1[i] < A−1[j] (otherwise swap i and j). Then
lcp(i, j) = H[rmqH(A−1[i] + 1, A−1[j])].

Proof. First note that any common prefix ω of T i and T j must be a common prefix of TA[k]

for all A−1[i] ≤ k ≤ A−1[j], because these suffixes are lexicographically between T i and T j and
must hence start with ω. Let m = rmqH(A−1[i] + 1, A−1[j]) and ` = H[m]. By the definition of
H, Ti...i+`−1 is a common prefix of all suffixes TA[k] for A−1[i] ≤ k ≤ A−1[j]. Hence, Ti...i+`−1 is a
common prefix of T i and T j .

Now assume that Ti...i+` is also a common prefix of T i and T j . Then, by the lexicographic order
of A, Ti...i+` is also a common prefix of TA[m−1] and TA[m]. But |Ti...i+`| = `+ 1, contradicting the
fact that H[m] = ` tells us that TA[m−1] and TA[m] share no common prefix of length more than
`.

The above lemma implies that with the inverse suffix array A−1, the LCP-arrayH, and constant-
time RMQs on H, we can answer lcp-queries for arbitrary suffixes in O(1) time.

Now consider the “reverse” problem, that of finding longest common suffixes of prefixes.

Definition 18. For a text T of length n and two indices 1 ≤ i, j ≤ n, lcsT (i, j) denotes the
length of the longest common suffix of the prefixes ending at position i and j in T , in symbols:
lcsT (i, j) = max{k ≥ 0 : Ti−k+1...i = Tj−k+1...j}.

For this, it suffices to build the reverse string T̃ , and prepare it for lcp-queries as shown before.
Then lcsT (i, j) = lcpT̃ (n− i+ 1, n− j + 1).

6.2 Tandem Repeats and Runs

Definition 19. A string S ∈ Σ∗ that can be written as S = ωk for ω ∈ Σ+ and k ≥ 2 is called a
tandem repeat.

The usual task is to extract all tandem repeats from a given sequence of nucleotides (or, less
common, amino acids). We refer the reader to Sect. 7.11.1 of D. Gusfield’s textbook for the
significance of tandem repeats in computational biology.

18

To cope with the existence of overlapping tandem repeats, the concept of runs turns out to be
useful.

Definition 20. Given indices b and e with 1 ≤ b ≤ e ≤ n and an integer ` ≥ 1, the triple (b, e, `)
is called a run in T if

1. Tb...e = ωkν for some ω ∈ Σ` and k ≥ 2, and ν ∈ Σ∗ a (possibly empty) proper prefix of ω.

2. If b > 1, then tb−1 6= tb+`−1 (“maximality to the left”).

3. If e < n, then te+1 6= te−`+1 (“maximality to the right”).

4. There is no `′ < ` such that (b, e, `′) is also a run (“primitiveness of ω”).

Integer ` is called the period of the run, and e−b+1
` its (rational) exponent.

It should be clear that each tandem repeat is contained in a run, and that tandem repeats can
be easily extracted from runs. Hence, from now on we concentrate on the computation of all runs
in T .

The following lemma, which is sometimes taken as the definition of runs, follows easily from
Definition 20.

Lemma 15. Let (b, e, `) be a run in T . Then tj−` = tj for all b+ ` ≤ j ≤ e.

Proof. We know that Tb...e = ωkν for some ω with |ω| = ` and ν a proper prefix of ω. If j
is inside of the i’th occurrence of ω in Tb...e (i ≥ 2), going ` positions to the left gives the same
character in the (i − 1)’th occurrence of ω in Tb...e. The same is true if j is inside of ν, because ν
is a prefix of ω.

The following proposition has a venerable history in computer science. Proving it has become
simpler since the original publication of Kolpakov and Kucherov from 1999, but it would still take
about 4 pages of dense mathematics, so we omit the proof in this lecture.

Proposition 16. The number of runs in a text of length n is in O(n).

We now give a first hint at how we can use our previous knowledge to tackle the computation
of all runs. From this point onwards, we will not require the period of a run be minimal (fourth
point in Definition 20) — this condition can be easily incorporated into the whole algorithm.

Lemma 17. For ` ≤ bn2 c and an index j with ` < j ≤ n− `+ 1, let s = lcs(j − 1, j − `− 1) and
p = lcp(j, j − `). Then the following three statements are equivalent:

1. There is a run (b, e, `) in T with b+ ` ≤ j ≤ e+ 1

2. s+ p ≥ `

3. (j − `− s, j + p− 1, `) is a run in T

Proof. (1)⇒(2): Let (b, e, `) be the run. We decompose Tb...e into three strings u, v, w with
u = Tb...j−`−1, v = Tj−`...j−1, and w = Tj...e, so that Tb...e = uvw (u and w are possibly empty).
Due to Lemma 15, we have that |u| = s and |w| = p. Because |v| = ` by construction and
|Tb...e| = e− b+ 1, we get

s+ p+ ` = |Tb...e| = e− b+ 1 ≥ 2` ,

19

where the last inequality follows from the “k ≥ 2” in Definition 20. Hence, s+ p ≥ `.
(2)⇒(3): Let s+ p ≥ `. First note that due to the definition of lcp/lcs, we get that

Tj−`−s...j−`+p−1 = Tj−s...j+p−1 . (∗)

Let ω = Tj−`−s...j−s−1 be the prefix of Tj−`−s...j−`+p−1 of length `. Due to (∗) and the fact that
s + p ≥ ` implies that j − ` − s + (s + p) ≥ j − s, we get Tj−s...j+`−s−1 = ω. This continues until
no additional ω fits before position j + p − 1. We then define the remaining prefix of ω that fits
before position j + p − 1 as ν — this shows that Tj−`−s...j+p−1 = ωkν for some k ≥ 2. Further,
because of the maximality of lcp/lcs we see that tj−`−s−1 6= tj−s−1, and likewise tj+p 6= tj+p−`.
Hence, (j − `− s, j + p− 1, `) is a run in T .
(3)⇒(1): This is obvious.

6.3 Algorithm

Lemma 17 gives rise to a first algorithm for computing all the runs in T : simply check for every
possible period ` ≤ bn2 c and every j if there is a run (b, e, `) with b+` ≤ j ≤ e+1, using the lemma.

A key insight is that e+ 1 ≥ b+ 2` for every run (b, e, `), and hence we can increase j by ` after
every check at position j, without missing any runs. The following pseudo-code incorporates these
ideas.

Algorithm 2: O(n log n)-algorithms for locating all runs in a string

for ` = 1, . . . , bn2 c do
j ← 2`+ 1;
while j ≤ n+ 1 do

s← lcs(j − 1, j − `− 1);
p← lcp(j, j − `);
if s+ p ≥ ` and p < ` then output the run (j − `− s, j + p− 1, `);
j ← j + `;

end

end

In step ` of the outer for-loop, dn` e positions j are tested in the inner while-loop. Hence, the
total running time is order of

n/2∑
`=1

n

`
≤ n

n∑
`=1

1

`
= O(n log n) .

Hence, we get:

Theorem 18. We can find all runs in a string of length n in O(n log n) time.

In fact, some subtle refinements of the above algorithm (which we do not discuss in this lecture
due to lack of time) lead to:

Proposition 19. We can find all runs in a string of length n in O(n) time.

20

7 Lempel-Ziv Compression

7.1 Longest Previous Substring

We now show how to compute an array L of longest previous substrings, where L[i] holds the length
of the longest prefix of T i that has another occurrence in T starting strictly before i.

Definition 21. The longest-previous-substring-array L[1, n] is defined such that L[i] = max{` ≥
0 : ∃k < i with Ti...i+`−1 = Tk...k+`−1}.

Note that for a character a ∈ Σ which has its first occurrence in T at position i, the above
definition correctly yields L[i] = 0, as in this case any position k < i satisfies Ti...i−1 = ε = Tk...k−1.

If we are also interested in the position of the longest previous substring, we need another array:

Definition 22. The array O[1, n] of previous occurrences is defined by:

O[i] =

{
k if Ti...i+L[i]−1 = Tk...k+L[i]−1 6= ε

⊥ otherwise

A first approach for computing L is given by the following lemma, which follows directly from
the definition of L and lcp:

Lemma 20. For all 2 ≤ i ≤ n: L[i] = max{lcp(i, j) : 1 ≤ j < i}.

For convenience, from now on we assume that both A and H are padded with 0’s at their
beginning and end: A[0] = H[0] = A[n+ 1] = H[n+ 1] = 0. We further define T 0 to be the empty
string ε.

Definition 23. Given the suffix array A and an index 1 ≤ i ≤ n in A, the previous smaller value
function PSVA(·) returns the nearest preceding position where A is strictly smaller, in symbols:
PSVA(i) = max{k < i : A[k] < A[i]}. The next smaller value function NSV(·) is defined similarly
for nearest succeeding positions: NSVA(i) = min{k > i : A[k] < A[i]}.

The straightforward solution that stores the answers to all PSV-/NSV-queries in two arrays
P [1, n] and N [1, n] is sufficient for our purposes. Both arrays can be computed from left to right,
setting P [i] to i− 1 if A[i− 1] < A[i]. Otherwise, continue as follows: if A[P [i− 1]] < A[i], set P [i]
to P [i − 1]. And so on (P [P [i − 1]], P [P [P [i − 1]]], . . .), until reaching the beginning of the array
(set P [0] = −∞ for handling the border case). By a similar argument we used for constructing
Cartesian trees, this algorithms takes O(n) time.

The next lemma shows how PSVs/NSVs can be used to compute L efficiently:

Lemma 21. For all 1 ≤ i ≤ n, L[A[i]] = max(lcp(A[PSVA(i)], A[i]), lcp(A[i], A[NSVA(i)])).

Proof. Rewriting the claim of Lemma 20 in terms of the suffix array, we get

L[A[i]] = max{lcp(A[i], A[j]) : A[j] < A[i]}

for all 1 ≤ i ≤ n. This can be split up as

L[A[i]] = max(max{lcp(A[i], A[j]) : 0 ≤ j < i and A[j] < A[i]},
max{lcp(A[i], A[j]) : i < j ≤ n and A[j] < A[i]}) .

21

To complete the proof, we show that lcp(A[PSV(i)], A[i]) = max{lcp(A[i], A[j]) : 0 ≤ j <
i and A[j] < A[i]} (the equation for NSV follows similarly). To this end, first consider an in-
dex j < PSV(i). Because of the lexicographic order of A, any common prefix of TA[j] and TA[i] is
also a prefix of TA[PSV(i)]. Hence, the indices j < PSV(i) need not be considered for the maximum.
For the indices j with PSV(i) < j < i, we have A[j] ≥ A[i] by the definition of PSV. Hence, the
maximum is given by lcp(A[PSV(i)], A[i]).

To summarize, we build the array L of longest common substrings in O(n) time as follows:

• Build the suffix array A and the LCP-array H.

• Calculate two arrays P and N such that PSVA(i) = P [i] and NSVA(i) = N [i].

• Prepare H for O(1)-RMQs, as lcp(A[PSV(i)], A[i]) = H[rmqH(P [i] + 1, i)] by Lemma 14.

• Build L by applying Lemma 21 to all positions i.

The array O of previous occurrences can be filled along with L, by writing to O[A[i]] the value
A[P [i]] if lcp(A[P [i]], A[i]) ≥ lcp(A[N [i]], A[i]), and the value A[N [i]] otherwise.

7.2 Lempel-Ziv Factorization

Although the Lempel-Ziv factorization is usually introduced for data compression purposes (gzip,
WinZip, etc. are all based on it), it also turns out to be useful for efficiently finding repetitive
structures in texts, due to the fact that it “groups” repetitions in some useful way.

Definition 24. Given a text T of length n, its LZ-decomposition is defined as a sequence of k
strings s1, . . . , sk, si ∈ Σ+ for all i, such that T = s1s2 . . . sk, and si is either a single letter not
occurring in s1 . . . si−1, or the longest factor occurring at least twice in s1s2 . . . si.

Note that the “overlap” in the definition above exists on purpose, and is not a typo!
We describe the LZ-factorization by a list of k pairs (b1, e1), . . . , (bk, ek) such that si = Tbi...ei .

We now observe that given our array L of longest previous substrings from the previous section,
we can obtain the LZ-factorization quite easily in linear time:

Algorithm 3: O(n)-computation of the LZ-factorization

i← 1, e0 ← 0;
while ei−1 < n do

bi ← ei−1 + 1;
ei ← bi + max(0, L[bi]− 1);
++i;

end

8 Burrows Wheeler Transformation

The Burrows-Wheeler Transformation was originally invented for text compression. Nonetheless,
it was noted soon that it is also a very useful tool in text indexing.

22

8.1 The Transformation

Definition 25. Let T = t1t2 . . . tn be a text of length n, where tn = $ is a unique character lexico-
graphically smaller than all other characters in Σ. Then the i-th cyclic shift of T is Ti...nT1...i−1.
We denote it by T (i).

Example 1.

T = CACAACCAC$

1 2 3 4 5 6 7 8 9 10

T (6) = CCAC$CACAA

The Burrows-Wheeler-Transformation (bwt) is obtained by the following steps:

1. Write all cyclic shifts T (i), 1 ≤ i ≤ n, column-wise next to each other.

2. Sort the columns lexicographically.

3. Output the last row. This is T bwt.

Example 2.

T = CACAACCAC$

1 2 3 4 5 6 7 8 9 10

C A C A A C C A C $
A C A A C C A C $ C
C A A C C A C $ C A
A A C C A C $ C A C
A C C A C $ C A C A
C C A C $ C A C A A
C A C $ C A C A A C
A C $ C A C A A C C
C $ C A C A A C C A
$ C A C A A C C A C

T (1) T (6)

$ A A A A C C C C C
C A C C C $ A A A C
A C $ A C C A C C A
C C C A A A C $ A C
A A A C C C C C A $
A C C C $ A A A C C
C $ A C C A C C C A
C C A A A C $ A A C
A A C $ C C C A C A
C C C C A A A C $ A

1 2 3 4 5 6 7 8 9 10

F (first)

TBWT =
L (last)

T (1)

⇒
sort

columns
lexicogr.

The text T bwt in the last row is also denoted by L (last), and the text in the first row by F
(first). Note:

• Every row in the bwt-matrix is a permutation of the characters in T .

• Row F is a sorted list of all characters in T .

• In row L = T bwt, similar characters are grouped together. This is why T bwtcan be compressed
more easily than T .

23

8.2 Construction of the BWT

The bwt-matrix needs not to be constructed explicitly in order to obtain T bwt. Since T is termi-
nated with the special character $, which is lexicographically smaller than any a ∈ Σ, the shifts
T (i) are sorted exactly like T ’s suffixes. Because the last row consists of the characters preceding
the corresponding suffixes, we have

T bwt[i] = tA[i]−1(= T (A[i])[n]) ,

where A denotes again T ’s suffix array, and t0 is defined to be tn (read T cyclically!). Because the
suffix array can be constructed in linear time (Thm. 7), we get:

Theorem 22. The BWT of a text length-n text over an integer alphabet can be constructed in
O(n) time.

Example 3.

T = CACAACCAC$

$ A A A A C C C C C
C A C C C $ A A A C
A C $ A C C A C C A
C C C A A A C $ A C
A A A C C C C C A $
A C C C $ A A A C C
C $ A C C A C C C A
C C A A A C $ A A C
A A C $ C C C A C A
C C C C A A A C $ A

1 2 3 4 5 6 7 8 9 10

F (first)

TBWT =
L (last)

A=10 4 8 2 5 9 3 7 1 6

8.3 The Reverse Transformation

The amazing property of the bwt is that it is not a random permutation of T ’s letters, but that it
can be transformed back to the original text T . For this, we need the following definition:

Definition 26. Let F and L be the strings resulting from the bwt. Then the last-to-front mapping
lf is a function lf : [1, n]→ [1, n], defined by

lf(i) = j ⇐⇒ T (A[j]) = (T (A[i]))(n) (⇐⇒ A[j] = A[i] + 1) .

(Remember that T (A[i]) is the i’th column in the bwt-matrix, and (T (A[i]))(n) is that column rotated
by one character downwards.)

Thus, lf(i) tells us the position in F where L[i] occurs.

24

Example 4.

T = CACAACCAC$

$ A A A A C C C C C
C A C C C $ A A A C
A C $ A C C A C C A
C C C A A A C $ A C
A A A C C C C C A $
A C C C $ A A A C C
C $ A C C A C C C A
C C A A A C $ A A C
A A C $ C C C A C A
C C C C A A A C $ A

1 2 3 4 5 6 7 8 9 10

F (first)

TBWT =
L (last)

LF = 6 7 8 9 2 3 4 10 1 5

Observation 4. Equal characters preserve the same order in F and L. That is, if L[i] = L[j]
and i < j, then lf(i) < lf(j). To see why this is so, recall that the bwt-matrix is sorted lex-
icographically. Because both the lf(i)’th and the lf(j)’th column start with the same character
a = L[i] = L[j], they must be sorted according to what follows this character a, say α and β. But
since i < j, we know α <lex β, hence lf(i) < lf(j).

F

L

aa

a a

α
α

β
β

i j

lf(i) lf(j)

This observation allows us to compute the lf-mapping without knowing the suffix array of T .

Definition 27. Let T be a text of length n over an alphabet Σ, and let L = T bwt be its bwt.

• Define C : Σ→ [1, n] such that C(a) is the number of occurrences in T of characters that are
lexicographically smaller than a ∈ Σ.

• Define occ : Σ × [1, n] → [1, n] such that occ(a, i) is the number of occurrences of a in L’s
length-i-prefix L[1, i].

Lemma 23. With the definitions above,

lf(i) = C(L[i]) + occ(L[i], i) .

Proof : Follows immediately from the observation above.

This gives rise to the following algorithm to recover T from L = T bwt.

25

1. Scan L = T bwt and compute array C[1, σ].

2. Compute the first row F from C; as F consists of all characters in L sorted lexicographically,
this step is trivial.

3. Compute occ(L[i], i) for all 1 ≤ i ≤ n.

4. Recover T = t1t2 . . . tn from right to left : we know that tn = $, and the corresponding cyclic
shift T (n) appears in column 1 in bwt. Hence, tn−1 = L[1]. Shift T (n−1) appears in column
lf(1), and thus tn−2 = L[lf(1)]. This continues until the whole text has been recovered:

tn−i = L[lf(lf(. . . (lf(1)) . . .))︸ ︷︷ ︸
i−1 applications of lf

]

Example 5.

Tn = $, k = 1
L[1] = C⇒ Tn−1 = C , k = LF(1) = 6
L[6] = C⇒ Tn−2 = A , k = LF(6) = 3
L[3] = C⇒ Tn−3 = C , k = LF(3) = 8
L[8] = C⇒ Tn−4 = C , k = LF(8) = 10
L[10] etc.

T reversed

C = 0 1 5

F = $ A A A A C C C C C

L = C C C C A A A C $ A

occ(L[i], i) = 1 2 3 4 1 2 3 5 1 4

$ A C

9 Backwards Search and FM-Indices

We are now going to explore how the BW-transformed text is helpful for (indexed) pattern match-
ing. Indices building on the BWT are called FM-indices, most likely in honor of their inventors
P. Ferragina and G. Manzini. From now on, we shall always assume that the alphabet Σ is good-
natured: σ = o(n/ log σ).

9.1 Model of Computation and Space Measurement

For the rest of this lecture, we work with the word-RAM model of computation. This means that
we have a processor with registers of width w (usually w = 32 or w = 64), where usual arithmetic
operations (additions, shifts, comparisons, etc.) on w-bit wide words can be computed in constant

26

time. Note that this matches all current computer architectures. We further assume that n, the
input size, satisfies n ≤ 2w, for otherwise we could not even address the whole input.

From now on, we measure the space of all data structures in bits instead of words, in order
to be able to differentiate between the various text indexes. For example, an array of n numbers
from the range [1, n] occupies ndlog ne bits, as each array cell stores a binary number consisting of
dlog ne bits. As another example, a length-n text over an alphabet of size σ occupies ndlog σe bits.
In this light, all text indexes we have seen so far (suffix trees, suffix arrays, suffix trays) occupy
O(n log n+ n log σ) bits. Note that the difference between log n and log σ can be quite large, e. g.,
for the human genome with σ = 4 and n = 3.4× 109 we have log σ = 2, whereas log n ≈ 32. So the
suffix array occupies about 16 times more memory than the genome itself!

9.2 Backward Search

We first focus our attention on the counting problem (p. 3); i.e., on finding the number of occurrences
of a pattern P1...m in T1...n. Recall from Chapter 8 that

• A denotes T ’s suffix array.

• L/F denotes the first/last row of the bwt-matrix.

• lf(·) denotes the last-to-front mapping.

• C(a) denotes the number of occurrences in T of characters lexicographically smaller than
a ∈ Σ.

• occ(a, i) denotes the number of occurrences of a in L[1, i].

Our aim is identify the interval of P in A by searching P from right to left (= backwards).
To this end, suppose we have already matched Pi+1...m, and know that the suffixes starting with
Pi+1...m form the interval [si+1, ei+1] in A. In a backwards search step, we wish to calculate the
interval [si, ei] of Pi...m. First note that [si, ei] must be a sub-interval of [C(Pi) + 1, C(Pi + 1)],
where (Pi + 1) denotes the character that follows Pi in Σ.

A =

C(Pi) + 1 C(Pi + 1)si ei ei+1si+1

Pi...m
Pi+1...m

PiPi F

backwards search step

So we need to identify, from those suffixes starting with Pi, those which continue with Pi+1...m.
Looking at row L in the range from si+1 to ei+1, we see that there are exactly ei − si + 1 many
positions j ∈ [si+1, ei+1] where L[j] = Pi.

27

A =

ei+1si+1

Pi+1...m

F

L

= Pi = Pi

6= Pi

From the BWT decompression algorithm, we know that characters preserve the same order in
F and L. Hence, if there are x occurrences of Pi before si+1 in L, then si will start x positions
behind C(Pi) + 1. This x is given by occ(Pi, si+1 − 1). Likewise, if there are y occurrences of Pi
within L[si+1, ei+1], then ei = si + y − 1. Again, y can be computed from the occ-function.

A =

C(Pi) + 1 C(Pi + 1)si ei ei+1si+1

Pi...m

Pi+1...m
PiPi F

L

= Pi = Pi

= occ(Pi, si+1 − 1)

This gives rise to the following, elegant algorithm for backwards search:

Algorithm 4: function backwards-search(P1...m)

s← 1; e← n;
for i = m. . . 1 do

s← C(Pi) + occ(Pi, s− 1) + 1;
e← C(Pi) + occ(Pi, e);
if s > e then

return “no match”;
end

end
return [s, e];

The reader should compare this to the “normal” binary search algorithm in suffix arrays. Apart
from matching backwards, there are two other notable deviations:

28

1. The suffix array A is not accessed during the search.

2. There is no need to access the input text T .

Hence, T and A can be deleted once T bwt has been computed. It remains to show how array C
and occ are implemented. Array C is actually very small and can be stored plainly using σ log n
bits.1 Because σ = o(n/ log n), |C| = o(n) bits. For occ, we have several options that are explored
in the rest of this chapter. This is where the different FM-Indices deviate from each other. In fact,
we will see that there is a natural trade-off between time and space: using more space leads to a
faster computation of the occ-values, while using less space implies a higher query time.

Theorem 24. With backwards search, we can solve the counting problem in O(m·tocc) time, where
tocc denotes the time to answer an occ(·)-query.

9.3 First Ideas for Implementing Occ

For answering occ(c, i), there are two simple possibilities:

1. Scan L every time an occ(·)-query has to be answered. This occupies no space, but needs
O(n) time for answering a single occ(·)-query, leading to a total query time of O(mn) for
backwards search.

2. Store all answers to occ(c, i) in a two-dimensional table. This table occupies O(nσ log n) bits
of space, but allows constant-time occ(·)-queries. Total time for backwards search is optimal
O(m).

For more more practical implementation between these two extremes, let us define the following:

Definition 28. Given a bit-vector B[1, n], rank1(B, i) counts the number of 1’s in B’s prefix B[1, i].
Operation rank0(B, i) is defined similarly for 0-bits.

In the lecture “Advanced Data Structures” (every winter semester) it is shown that a bit-vector
B, together with additional information for constant-time rank-operations, can be stored in n+o(n)
bits. This can be used as follows for implementing occ: For each character c ∈ Σ, store an indicator
bit vector Bc[1, n] such that Bc[i] = 1 iff L[i] = c. Then

occ(c, i) = rank1(Bc, i) .

The total space for all σ indicator bit vectors is thus σn + o(σn) bits. Note that for reporting
queries, we still need the suffix array to output the values in A[s, e] after the backwards search.

Theorem 25. With backwards search and constant-time rank operations on bit-vectors, we can
answer counting queries in optimal O(m) time. The space (in bits) is σn+ o(σn) + σ log n.

Example 6.

L = CCCCAAAC$A

B$ = 0000000010
BA = 0000111001
BC = 1111000100

1 2 3 4 5 6 7 8 9 10

1More precisely, we should say σdlogne bits, but we will usually omit floors and ceilings from now on.

29

9.4 Wavelet Trees

Armed with constant-time rank-queries, we now develop a more space-efficient implementation of
the occ-function, sacrificing the optimal query time. The idea is to use a wavelet tree on the
BW-transformed text.

The wavelet tree of a sequence L[1, n] over an alphabet Σ[1, σ] is a balanced binary search
tree of height O(log σ). It is obtained as follows. We create a root node v, where we divide Σ
into two halves Σl = Σ[1, dσ2 e] and Σr = Σ[dσ2 e + 1, σ] of roughly equal size. Hence, Σl holds
the lexicographically first half of characters of Σ, and Σr contains the other characters. At v we
store a bit-vector Bv of length n (together with data structures for O(1) rank-queries), where a ′0′

of position i indicates that character L[i] belongs to Σl, and a ′1′ indicates the it belongs to Σr.
This defines two (virtual) sequences Lv and Rv, where Lv is obtained from L by concatenating all
characters L[i] where Bv[i] = 0, in the order as they appear in L. Sequence Rv is obtained in a
similar manner for positions i with Bv[i] = 1. The left child lv is recursively defined to be the root
of the wavelet tree for Lv, and the right child rv to be the root of the wavelet tree for Rv. This
process continues until a sequence consists of only one symbol, in which case we create a leaf.

Example 7.

L=CCCCAAAC$A

CCCCAAAC$A
1 1 1 1 0 0 0 1 0 0

AAA$A
1 1 1 0 1

CCCCC

$ AAAA

⇒
WT

11101

Σl = {$,A} Σr = {C}

Σl = {$} Σr = {A}

Σ ={$,A,C}

1111000100

Note that the sequences themselves are not stored explicitly; node v only stores a bit-vector Bv
and structures for O(1) rank-queries.

Theorem 26. The wavelet tree for a sequence of length n over an alphabet of size σ can be stored
in n log σ × (1 + o(1)) bits.

Proof : We concatenate all bit-vectors at the same depth d into a single bit-vector Bd of length
n, and prepare it for O(1)-rank-queries. Hence, at any level, the space needed is n + o(n) bits.
Because the depth of the tree is dlog σe the claim on the space follows. In order to “know” the
sub-interval of a particular node v in the concatenated bit-vector Bd at level d, we can store two
indices αv and βv such that Bd[αv, βv] is the bit-vector Bv associated to node v. This accounts for
additional O(σ log n) bits. Then a rank-query is answered as follows (b ∈ {0, 1}):

rankb(Bv, i) = rankb(Bd, αv + i− 1)− rankb(Bd, αv − 1) ,

where it is assumed that i ≤ βv − αv + 1, for otherwise the result is not defined.

30

How does the wavelet tree help for implementing the occ-function? Suppose we want to
compute occ(c, i), i. e., the number of occurrences of c ∈ Σ in L[1, i]. We start at the root r of
the wavelet tree, and check if c belongs to the first or to the second half of the alphabet. In the
first case, we know that the c’s are “stored” in the left child of the root, namely Lr. Hence, the
number of c’s in L[1, i] corresponds to the number of c’s in Lr[1, rank0(Br, i)]. If, on the hand, c
belongs to the second half of the alphabet, we know that the c’s are “stored” in the subsequence
Rr that corresponds to the right child of r, and hence compute the number of occurrences of c in
Rr[1, rank1(Br, i)] as the number of c’s in L[1, i]. This leads to the following recursive procedure
for computing occ(c, i), to be invoked with WT-occ(c, i, 1, σ, r), where r is the root of the wavelet
tree. (Recall that we assume that the characters in Σ can be accessed as Σ[1], . . . ,Σ[σ].)

Algorithm 5: function WT-occ(c, i, σl, σr, v)

if σl = σr then
return i;

end

σm = bσl+σr2 c;
if c ≤ Σ[σm] then

return WT-occ(c, rank0(Bv, i), σl, σm, lv);
else

return WT-occ(c, rank1(Bv, i), σm + 1, σr, rv);
end

Due to the depth of the wavelet tree, the time for WT-occ(·) is O(log σ). This leads to the
following theorem.

Theorem 27. With backward-search and a wavelet-tree on T bwt, we can answer counting queries
in O(m log σ) time. The space (in bits) is

O(σ log n)︸ ︷︷ ︸
|C|+ space for αv ’s

+ n log σ︸ ︷︷ ︸
wavelet tree

+ o(n log σ)︸ ︷︷ ︸
rank data structure

.

9.5 Sampling the Suffix Array

If we also want to solve the reporting problem (outputting all starting positions of P in T , see p.
3), we do need the actual suffix array values. A simple way to solve this is to sample regular text
positions in A, and use the lf-function to recover unsampled values. More precisely, we choose a
sampling parameter s, and in an array A′ we write the values 1, s, 2s, 3s, . . . in the order as they
appear in the full suffix array A. Array A′ takes O(n/s log n) bits. In a bit-vector S of length
n, we mark the sampled suffix array values with a ’1’, and augment S with constant-time rank
information. Now let i be a position for which we want to find the value of A[i]. We first check
if S[i] = 1, and if so, return the value A′[rank1(S, i)]. If not (S[i] = 0), we go to position lf(i) in
time tlf, making use of the fact that if A[i] = j, then A[lf(i)] = j − 1. This processes continues
until we hit a sampled position d, which takes at most s steps. We then add the number of times
we followed lf to the sampled value of A′[d]; the result is A[i]. The overall time for this process is
O(s · tocc) for a single suffix array value. Choosing s = logσ n and wavelet trees for implementing

31

the occ-function, we get an index of O(n log σ) space, O(m log σ) counting time, and O(k log n)
reporting time for k occurrences to be reported.

10 Simulation of Suffix Trees

So far, we have seen compressed text indices that have only one functionality: locating all occur-
rences of a search pattern P in a text T . In some cases, however, more functionality is required.
From other courses you might know that many sequence-related problems are solved efficiently
with suffix trees (e. g., computing tandem repeats, MUMs, . . .). However, the space requirement
of a suffix tree is huge: it is at least 20–40 times higher then the space of the text itself, using
very proprietary implementations that support only a very small number of all conceivable suffix
tree operations. In this chapter, we present a generic approach that allows for the simulation of all
suffix tree operations, by using only compressed data structures. More specifically, we will build
on the compressed suffix array from Chapter 9, and show how all suffix tree operations can be sim-
ulated by computations on suffix array intervals (the same intervals that we used for suffix trays).
Space-efficient data structures that facilitate these computations will be handled in subsequent
chapters.

10.1 Basic Concepts

The reader is encouraged to recall the definitions from Sect. 3.1, in particular Def. 4. From now
on, we regard the suffix tree as an abstract data type that supports the following operations.

Definition 29. A suffix tree S supports the following operations.

• Root(): returns the root of the suffix tree.

• IsLeaf(v): true iff v is a leaf.

• LeafLabel(v): returns l(v) if v is a leaf, and null otherwise.

• IsAncestor(v, w): true iff v is an ancestor of w.

• SDepth(v): returns d(v), the string-depth of v.

• Count(v): the number of leaves in Sv.

• Parent(v): the parent node of v.

• FirstChild(v): the alphabetically first child of v.

• NextSibling(v): the alphabetically next sibling of v.

• lca(v): the lowest common ancestor of v and w.

• Child(v, a): node w such that the edge-label of (v, w) starts with a ∈ Σ.

• EdgeLabel(v, i) the i’th letter on the edge (Parent(v), v).

32

We recall from from previous chapters that A denotes the suffix array, H the lcp-array, and
rmq a range minimum query. Because we will later be using compressed data structures (which
not necessarily have constant access times), we use variables tsa, tlcp and trmq for the access time
to the corresponding array/function. E. g., with uncompressed (plain) arrays, we have tsa = tlcp =
trmq = O(1), while with the sampled suffix array from Sect. 9.5 we have tsa = O(log n).

We represent a suffix tree node v by the interval [v`, vr] such that A[v`], . . . , A[vr] are exactly
the labels of the leaves below v. For such a representation we have the following basic lemma (from
now on we assume H[1] = H[n+ 1] = −1 for an easy handling of border cases):

Lemma 28. Let [v`, vr] be the interval of an internal node v. Then

(1) For all k ∈ [v` + 1, vr] : H[k] ≥ d(v).

(2) H[v`] < d(v) and H[vr + 1] < d(v).

(3) There is a k ∈ [v` + 1, vr] with H[k] = d(v).

Proof : Condition (1) follows because all suffixes TA[k], k ∈ [v`, vr], have v as their prefix, and
hence H[k] = lcp(TA[k], TA[k−1]) ≥ |v| = d(v) for all k ∈ [v` + 1, vr]. Property (2) follows because
otherwise suffix TA[v`] or TA[vr+1] would start with v, and hence leaves labeled A[v`] or A[vr + 1]
would also be below v. For proving property (3), for the sake of contradiction assume H[k] > d(v)
for all k ∈ [v` + 1, vr]. Then all suffixes TA[k], k ∈ [v`, vr], would start with va for some a ∈ Σ.
Hence, v would only have one outgoing edge (whose label starts with a), contradicting the fact that
the suffix tree is compact (has no unary nodes).

As a side remark, this is actually an “if and only if” statement, as every interval satisfying the
three conditions from Lemma 28 corresponds to an internal node.

Definition 30. Let [v`, vr] be the interval of an internal node v. Any position k ∈ [v` + 1, vr]
satisfying point (3) in Lemma 28 is called a d(v)-index of v.

Our aim is to simulate all suffix tree operations by computations on suffix intervals: given the
interval [v`, vr] corresponding to node v, compute the interval of w = f(v) from the values v` and
vr alone, where f can be any function from Def. 29; e.g., f = Parent. We will see that most suffix
tree operations follow a generic approach: first locate a d(w)-index p of w, and then search for the
(yet unknown) delimiting points w` and wr of w’s suffix interval. For this latter task (computation
of w` and wr from p), we also need the previous- and next-smaller-value functions as already defined
in Def. 23 in Sect. 7.1. However, this time we define them to work on the LCP-array:

Definition 31. Given the lcp-array H and an index 1 ≤ i ≤ n, the previous smaller value
function PSVH(i) = max{k < i : H[k] < H[i]}. The next smaller value function NSVH(i) is
defined similarly for succeeding positions: NSVH(i) = min{k > i : H[k] < H[i]}.

We use tpnsv to denote the time to compute a value NSVH(i) or PSVH(i). In what follows, we
often use simply PSV and NSV instead of PSVH and NSVH , implicitly assuming that array H is
the underlying array. The following lemma shows how these two functions can be used to compute
the delimiting points w` and wr of w’s suffix interval:

Lemma 29. Let p be a d(w)-index of an internal node w. Then w` = PSV(p), and wr = NSV(p)−1.

33

Proof : Let l = PSV(p), and r = NSV(p). We must show that all three conditions in Lemma 29
are satisfied by [l, r − 1]. Because H[l] < H[p] by the definition of PSV, and likewise H[r] < H[p],
point (1) is clear. Further, because l and r are the closest positions where H attains a smaller
value, condition (2) is also satisfied. Point (3) follows from the assumption that p is a d(w)-index.
We thus conclude that w` = l and wr = r − 1.

10.2 Suffix Tree Operations

We now step through the operations from Def. 29 and show how they can be simulated by com-
putations on the suffix array intervals. Let [v`, vr] denote the interval of an arbitrary node v. The
most easy operations are:

• Root(): returns the interval [1, n].

• IsLeaf(v): true iff v` = vr.

• Count(v): returns vr − v` + 1.

• IsAncestor(v, w): true iff v` ≤ wr ≤ vr.

Time is O(1) for all four operations.

• LeafLabel(v): If v` 6= vr, return null. Otherwise, return A[v`] in O(tsa) time.

• SDepth(v): If v` = vr, return n − A[v`] + 1 in time O(tsa), as this is the length of the
A[v`]’th suffix. Otherwise from Lemma 28 we know that d(v) is the minimum lcp-value in
H[v` + 1, vr]. We hence return H[rmqH(v` + 1, vr)] in time O(trmq + tlcp).

• Parent(v): Because S is a compact tree, either H[v`] or H[vr + 1] equals the string-depth of
the parent-node, whichever is greater. Hence, we first set p = argmax{H[k] : k ∈ {v`, vr+1}},
and then, by Lemma 29, return [PSV(p),NSV(p)− 1]. Time is O(tlcp + tpnsv).

• FirstChild(v): If v is a leaf, return null. Otherwise, locate the first d(v)-value in H[v`, vr]
by p = rmqH(v` + 1, vr). Here, we assume that rmq returns the position of the leftmost
minimum, if it is not unique. The final result is [v`, p− 1], and the total time is O(trmq).

• NextSibling(v): First, compute v’s parent as w = Parent(v). Now, if vr = wr, return
null, since v does not have a next sibling in this case. If wr = vr + 1, then v’s next sibling
is a leaf, so we return [wr, wr]. Otherwise, try to locate the first d(w)-value after vr + 1 by
p = rmqH(vr + 2, wr). If H[p] = d(w), we return [vr + 1, p− 1] as the final result. Otherwise
(H[p] > d(w)), the final result is [vr + 1, wr]. Time is O(tlcp + tpnsv + trmq).

• lca(v, w): First check if one of v or w is an ancestor of the other, and return that node in this
case. Otherwise, assume vr < w` (otherwise swap v and w). Let u denote the (yet unknown)
lca of v and w, so that our task is to compute u` and ur. First note that all suffixes TA[k],
k ∈ [v`, vr]∪ [w`, wr], must be prefixed by u, and that u is the deepest node with this property.
Further, because none of v and w is an ancestor of the other, v and w must be contained in
subtrees rooted at two different children û and ù of u, say v is in û’s subtree and w in the one
of ù. Because vr ≤ w`, we have ûr ≤ ù`, and hence there must be a d(u)-index in H between
ûr and ù`, which can be found by p = rmqH(vr + 1, w`). The endpoints of u’s interval are
again located by u` = PSV(p) and ur = NSV(p)− 1. Time is O(trmq + tpnsv).

34

• EdgeLabel(v, i): First, compute the string-depth of v by d1 = SDepth(v), and that of
u = Parent(v) by d2 = SDepth(u), in total time O(trmq + tlcp + tpnsv). Now if i > d1− d2,
return null, because i exceeds the length of the label of (u, v) in this case. Otherwise,
the result is given by tA[v`]+d2+i−1, since the edge-label of (u, v) is TA[k]+d2...A[k]+d1−1 for an
arbitrary k ∈ [v`, vr]. Total time is thus O(tsa + trmq + tlcp + tpnsv).

A final remark is that we can also simulate many other operations in suffix trees not listed here,
e.g. suffix links, Weiner links, level ancestor queries, and many more.

10.3 Compressed LCP-Arrays

We now show how to reduce the space for the lcp-array H from n log n to O(n) bits. To this end,
we first note that the lcp-value can decrease by at most 1 when moving from suffix A[i]− 1 to A[i]
in H (i. e., when enumerating the lcp-values in text order):

Lemma 30. For all 1 < i ≤ n, H[i] ≥ H[A−1[A[i]− 1]− 1.

Proof : If H[i] = 0, the claim is trivial. Hence, suppose H[i] > 0, and look at the two suffixes
starting at positions A[i] and A[i−1], which must start with the same character. Suppose TA[i] = aα
and TA[i−1] = aβ for a ∈ Σ, α, β ∈ Σ∗.

Because the suffixes are sorted lexicographically in A, and aα >lex aβ, we know α >lex β,
and that α and β share a common prefix of length H[i] − 1, call it γ. Now note that all suffixes
between β and α in A must also start with γ, as otherwise the suffixes would not be in lexicographic
order. In particular, suffix TA[A−1[A[i]+1]−1] must be prefixed by γ, and hence H[A−1[A[i] + 1] =
lcp(TA[i]+1, TA[A−1[A[i]+1]−1]) = lcp(α, TA[A−1[A[i]+1]−1]) ≥ |γ| = H[i]− 1.

From the above lemma, we can conclude that I[1, n] = [H[A−1[1]]+1, H[A−1[2]]+2, H[A−1[3]]+
3, . . . ,H[A−1[n]] + n] is an array of increasing integers. Further, because no lcp-value can exceed
the length of corresponding suffixes, we see that H[A−1[i]] ≤ n− i+ 1. Hence, sequence I must be
in range [1, n]. We encode I differentially : writing ∆[i] = I[i]− I[i− 1] for the difference between
entry i and i − 1, and defining I[0] = 0 for handling the border case, we encode ∆[i] in unary as
0∆[i]1. Let the resulting sequence be S.

T = C A C A A C C A C $

A =10 4 8 2 5 9 3 7 1 6

H = 0 0 1 2 2 0 1 2 3 1

I = 4 4 4 4 7 7 9 9 9 10

S =00001 1 1 1 0001 1 001 1 1 01

Note that the number of 1’s in S is exactly n, and that the number of 0’s is at most n, as the
∆[i]’s sum up to at most n. Hence, the length of S is at most 2n bits. We further prepare S for
constant-time rank0- and select1-queries, using additional o(n) bits. Then H[i] can be retrieved by

H[i] = rank0(S, select1(S,A[i]))−A[i] .

This is because the select-statement points to the position of the terminating ’1’ of 0∆[A[i]]1 in
S, and the rank-statement counts the sum of ∆-values before that position, which is I[A[i]]. From

35

this, in order to get H[i], we need to subtract A[i], which has bin “artificially” added when deriving
I from H.

By noting that there are exactly A[i] 1’s up to position select1(S,A[i]) in S (and therefore
select1(S,A[i])−A[i] 0’s), the calculation can be further simplified to

H[i] = select1(S,A[i])− 2A[i] .

We have proved:

Theorem 31. The lcp-array H can be stored in 2n + o(n) bits such that retrieving an arbitrary
entry H[i] takes tlcp = O(tsa) time.

Note that with the sampled suffix array from Sect. 9.5, this means that we no more have
constant-time access to H, as tsa = O(log n) in this case.

11 Succinct Data Structures for RMQs and PSV/NSV Queries

This chapter shows that O(n) bits are sufficient to answer rmqs and PSV/NSV-queries in constant
time. For our compressed suffix tree, we assume that all three queries are executed on the lcp-array
H, although the data structures presented in this chapter are applicable to any array of ordered
objects.

11.1 2-Dimensional Min-Heaps

We first define a tree that will be the basis for answering rmqs and NSV-queries. The solution for
PSV-queries is symmetric. The following definition assumes that H[n + 1] is always the smallest
value in H, what can be enforced by introducing a “dummy” element H[n+ 1] = −∞.

Definition 32. Let H[1, n+ 1] be an array of totally ordered objects, with the property that H[n+
1] < H[i] for all 1 ≤ i ≤ n. The 2-dimensional Min-Heap MH of H is a tree an n nodes 1, . . . , n,
defined such that NSV(i) is the parent-node of i for 1 ≤ i ≤ n.

Note that MH is a well-defined tree whose root is n+ 1.

Example 8.

H = -1 0 0 3 1 2 0 1 1 −∞
1 2 3 4 5 6 7 8 9 10

10

987

5 6

4

1 2 3

From the definition ofMH , it is immediately clear that the value NSV(i) is given by the parent
node of i (1 ≤ i ≤ n). The next lemma shows that MH is also useful for answering rmqs on H.

Lemma 32. For 1 ≤ i < j ≤ n, let l = lcaMH
(i, j). Then if l = j, rmqH(i, j) = j. Otherwise,

rmqH(i, j) is given by the child of l that is on the path from l to i.

36

Proof : “graphical proof”:

H =

MH =

NSV (i) NSV NSV NSV

RMQH(i, j)i j

i j

parent(i)

child on
path to i l

Example 9. Continuing the example above, let i = 4 and j = 6. We have lcaMH
(4, 6) = 7, and

5 is the child of 7 on the path to 4. Hence, rmqH(4, 6) = 5.

11.2 Balanced Parentheses Representation of Trees

Any ordered tree T on n nodes can be represented by a sequence B of 2n parentheses as follows:
in a depth-first traversal of T , write an opening parenthesis ’(’ when visiting a node v for the first
time, and a closing parenthesis ’)’ when visiting v for the last time (i. e., when all nodes in Tv have
been traversed).

Example 10. Building on the 2d-Min-Heap from the Example 8, we have B = (()()()((())())()()).

In a computer, a ’(’ could be represented by a ’1’-bit, and a ’)’ by a ’0’-bit, so the space for B
is 2n bits. In the lecture “Advanced Data Structures” it is shown that this representation allows
us to answer queries like rank((B, i) and select)(B, i), by using only o(n) additional space.

Note that the sequence B is balanced, in the sense that in each prefix the number of closing
parentheses is no more than the number of opening parenthesis, and that there are n opening and
closing parentheses each in total. Hence, this representation of trees is called balanced parentheses
sequence (BPS).

We also need the following operation.

Definition 33. Given a sequence B[1, 2n] of balanced parentheses and a position i with B[i] =’)’,
enclose(B, i) returns the position of the closing parenthesis of the nearest enclosing ’()’-pair.

In other words, if v is a node with closing parenthesis at position i < 2n in B, and w is the parent
of v with closing parenthesis at position j in B, then enclose(B, i) = j. Note that enclose(i) > i
for all i, because of the order in which nodes are visited in a depth first traversal.

Example 11.

B = (() () () ((()) ()) () ())

enclose

37

We state the following theorem that is also shown in the lecture “Advanced Data Structures.”

Theorem 33. There is a data structure of size O
(
n log logn

logn

)
= o(n) bits that allows for constant-

time enclose-queries.

(The techniques are roughly similar to the techniques for rank- and select-queries.)
Now look at an arbitrary position i in B, 1 ≤ i ≤ 2n. We define the excess-value E[i] at position

i as the number of opening parenthesis in B[1, i] minus the number of closing parenthesis in B[1, i].
Note that the excess-values do not have to be stored explicitly, as

|E[i]| = rank((B, i)− rank)(B, i)

= i− rank)(B, i)− rank)(B, i)

= i− 2rank)(B, i) .

Example 12.

B = (() () () ((()) ()) () ())

E = 1 2 1 2 1 2 1 2 3 4 3 2 3 2 1 2 1 2 1 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Note:

1. E[i] > 0 for all 1 ≤ i < 2n

2. E[2n] = 0

3. If i is the position of the closing parenthesis of node v, then E[i] is the depth of v. (Counting
starts at 0, so the root has depth 0.)

We also state the following theorem without proof.

Theorem 34. Given a sequence B of balanced parentheses, there is a data structure of size

O
(
n log logn

logn

)
= o(n) bits that allows to answer rmqs on the associated excess-sequence E in con-

stant time.

(The techniques are again similar to rank and select: blocking and table-lookups. Note in partic-

ular that logn
2 excess-values E[x], E[x+ 1], . . . , E

[
x+ logn

2 − 1
]

are encoded in a single computer-

word B
[
x, x+ logn

2 − 1
]
, and hence it is again possible to apply the Four-Russians-Trick!)

11.3 Answering Queries

We represent MH by its BPS B, and identify each node i in MH by the position of its closing
parenthesis in B.

Example 13.

38

B = (() () () ((()) ()) () ())

E = 1 2 1 2 1 2 1 2 3 4 3 2 3 2 1 2 1 2 1 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10

1 2 3

4

5 6

7 8 9

10

MH=

Note that the (closing parenthesis of) nodes appear in B in sorted order - this is simply because
in MH node i hast post-order number i, and the closing parenthesis appear in post-order by the
definition of the BPS. This fact allows us to jump back and forth between indices in H and positions
of closing parentheses ’)’ in B, by using rank- and select-queries in the appropriate sequences.

Answering NSV-queries is now simple. Suppose we wish to answer NSVH(i). We then move to
the position of the i’th ’)’ by

x← select)(B, i) ,

and then call
y ← enclose(B, x)

in order to move to the position y of the closing parenthesis of the parent j of i in MH . The (yet
unknown) value j is computed by

j ← rank)(B, y) .

Example 14. We want to compute NSV(7). First compute x ← select)(B, 7) = 15, and then
y ← enclose(15) = 20. The final result is j ← rank)(B, 20) = 10.

Answering rmqs is only slightly more complicated. Suppose we wish to answer rmqH(i, j) for
1 ≤ i < j ≤ n. As before, we go to the appropriate positions in B by

x← select)(B, i) and

y ← select)(B, j) .

We then compute the position of the minimum excess-value in the range [x, y] by

z ← rmqE(x, y) ,

and map it back to a position in H by

m← rank)(B, z) .

This is the final answer.

Example 15. We want to compute rmqH(4, 9). First, compute x ← select)(B, 4) = 11 and
y ← enclose(B, 9) = 19. The range minimum query yields z ← rmqE(11, 19) = 15. Finally,
m← rank)(B, 15) = 7 is the result.

39

We now justify the correctness of this approach. First assume that ` = lcaMH
(i, j) is different

from j. Let `1, . . . , `k be the children of `, and assume i ∈ T`γ and j ∈ T`δ for some 1 ≤ γ < δ ≤ k.
By Lemma 32, we thus need to show that the position of the closing parenthesis of `γ is the position
where E attains the minimum in E[x, y].

Example 16.

B = (()))))))
a x y b

j

j

i

il1 lγ lδ lk

l1 lγ lδ lk

l

E = d d d d d-1

≥ d ≥ d

RMQE(x, y)

aa

l

Let d− 1 be the tree-depth of `, and let B[a, b] denote the part of B that “spells out” T` (i.e.,
B[a, b] is the BPS of the sub-tree of T rooted at `). Note that a < x < y < b, as i and j are both
below ` in T .

Because B[a] is the opening parenthesis of node `, we have E[a] = d. Further, because B is
balanced, we have E[c] ≥ d for all a < c < b. But E assumes the values d at the positions of the
closing parenthesis of nodes `β (1 ≤ β ≤ k), in particular for `γ . Hence, the leftmost minimum in
E[x, y] is attained at the position z of the closing parenthesis of node `γ , which is computed by an
RMQ in E. The case where ` = j is similar (and even simpler to prove). Thus, we get:

Theorem 35. With a data structure of size 2n+ o(n) bits, we can answer rmqs and NSV-queries
on an array of n ordered objects on O(1) time.

The drawback of the 2d-Min-Heap, however, is that it is inherently asymmetric (as the parent-
relationship is defined by the minimum to the right), and cannot be used for answering PSV-queries
as well. For this, we could build another 2d-Min-Heap MR

H on the reversed sequence HR, using
another 2n + o(n) bits. (Note that an interesting side-effect of this MR

H is that it would allow to
compute the rightmost minimum in any query range, instead of the leftmost, which could have
interesting applications in compressed suffix trees.)

In the lecture we also discussed the possibility to just add another bit-vector of length n bits
— however, this seems only to work if we represent the 2d-Min-Heap by DFUDS (instead of BPS).
If we plug all these structures into the compressed suffix tree from Chapter 10 (which was indeed
the reason for developing the solutions for RMQs and PNSVs), we get:

Theorem 36. A suffix tree on a text of length n over an alphabet of size σ can be stored in |SA|+
3n+o(n) bits of space (where |SA| denotes the space for the suffix array), such that operations Root,
IsLeaf, Count, IsAncestor, FirstChild, and lca take O(1) time, and operations LeafLabel,
SDepth, Parent, NextSibling and EdgeLabel take O(tsa) time (where tsa denotes the time
to retrieve an element from the suffix array).

40

12 Inside Google*

12.1 The Task

You are given a collection S = {S1, . . . , Sm} of sequences Si ∈ Σ∗ (web pages, protein or DNA-
sequences, or the like). Your task is to build an index on S such that the following type of on-line
queries can be answered efficiently :

given: a pattern P ∈ Σ∗.

return: all j ∈ [1,m] such that Sj contains P .

Exercise: What has this to do with Google?

12.2 The Straight-Forward Solution

Define a string
T = S1#S2# . . .#Sm#

of length n :=
∑

1≤i≤m(|Si| + 1) = m +
∑

1≤i≤m |Si|. Build the suffix array A on T . In an array
D[1, n] remember from which string in S the corresponding suffix comes from:

D[i] = j iff

j−1∑
k=1

(|Sk|+ 1) < A[i] ≤
j∑

k=1

(|Sk|+ 1) .

When a query pattern P arrives, first locate the interval [`, r] of P in A. Then output all numbers
in D[`, r], removing the duplicates (how?).

12.3 The Problem

Even if we can efficiently remove the duplicates, the above query algorithm is not output sensitive.
To see why, consider the situation where P occurs many (say x) times in S1, but never in Sj for
j > 1. Then the query takes O(|P | + x) time, just to output one sequence identifier (namely nr.
1). Note that x can be as large as Θ(n), e.g., if |S1| ≥ n

2 .

12.4 An Optimal Solution

The following algorithm solves the queries in optimal O(|P |+d) time, where d denotes the number
of sequences in S where P occurs.

We set up a new array E[1, n] such that E[i] points to the nearest previous occurrence of D[i]
in D:

E[i] =

{
j if there is a j < i with D[j] = D[i], and D[k] 6= D[i] for all j < k < i ,
−1 if no such j exists.

It is easy to compute E with a single left-to-right scan of D. We further process E for constant-time
RMQs.

When a query pattern P arrives, we first locate P ’s interval [`, r] in A in O(|P |) time (as before).
We then call report(`, r), which is a procedure defined as follows.

41

Algorithm 6: Document Reporting

procedure report (i, j);
m← rmqE(i, j);
if E[m] ≤ ` then

output D[m];
if m− 1 ≥ i then report(i,m− 1);
if m+ 1 ≤ j then report(m+ 1, j);

end

The claimed O(d) running time of the call to report(`, r) relies on the following observation.
Consider the range [`, r]. Note that P is a prefix of TA[i] for all ` ≤ i ≤ r. The idea is that the
algorithm visits and outputs only those suffixes TA[i] with i ∈ [`, r] such that the corresponding
suffix σi of SD[i] (σi = TA[i]...e, where e =

∑
1≤j≤D[i](|Sj | + 1) is the end position of SD[j] in T)

is the lexicographically smallest among those suffixes of SD[i] that are prefixed by P . Because the
suffix array orders the suffixes lexicographically, we must have E[i] ≤ ` for such suffixes σi. Further,
there is at most one such position i in [`, r] for each string Sj . Because the recursion searches the
whole range [`, r] for such positions i, no string Sj ∈ S is missed by the procedure.

Finally, when the recursion stops (i.e., E[m] > `), because E[m] is the minimum in E[i, j], we
must have that the identifiers of the strings SD[k] for all k ∈ [i, j] have already been output in a
previous call to report(i′, j′) for some ` ≤ i′ ≤ j′ < i. Hence, we can safely stop the recursion at
this point.

42

