
Algorithmische Grundlagen und Vermittlung der Informatik
Lehrstuhl 11 (Algorithm Engineering)
Prof. Dr. Johannes Fischer

Vorläufiges Skriptum VL
Text-Indexierung und Information Retrieval

Wintersemester 2016/17
last update: December 15, 2016

Disclaimer 1

Dieses Skript wird den Studierenden an der TU Dortmund im Voraus zur Verfügung gestellt.
Die Inhalte werden im Laufe des Semesters aber noch angepasst. Die horizontale Linie kennze-
ichnet den bisher tatsächlich behandelten Stoff. Mit (*) markierte Abschnitte wurden in diesem
Semester nicht in der Vorlesung behandelt (können aber durchaus prüfungsrelevant sein, z.B.
wenn Teile daraus in den Übungen behandelt wurden).

Disclaimer 2

Students attending my lectures are often astonished that I present the material in a much livelier
form than in this script. The reason for this is the following:

This is a script, not a text book.

It is meant to accompany the lecture, not to replace it! We do examples on all concepts,
definitions, theorems and algorithms in the lecture, but usually not this script. In this sense, it
is not a good idea to study the subject soley by reading this script.

1 Recommended Reading

More or less in the order of relevance for this lecture:

1. V. Mäkinen, D. Belazzougui, F. Cunial, A. Tomescu: Genome-Scale Algorithm Design.
Cambridge University Press, 2015.

2. G. Navarro: Compact Data Structures: A Practical Approach. Cambridge University
Press, 2016.

3. E. Ohlebusch: Bioinformatics Algorithms: Sequence Analysis, Genome Rearrangements,
and Phylogenetic Reconstruction. Oldenbusch Verlag, 2013.

4. D. Gusfield: Algorithms on Strings, Trees, and Sequences. Cambridge University Press,
1997.

1

5. R. Baeza-Yates and B. Ribeiro-Neto: Modern information retrieval (2nd edition). Person
Education Limited, 2011.

6. M. Crochemore, C. Hancart, T. LeCroq: Algorithms on Strings. Cambridge University
Press, 2001.

7. D. Adjeroh, T. Bell, and A. Mukherjee: The Burrows-Wheeler Transform: Data Com-
pression, Suffix Arrays and Pattern Matching. Springer, 2008.

2 Tries

Definition 1. Let S = {S1, . . . , Sk} be a set of k prefix-free strings (meaning that no string
is a prefix of another string) over the alphabet Σ of size σ = |Σ|. A trie on S is a rooted tree
S = (V,E) with edge labels from Σ that fulfills the following two constraints:

1. ∀v ∈ V : all outgoing edges from v start with a different a ∈ Σ.

2. For all Si ∈ S there is a leaf ` such that Si is the concatenation of the labels on the
root-to-` path.

3. For all leaves ` ∈ V there is a string Si ∈ S such the root-to-` path spells out exactly Si.

We often deal with compacted tries, which can be defined similarly to Def. 1, with the differ-
ence that the edge labels are now from Σ+, and with an additional constraint:

4. Apart from the root, all nodes have out-degree 6= 1.

Tries support existential queries (“Is pattern P one of the strings in S?”), prefix queries
(“Which strings in S have P as a prefix?”), and also predecessor queries (“If P is none of the
strings in S, which ones are lexicographically closest?”). All of those queries work in a top-down
manner, starting at the root and trying to match further characters in P on the way down. The
search time of all these operations depends mainly on the way the outgoing edges of a trie node
are implemented; this is what we consider next.

Let v be a node in the trie.

1. We can simply scan all of v’s outgoing edges to find the next character of P . This results
in O(|P | ·σ) search time. The space of the trie is O(n+k) = O(n) for n =

∑k
i=1 |si| being

the total size of the strings in S.

2. The outgoing edges are implemented as arrays of size σ. This results in optimal O(|P |)
search time, but the space shoots up to O(n · σ).

3. We can use either a hash table at every node, or a global hash table using (node,character)
pairs as keys. In any case, this results in optimal O(|P |) search time, but only with high
probability. Also, predecessor searches are not supported. The space is O(n).

4. The outgoing edges are implemented as arrays of size sv, where sv denotes the number of
v’s children. Using binary search over these arrays, this results in total O(|P | log σ) search
time. The overall space is O(n) (WHY?). Note that if the trie is dynamic, the arrays can
be replaced by balanced binary search trees, yielding the same running times.

2

wv1 wv2 wv3 wv4 wv5 wv6 wv7

etc. etc.

wv1 wv2 wv3 wv4 wv6 wv7

a5

a3

a4

a2

a1

a7

a6
a1 a2 a3 a4 a6a5 a7

v

v1 v2 v3 v4 v5 v6 v7

representation of v in the trie:

wv5 leaves

Figure 1: Representation of trie nodes with weight-balanced binary search trees.

5. Modifying the previous approach, we can use weight-balanced binary search trees (WB-
BST), where each trie node v has a weight wv equal to the number of leaves below v
(hence, the number of strings stored in v’s subtree). Then the binary search tree at
every trie node v with children v1, . . . , vx is formed as follows (see also Fig. 1). Split
the total weights wv1 , . . . , wvx exactly in the middle (namely at

∑
wvi/2), respecting the

lexicographic order of the corresponding characters. This creates the root of the WB-
BST (the character touching this middle). The process continues recursively in the left
and right children of the root. It is then easy to see that one character comparison in
any WB-BST either advances one character in P , or reduces the number of strings to be
considered by at least 1/2. Since the latter situation can happen only log k times, this
results in a total search time of O(|P |+ log k), while the space remains linear.

6. Here comes the climax! Divide the trie into an upper top tree and several lower bottom
trees by declaring all maximally deep nodes with weight at least σ as leaves of the top tree.
Then use approach (5) for the nodes in the bottom trees; since their size is now O(σ), this
results in O(|P | + log σ) time. In the top tree, all branching nodes (meaning thay have
at least 2 children) are handled by approach (2) above. Since the number of branching
nodes in the top tree are at most O(n/σ), this results in O(n) total space for the entire
trie. Non-branching nodes of the top tree are simply stored by noting the character of
their only outgoing edge. In sum, we get O(|P |+ log σ) time, and O(n) space.

3 Suffix Trees and Arrays

In this section we will introduce suffix trees and suffix arrays, which, among many other things,
can be used to solve the string matching task: find pattern P of length m in a text T of length
n in O(n+m) time. We already know that other methods (Boyer-Moore, e.g.) solve this task
in the same time. So why do we need suffix trees?

The advantage of suffix trees and arrays over the other string-matching algorithms (Boyer-
Moore, KMP, etc.) is that those structures are an index of the text. So, if T is static and there
are several patterns to be matched against T , the O(n)-task for building the index needs to be
done only once, and subsequent matching-tasks can be done in time proportional only to m,

3

and only weakly depends on n (“weakly” meaning, for example, logarithmically). If m << n,
this is a clear advantage over the other algorithms.

Throughout this section, let T = t1t2 . . . tn be a text over an alphabet Σ of size σ. We use
the notation Ti...j as an abbreviation of titi+1 . . . tj , the substring of T ranging from i to j.

To make this more formal, let P be a pattern of length m. We will be concerned with the
two following problems:

Problem 1. Counting: Return the number of matches of P in T . Formally, return the size of
OP = {i ∈ [1, n] : Ti...i+m−1 = P}

Problem 2. Reporting: Return all occurrences of P in T , i. e., return the set OP .

Definition 2. The i’th suffix of T is the substring Ti...n and is denoted by T i.

3.1 Suffix- and LCP-Arrays

Definition 3. The suffix array A of T is a permutation of {1, 2, . . . , n} such that A[i] is the
i-th smallest suffix in lexicographic order: TA[i−1] < TA[i] for all 1 < i ≤ n.

Hence, the suffix array is a compact representation (O(n) space) of the sorted order of all
suffixes of a text.

The second array H builds on the suffix array:

Definition 4. The LCP-array H of T is defined such that H[1] = 0, and for all i > 1, H[i]
holds the length of the longest common prefix of TA[i] and TA[i−1].

From now on, we assume that T terminates with a $, and we define $ to be lexicographically
smaller than all other characters in Σ: $ < a for all a ∈ Σ.

3.2 Construction of Suffix Arrays

The first task we consider is how to construct the suffix array; i.e., how to actually sort the
suffixes of a text T1...n lexicographically. We want to do this quicker than in O(n2 lg n) time,
which is what we would achieve by employing a comparison-based sorting algorithm like merge
sort.

3.2.1 O(n lg n)-Time Construction

The idea of a simple O(n lg n)-time algorithm is to repeatedly bucket-sort the suffixes in an
MSB-first-like fashion, in step j using the characters Ti+2j−1...i+2j−1 as the sort key for suffix
T i. Such a radix step is possible in O(n) time, since by induction, all suffixes are already sorted
by their first 2j−1 characters. This algorithm is often called prefix doubling. We did examples
and pseudo-code in the lecture; more details can also be found in:

• V. Heun: Skriptum zur Vorlesung Algorithmen auf Sequenzen. LMU München, 2016.
Chapter 5.1.3. Available at https://www.bio.ifi.lmu.de/mitarbeiter/volker-heun/
notes/as5.pdf.

4

https://www.bio.ifi.lmu.de/mitarbeiter/volker-heun/notes/as5.pdf
https://www.bio.ifi.lmu.de/mitarbeiter/volker-heun/notes/as5.pdf

3.2.2 Linear-Time Construction

Now we explain the induced sorting algorithm for constructing suffix arrays (called SAIS in the
literature). Its basic idea is to sort a certain subset of suffixes recursively, and then use this
result to induce the order of the remaining suffixes.

• Ge Nong, Sen Zhang, Wai Hong Chan: Two Efficient Algorithms for Linear Time Suffix
Array Construction. IEEE Trans. Computers 60(10): 1471–1484 (2011).

• E. Ohlebusch: Bioinformatics Algorithms: Sequence Analysis, Genome Rearrangements,
and Phylogenetic Reconstruction. Oldenbusch Verlag, 2013. Chapter 4.1.2.

Definition 5. For 1 ≤ i < n, suffix T i is said to be S-type if T i <lex T i+1, and L-type
otherwise. The last suffix is defined to be S-type. For brevity, we also use the terms S- and
L-suffixes for suffixes of the corresponding type.

The type of each suffix can be determined in linear time by a right-to-left scan of T : first, Tn

is declared as S-type. Then, for every i from n− 1 to 1, T i is classified by the following rule:

T i is S-type iff either ti < ti+1, or ti = ti+1 and T i+1 is S-type.

We further say that an S-suffix T i is of type S* iff T i−1 is of type L. (Note that the S-suffixes
still include the S*-suffixes in what follows.)

In A, all suffixes starting with the same character c ∈ Σ form a consecutive interval, called
the c-bucket henceforth. Observe that in any c-bucket, the L-suffixes precede the S-suffixes.
Consequently, we can sub-divide buckets into S-type buckets and L-type buckets.

Now the induced sorting algorithm can be explained as follows:

1. Sort the S*-suffixes. This step will be explained in more detail below.

2. Put the sorted S*-suffixes into their corresponding S-buckets, without changing their order.

3. Induce the order of the L-suffixes by scanning A from left to right: for every position
i in A, if TA[i]−1 is L-type, write A[i] − 1 to the current head of the L-type c-bucket
(c = tA[i]−1), and increase the current head of that bucket by one. Note that this step can
only induce “to the right” (the current head of the c-bucket is larger than i).

4. Induce the order of the S-suffixes by scanning A from right to left : for every position i in
A, if TA[i]−1 is S-type, write A[i]−1 to the current end of the S-type c-bucket (c = tA[i]−1),
and decrease the current end of that bucket by one. Note that this step can only induce
“to the left,” and might intermingle S-suffixes with S*-suffixes.

It remains to explain how the S*-suffixes are sorted (step 1 above). To this end, we define:

Definition 6. An S*-substring is a substring Ti..j with i 6= j of T such that both T i and T j are
S*-type, but no suffix in between i and j is also of type S*.

LetR1, R2, . . . , Rn′ denote these S*-substrings, and σ′ be the number of different S*-substrings.
We assign a name vi ∈ [1, σ′] to any such Ri, such that vi < vj if Ri <lex Rj and vi = vj if
Ri = Rj . We then construct a new text T ′ = v1 . . . vn′ over the alphabet [1, σ′], and build the
suffix array A′ of T ′ by applying the inducing sorting algorithm recursively to T ′ if σ′ < n′

5

(otherwise there is nothing to sort, as then the order of the S*-suffixes is given by the order
of the S*-substrings). The crucial property to observe here is that the order of the suffixes in
T ′ is the same as the order of the respective S*-suffixes in T ; hence, A′ determines the sorting
of the S*-suffixes in T . Further, as at most every second suffix in T can be of type S*, the
complete algorithm has worst-case running time T (n) = T (n/2) +O(n) = O(n), provided that
the naming of the S*-substrings also takes linear time, which is what we explain next.

The naming of the S*-substrings could be done by any string sorting algorithm, e.g., the
trie sorter we have seen in the exercises. But it is also possible to do something similar to the
inducing of the S-suffixes in the induced sorting algorithm (steps 2–4 above), with the difference
that in step 2 we put the unsorted S*-suffixes into their corresponding buckets (hence they are
only sorted according to their first character). Steps 3 and 4 work exactly as described above.
At the end of step 4, we can assign names to the S*-substrings by comparing adjacent S*-suffixes
naively until we find a mismatch or reach their end; this takes overall linear time.

Theorem 1. We can construct the suffix array for a text of length n in O(n) time.

For proving the correctness of this algorithm, we identified the following key lemma in the
lecture:

Lemma 2. If two suffixes T i and T j start with the same character, then their lexicographic
order is determined by the lexicographic order of the suffixes T i+1 and T j+1.

(Note that for a full proof it remains to show that all suffixes are actually considered by the
algorithm – see the cited literature for details.)

3.3 Linear-Time Construction of LCP-Arrays

• E. Ohlebusch: Bioinformatics Algorithms: Sequence Analysis, Genome Rearrangements,
and Phylogenetic Reconstruction. Oldenbusch Verlag, 2013. Chapters 4.2.1.

It remains to be shown how the LCP-array H can be constructed in O(n) time. Here, we
assume that we are given T and A, the text and the suffix array for T .

We will construct H in text order, which is also the order of the inverse suffix array A−1, the
latter defined by A−1[A[i]] = i for all 1 ≤ i ≤ n, which is easily computable from A in linear
time. In other words, we aim at filling H[A−1[i]] before H[A−1[i+ 1]], because in this case we
know that H cannot decrease too much, as shown next.

Going from suffix T i to T i+1, we see that the latter equals the former, but with the first
character ti truncated. Let h = H[i]. Then the suffix T j , j = A[A−1[i] − 1], has a longest
common prefix with T i of length h. So T i+1 has a longest common prefix with T j+1 of length
h − 1. But every suffix T k that is lexicographically between T j+1 and T i+1 must have a
longest common prefix with T j+1 that is at least h− 1 characters long (for otherwise T k would
not be in lexicographic order). In particular, the suffix right before T i+1 in A, which is suffix
TA[A−1[i+1]−1], must share a common prefix with Si+1 of length at least h−1. Hence, H[A−1[i+
1]] ≥ h− 1. We have thus proved the following:

Lemma 3. For all 1 ≤ i < n: H[A−1[i+ 1]] ≥ H[A−1[i]]− 1.

6

This gives rise to the following elegant algorithm to construct H:

Algorithm 1: Linear-Time Construction of the LCP-Array

1 for i = 1, . . . , n do A−1[A[i]]← i;
2 h← 0, H[1]← 0;
3 for i = 1, . . . , n do
4 if A−1[i] 6= 1 then
5 j ← A[A−1[i]− 1];
6 while ti+h = tj+h do h← h+ 1;
7 H[A−1[i]]← h;
8 h← max{0, h− 1};
9 end

10 end

The linear running time follows because h starts and ends at 0, is always less than n and
decreased at most n times in line 8. Hence, the number of times where k is increased in line
6 is bounded by n, so there are at most 2n character comparisons in the whole algorithm. We
have proved:

Theorem 4. We can construct the LCP array for a text of length n in O(n) time.

3.4 Suffix Trees

Definition 7. The suffix tree of T is a compact trie over all suffixes {T 1, T 2, . . . , Tn}.

The following definitions make it easier to argue about suffix trees and compact tries in
general:

Definition 8. Let S = (V,E) be a compact trie.

• For v ∈ V , v denotes the concatenation of all path labels from the root of S to v.

• |v| is called the string-depth of v and is denoted by d(v).

• S is said to display α ∈ Σ∗ iff ∃v ∈ V, β ∈ Σ∗ : v = αβ.

• If v = α for v ∈ V, α ∈ Σ∗, we also write α to denote v.

• words(S) denotes all strings in Σ∗ that are displayed by S: words(S) = {α ∈ Σ∗ :
S displays α}

[NB. With these new definitions, an alternative definition of suffix trees would be: “The suffix
tree of T is a compact trie that displays exactly the subwords of T .”]

It is useful if each suffix ends in a leaf of S. This can again be accomplished by adding a
new character $ 6∈ Σ to the end of T , and build the suffix tree over T$. This gives a one-to-one
correspondence between T ’s suffixes and the leaves of S, which implies that we can label the
leaves with a function l by the start index of the suffix they represent: l(v) = i ⇐⇒ v = T i.

The following observations relate the suffix array A and the LCP-array H with the suffix tree
S.

Observation 1. If we do a lexicographically-driven depth-first search through S (visit the chil-
dren in lexicographic order of the first character of their corresponding edge-label), then the
leaf-labels seen in this order give the suffix-array A.

7

To relate the LCP-array H with the suffix tree S, we need to define the concept of lowest
common ancestors:

Definition 9. Given a tree S = (V,E) and two nodes v, w ∈ V , the lowest common ancestor
of v and w is the deepest node in S that is an ancestor of both v and w. This node is denoted
by lca(v, w).

Observation 2. The string-depth of the lowest common ancestor of the leaves labeled A[i] and
A[i− 1] is given by the corresponding entry H[i] of the LCP-array, in symbols: ∀i > 1 : H[i] =

d(lca(TA[i], TA[i−1])).

An important implementation detail is that the edge labels in a suffix tree are represented
by a pair (i, j), 1 ≤ i ≤ j ≤ n, such that Ti...j is equal to the corresponding edge label. This
ensures that an edge label uses only a constant amount of memory.

From this implementation detail and the fact that S contains exactly n leaves and hence less
than n internal nodes, we can formulate the following theorem:

Theorem 5. A suffix tree of a text of length n occupies O(n) space in memory.

3.5 Searching in Suffix Trees

Since the suffix tree is a trie, we can use any of the methods from the section on tries (Sect. 2) for
navigation: for example, the counting the number of pattern matches can be done in O(m log σ)
time (with outgoing-edge representation (4) from the previous chapter on tries): traverse the
tree from the root downwards, in each step locating the correct outgoing edge, until P has been
scanned completely. More formally, suppose that P1...i−1 have already been parsed for some
1 ≤ i < m, and our position in the suffix tree S is at node v (v = P1...i−1). We then find v’s
outgoing edge e whose label starts with Pi. This takes O(log σ) time. We then compare the
label of e character-by-character with Pi...m, until we have read all of P (i = m), or until we have
reached position j ≥ i for which P1...j is a node v′ in S, in which case we continue the procedure
at v′. This takes a total of O(m log σ) time. With the more sophisticated representation (6)
from Sect. 2 this time can be reduced to O(m+ log σ).

Suppose the search procedure has brought us successfully to a node v, or to the incoming
edge of node v. We then output the size of Sv, the subtree of S rooted at v. This can be done
in constant time, assuming that we have labeled all nodes in S with their subtree sizes. This
answers the counting query. For reporting all positions where the pattern matches, we output
the labels of all leaves in Sv (recall that the leaves are labeled with text positions).

Theorem 6. The suffix tree can answer counting queries in O(m+ log σ) time, and reporting
queries in O(m+ log σ + |OP |) time.

3.6 Linear-Time Construction of Suffix Trees

Assume for now that we are given T , A, and H, and we wish to construct S, the suffix tree
of T . We will show in this section how to do this in O(n) time. Later, we will also see how
to construct A and H only from T in linear time. In total, this will give us an O(n)-time
construction algorithm for suffix trees.

The idea of the algorithm is to insert the suffixes into S in the order of the suffix array:
TA[1], TA[2], . . . , TA[n]. To this end, let Si denote the partial suffix tree for 0 ≤ i ≤ n (Si is the
compact Σ+-tree with words(Si) = {TA[k]...j : 1 ≤ k ≤ i, A[k] ≤ j ≤ n}). In the end, we will
have S = Sn.

8

We start with S0, the tree consisting only of the root (and thus displaying only ε). In step
i+ 1, we climb up the rightmost path of Si (i.e., the path from the leaf labeled A[i] to the root)
until we meet the deepest node v with d(v) ≤ H[i + 1]. If d(v) = H[i + 1], we simply insert a
new leaf x to Si as a child of v, and label (v, x) by TA[i+1]+H[i+1]. Leaf x is labeled by A[i+ 1].
This gives us Si+1.

Otherwise (i.e., d(v) < H[i+ 1]), let w be the child of v on Si’s rightmost path. In order to
obtain Si+1, we split up the edge (v, w) as follows.

1. Delete (v, w).

2. Add a new node y and a new edge (v, y). (v, y) gets labeled by TA[i]+d(v)...A[i]+H[i+1]−1.

3. Add (y, w) and label it by TA[i]+H[i+1]...A[i]+d(w)−1.

4. Add a new leaf x (labeled A[i+ 1]) and an edge (y, x). Label (y, x) by TA[i+1]+H[i+1].

The correctness of this algorithm follows from observations 1 and 2 above. Let us now consider
the execution time of this algorithm. Although climbing up the rightmost path could take O(n)
time in a single step, a simple amortized argument shows that the running time of this algorithm
can be bounded by O(n) in total: each node traversed in step i (apart from the last) is removed
from the rightmost path and will not be traversed again for all subsequent steps j > i. Hence,
at most 2n nodes are traversed in total.

Theorem 7. We can construct T ’s suffix tree in linear time from T ’s suffix- and LCP-array.

3.6.1 Practical Improvements*

Let us do some algorithm engineering on the LCP-array construction algorithm! The problem
with this algorithm is its poor locality behavior, resulting in many potential cache misses (4n in
total). Our idea is now to rearrange the computations such that in the big for-loop accesses only
one array in a random access manner, whereas all other arrays are scanned sequentially. To this
end, we first compute a temporary array Φ[1, n] that at Φ[i] stores the lexicographic preceeding
suffix of T [i]. (This is exactly the suffix with whom we have to compare T [i] for longest common
prefix computation.) Further, in the for-loop we write the computed LCP-values in text order.
(This is exactly the order in which they are computed.) The resulting algorithm can be seen in
Alg. 2.

Algorithm 2: More Cache-Efficient Linear-Time Construction of the LCP-Array

1 Φ[n]← A[n]; // assume that T is $-terminated, so A[1] = n
2 for i = 2, . . . , n do Φ[A[i]]← A[i− 1];
// "with whom I want to be compared"

3 h← 0;
4 for i = 1, . . . , n do
5 j ← Φ[i];
6 while ti+h = tj+h do h← h+ 1;
7 H ′[i]← h// Φ[i] can be overwritten by H ′ (saves space)

8 h← max{0, h− 1};
9 end

10 for i = 1, . . . , n do H[i]← H ′[A[i]];
// put values back into suffix array order

9

In total, the algorithm now produces at most 3n cache misses (as opposed to 4n in Alg. 1).
The practical running time of Alg. 2 is reported to be 1.5 times faster than Alg. 1.

3.7 Searching in Suffix Arrays

3.7.1 Exact Searches

• G. Navarro, V. Mäkinen: Compressed Full-Text Indexes. ACM Computing Surveys 39(1),
Article Article No. 2, 2007. Section 3.3.

• E. Ohlebusch: Bioinformatics Algorithms: Sequence Analysis, Genome Rearrangements,
and Phylogenetic Reconstruction. Oldenbusch Verlag, 2013. Chapter 5.1.3.

We can use a plain suffix array A to search for a pattern P , using the ideas of binary search,
since the suffixes in A are sorted lexicographically and hence the occurrences of P in T form an
interval in A. The algorithm below performs two binary searches. The first search locates the
starting position s of P ’s interval in A, and the second search determines the end position r. A
counting query returns r−s+1, and a reporting query returns the numbersA[s], A[s+1], . . . , A[r].

Algorithm 3: function SAsearch(P1...m)

1 l← 1; r ← n+ 1;
2 while l < r do

3 q ← b l+r2 c;
4 if P >lex TA[q]...min{A[q]+m−1,n} then

5 l← q + 1;
6 else
7 r ← q;
8 end

9 end
10 s← l; l−−; r ← n;
11 while l < r do

12 q ← d l+r2 e;
13 if P =lex TA[q]...min{A[q]+m−1,n} then

14 l← q;
15 else
16 r ← q − 1;
17 end

18 end
19 return [s, r];

Note that both while-loops in Alg. 3 make sure that either l is increased or r is decreased,
so they are both guaranteed to terminate. In fact, in the first while-loop, r always points
one position behind the current search interval, and r is decreased in case of equality (when
P = TA[q]...min{A[q]+m−1,n}). This makes sure that the first while-loop finds the leftmost position
of P in A. The second loop works symmetrically. Note further that in the second while-loop it
is enough to check for lexicographical equality, as the whole search is done in the interval of A
where all suffixes are lexicographically no less than P .

Theorem 8. The suffix array allows to answer counting queries in O(m log n) time, and re-
porting queries in O(m log n+ |OP |) time.

10

3.7.2 Accelerated Search in Suffix Arrays*

The simple binary search (Alg. 3) may perform many unnecessary character comparisons, as in
every step it compares P from scratch. With the help of the lcp-function from the previous
section, we can improve the search in suffix arrays from O(m log n) to O(m+ log n) time. The
idea is to remember the number of matching characters of P with TA[l]...n and TA[r]...n, if [l : r]
denotes the current interval of the binary search procedure. Let λ and ρ denote these numbers,

λ = lcp(P, TA[l]...n) and ρ = lcp(P, TA[r]...n).

Initially, both λ and ρ are 0. Let us consider an iteration of the first while-loop in function
SAsearch(P), where we wish to determine whether to continue in [l : q] or [q, r]. (Alg. 3 would
actually continue searching in [q + 1, r] in the second case, but this minor improvement is not
possible in the accelerated search.) We are in the following situation:

A =
l q r

ρ
λ

P1

·
·
·
·
Pλ

P1

·
·
Pρ

Without loss of generality, assume λ ≥ ρ (otherwise swap). We then look up ξ = lcp(A[l], A[q])
as the longest common prefix of the suffixes TA[l]...n and TA[q]...n. We look at three different cases:

1. ξ > λ

A =
l q r

αα
λ

ξ
ρ

TA[l]+λ
=

TA[q]+λ

λ

Because Pλ+1 >lex TA[l]+λ = TA[q]+λ, we know that P >lex TA[q]...n, and can hence set
l ← q, and continue the search without any character comparison. Note that ρ and in
particular λ correctly remain unchanged.

2. ξ = λ

A =
l q r

ααξ = λ
ρ

11

In this case we continue comparing Pλ+1 with TA[q]+λ, Pλ+2 with TA[q]+λ+1, and so on,
until P is matched completely, or a mismatch occurs. Say we have done this comparison
up to Pλ+k. If Pλ+k >lex TA[q]+λ+k−1, we set l ← q and λ ← k − 1. Otherwise, we set
r ← q and ρ← k − 1.

3. ξ < λ

A =
l q r

αα
λ

ξ ρ
ξ

Pξ+1

6=
TA[q]+ξ

First note that ξ ≥ ρ, as lcp(A[l], A[r]) ≥ ρ, and TA[q]...n lies lexicographically between
TA[l]...n and TA[r]...n. So we can set r ← q and ρ ← ξ, and continue the binary search
without any character comparison.

This algorithm either halves the search interval (case 1 and 3) without any character com-
parison, or increases either λ or ρ for each successful character comparison. Because neither λ
nor ρ are ever decreased, and the search stops when λ = ρ = m, we see that the total number
of character comparisons (= total work of case 2) is O(m). So far we have proved the following
theorem:

Theorem 9. Together with lcp-information, the suffix array supports counting and reporting
queries in O(m+ log n) and O(m+ log n+ |OP |) time, respectively (recall that OP is the set of
occurrences of P in T).

4 Lempel-Ziv Compression

4.1 LZ77

Definition 10. Given a text T = t1 . . . tn, its LZ77-decomposition is defined as a sequence of
z strings f1, . . . , fz, fi ∈ Σ+ for all i, such that T = f1f2 . . . fz, and fi is either a single letter
not occurring in f1 . . . fi−1, or the longest factor occurring at least twice in f1f2 . . . fi.

Note that the “overlap” in the definition above exists on purpose, and is not a typo!
We usually describe the LZ77-factorization by a list of z pairs of integers (`1, p1), . . . , (`z, pz)

such that either (if `i > 0) fi = Tpi...pi+`i−1, or (if `i = 0) pi is the (ASCII-)code of the single
character fi. In the former case, a pair (`i, pi) can also be interpreted as “copy `i characters
from position pi.”

Using the suffix tree of T with the fast trie-implementation (approach (6) from Sect. 2), we
could compute the factorization greedily in O(

∑z
i=1(|fi|+ log σ)) = O(n+ z log σ) time. Next,

we show how to improve this to optimal O(n) time.
The algorithm consists of the following steps:

1. Construct the suffix tree S for T and annotate every internal node v with its string depth
d(v).

12

Algorithm 4: O(n)-computation of the LZ77-factorization for T = t1 . . . tn

1 j ← 1, p← 1; // j: position in T; p: position where next factor begins

2 while p < n+ 1 do

3 v ← Ã−1[j]; // go to leaf labeled j
4 while v is unvisited do
5 mark v as visited;
6 v ← S.parent(v); // climb up

7 end
8 if j = p then
9 if v = S.root() then

10 output new LZ77-factor (0, tp); // case 2: new character

11 p← p+ 1;

12 end
13 else
14 output new LZ77-factor (d(v), s(v)); // case 1: ‘‘copying’’ factor

15 p← p+ d(v);

16 end

17 end
18 ++j;

19 end

2. Also, annotate every internal node v with s(v), where s(v) is the smallest leaf label in v’s
subtree.

3. Construct an array Ã−1 such that Ã−1[j] points to the leaf labeled j (similar to the inverse
suffix array).

4. Mark the root as visited, mark all other nodes as unvisited.

5. Call Alg. 4.

To analyse the running time, note that step 1 takes O(n) time (see Sect. 3.4). Using a
bottom-up approach, step 2 also takes O(n) time. Steps 3 and 4 are trivially implemented in
linear time. Finally, in step 5, each node is visited exactly once, and the inner while-loop
stops when hitting the first unvisited’ed node, so the whole Alg. 4 runs in O(n) time.

4.2 LZ78

Definition 11. Given a text T = t1 . . . tn, its LZ78-decomposition is defined as a sequence of
z strings f1, . . . , fz, fi ∈ Σ+ for all i, such that

1. T = f1f2 . . . fz, and

2. if f1 . . . fi−1 = T1...j−1, then fi is the longest prefix of the suffix T j such that fi = fka for
some k < i and a ∈ Σ (define f0 = ε to handle the “new character”-case).

We usually describe the LZ78-factorization as a sequence of z (int,char)-tuples (k1, a1), . . . , (kz, az),
where the pair (ki, ai) is interpreted such that fi = fkiai.

13

Algorithm 5: O(n)-computation of the LZ78-factorization for T = t1 . . . tn

1 j ← 1; // j: position in T
2 while j < n+ 1 do

3 v ← Ã−1[j]; // go to leaf labeled j
4 u← S.root();
5 x← 0; // x always holds the tree depth of u
6 while c(u) = e(u) do
7 ++x;
8 u← LA(v, x); // climb down

9 end
10 ++c(u); // increase counter aka append new factor to LZ78-trie

11 j ← d(S.parent(u)) + c(u); // advance in text

12 end

A natural way to calculate the LZ78-factorization would be the use of a trie, the so-called
LZ78-trie. If the text up to position j−1 has already been factorized into f1f2 . . . fi−1 = T1...j−1,
then the LZ78-trie stores all factors f1, . . . , fi−1. To find the next factor fi, one descends greedily
as far as possible in the trie to find the longest prefix of suffix T j that already occurs in the
trie (say as factor fk for some k < i) and then extends the trie by a new leaf (whose incoming
edge is labeled by the character a ∈ Σ following this prefix in the text). Using approach 4 from
Sect. 2 (the fastest for dynamic tries), this takes O(

∑z
i=1(|fi| log n)) = O(n log n) time. Again,

we want to improve this to O(n) time.
The following linear-time algorithm superimposes the LZ78-trie on top of the suffix tree,

circumventing the costly top-down navigation in the trie by employing another data structure.
It consists of the following steps:

1. Construct the suffix tree S for T and annotate every node v with its string depth d(v), and
the number e(v) of characters on v’s incoming edge (note d(v) = 0 = e(v) if v = S.root()).

2. Initialize a counter c(v) = 0 at every node v.

3. Construct an array Ã−1 such that Ã−1[j] points to the leaf labeled j (similar to the inverse
suffix array).

4. Compute a level ancestor data structure for S. Such a data structure prepares the tree
S such that the following queries can later be answered in O(1) time: given a node v and
an integer x ≥ 0, LA(v, x) returns the ancestor u of v at depth x (node depth, not string
depth!). For example, LA(v, 0) returns the root node for every v, and if v 6= S.root(),
LA(v, 1) returns the child of the root on the path to v. See Sect. 5 for details.

5. Call Alg. 5.

The above algorithm does not output the factors as (int-char)-pairs (ki, ai), but we saw in
the lecture that it is augment the algorithm to do exactly this.

14

5 Level Ancestor Queries (Deutsch, danke an Maximilian Schuler
(KIT) für’s texen!)

5.1 Literaturempfehlungen

• M.A. Bender, M. Farach-Colton: The Level Ancestor Problem Simplified, Theor. Comput.
Sci. 321(1): 5–12 (2004).

5.2 Einführung

Zunächst sollte, zugunsten einer übersichtlicheren Notation, der Hyperfloor-Operator eingeführt
werden: bbx cc := 2blg xc bezeichne die größte Zweierpotenz nicht größer als x.

Für das Problem sei ein statischer Baum T mit n Knoten gegeben, der so vorverarbeitet
werden soll, sodass Anfragen der folgenden Art möglichst effizient beantwortet werden können:

LevelAncestorT(u, d) : return u’s ancestor at depth d ≤ depth(u)

depth

0

1

2

3

4

v1

v2 v3

v4

v5 v6

v7

v8 v9

v10

LA(v8, 1)

Daraus folgt, dass LevelAncestorT(u, 0) die Wurzel und LevelAncestorT(u,depth(u))
u selbst zurückliefert.

Direkt fallen zwei naive Ansätze ein, die in Laufzeit und Speicherver-
brauch komplementär sind:

• speichere nur den Baum; suche nach Vorgänger mittels direkter
Baumtraversierung
(Speicherverbrauch: nicht zutreffend, Laufzeit: O(n)).

• speichere LevelAncestorT(u, d) für alle u und alle 0 ≤ d <
depth(u)
(Speicherverbrauch: O(n2), Laufzeit: O(1)).

Nun ist die Herausforderung, die Vorteile beider Ansätze in einem einzigen
Vorverarbeitungsverfahren zu vereinen. Es wird sich zeigen, dass sich in
der Tat ein Verfahren konstruieren lässt, das sowohl linear im Platzver-
brauch ist und mit welchem sich in konstanter Zeit das LevelAncestor-
Problem beantworten lässt.

5.3 O(1) Level Ancestor mit O(n lg n) Platzverbrauch

Wir werden uns - wie so häufig - schrittweiße der Lösung nähern, indem
wir zunächst zwei Lösungen mit logarithmischer Laufzeit diskutieren und
werden daraufhin einen Ansatz vorstellen, um diese beiden Techniken zu
verbinden.

5.3.1 Jump-Pointer Algorithmus

Die grundlegende Idee ist es, ähnlich einer Skip Liste, gerade so viele Lösungen (oder Jump-
Pointer) zu speichern, um gerade in logarithmisch vielen Schritten am Ziel anzukommen. In
jedem Knoten u wird LevelAncestorT(u, d) also nur für d = 1, 2, 4 . . . , bbdepth(u) cc anstatt
für alle Vorgänger gespeichert. Hier bezeichne Jump[u][i] := LevelAncestorT(u,depth(u)−
2i) den i-ten Jump-Pointer des Knotens u.

15

v1 v2 v3 v4 v5 v6 v7 v8 v9

Jump[v9][2]
Jump[v3][0] = LevelAncestor(v9, 1)

Jump[v5][1]

Die zentrale Beobachtung ist es nun, dass mit jedem korrekten Sprung mindestens die halbe
Strecke zurückgelegt wird: Sei hierfür δ = depth(u) − d die zurückzulegende Distanz, dann
überspringt Jump[u][blg δc] eben bb δ cc ≥ δ

2 Knoten. Der Algorithmus muss nun lediglich diesen
Jump-Pointern folgen bis LevelAncestorT(u, d) erreicht ist.

Dies führt zu einer logarithmischen Laufzeit bei einem Platzverbrauch von O(n lg n), wobei
allerdings jeder Knoten ≤ lg n zusätzlichen Speicher benötigt. Die Vorverarbeitung kann mittels
dynamischer Programmierung (Top-Down) in O(n lg n) Zeit durchgeführt werden:

w

v

u

Jump[v][i− 1]

Jump[u][i− 1]

Jump[u][0] = parent(u)

Jump[u][i] = Jump[Jump[u][i− 1]][i− 1], i > 0

5.3.2 Ladder Algorithmus

Für den Ladder Algorithmus zerlegen wir zunächst den Baum in lange Pfade, indem wir schrit-
tweiße den längsten Pfad entfernen. Das zerlegt den Baum in Teilbäume T1, T2, . . ., die wiederum
rekursiv zerlegt werden.

Dies kann in O(n) Zeit erreicht werden, indem zunächst für jeden Knoten, ausgehend von den
Blättern (Bottom-Up), die größte Knoten-Blatt Entfernung berechnet wird. In einem weiteren
Durchlauf, beginnend bei der Wurzel, kann nun für jeden Knoten der Nachfolger als das Kind
mit der größten Knoten-Blatt Entfernung gewählt werden.

Entlang eines Pfades ist es einfach, den Level Ancestor zu finden: Falls die Knoten des Pfades
π der Länge m in einem Array Ladderπ[0,m− 1] gespeichert sind und Ladderπ[0] auf Tiefe
h liegt, dann ist LevelAncestorT(u, d) = Ladderπ[d− h] mit d ≥ h und u ∈ π. Ansonsten
ist d < h und wir können zu dem Elternpfad π′ von π springen bis d ≥ h′

Dies führt zu einer Laufzeit von O(
√
n) da bis zu Θ(

√
n) Pfade auf einem Weg von Wurzel

zu Blatt liegen können.
Um dies auf O(lg n) zu drücken, erweitern wir die Pfade zu Leitern (Ladders). Sei |π| = m,

dann speichere in Ladderπ nicht nur π, sondern zusätzlich die m direkten Vorgänger von π[0].
Der Vorteil dieser Konstruktion ist, dass falls sich LevelAncestorT(u, d) nicht auf der Leiter

befindet, dann ist Ladderπ[0] mindestens doppelt so weit vom tiefsten Blatt im Teilbaum des
Knotens u entfernt wie der Knoten u selbst.

16

A B ... Z

A

Z

LevelAncestor(Z, 1)

Rekursive Zerlegung

Tiefstes Blatt

Figure 2: Ein längster Wurzel-Blatt Pfad, der den Baum T in vier Teilbäume zerlegt. Die
Tabelle zeigt, wie eine LevelAncestor-Anfragen entlang des Pfades beantwortet
werden kann.

v0

π[0]

u

π[h′]

2h′ ≥ 2h

h

h′ ≥ h

Figure 3: Diese Abbildung zeigt schematisch eine Leiter, die aus dem Pfad π entstanden ist.
Hier sind h′ die Länge des Pfades π, deshalb 2h′ die Länge der Leiter und h die
Entfernung von u zu π[h′].

17

Weiterhin kann wiederholt auf die nächsthöhere Leiter gewechselt werden, bis LevelAncestorT(u, d)
auf der Leiter liegt, und da sich mit jedem Wechsel der Leiter die Entfernung zu den Blättern
verdoppelt führt dies zu einer logarithmischen Laufzeit.

5.3.3 Beide Techniken verbinden

Konstante Laufzeit kann erreicht werden indem man beide Techniken verbindet. Hierfür springt
man zunächst den halben Weg mit Jump[u][bδc] nach oben. Man erreicht auf diese Weiße einen
Knoten v mit height(v) ≥ bb δ cc. Da nun die Entfernung von v nach LevelAncestorT(u, d)
kleiner als δ ist, ist LevelAncestorT(u, d) in der Leiter des Knotens v enthalten und man
erreicht es in O(1).

5.4 O(1) Level Ancestor mit O(n) Platzverbrauch

Der aktuelle Platzverbrauch ist in den O(n lg n) Jump-Pointern begründet, jedoch müssen diese
nicht in jedem Knoten gespeichert werden, da LevelAncestorT(v, d) = LevelAncestorT(w, d)
für jeden Nachfolger w von v. Falls man also eine Menge von Jump Nodes, welche mit Pointern
ausgestattet sind, auswählt, kann jeder Knoten oberhalb eines Jump Nodes diesen benutzen um
die Anfrage zu beantworten. Alle anderen (also jene unterhalb der Jump Nodes) werden am
Ende des Abschnitts behandelt.

Die Idee Jump Nodes zu bestimmen ist angelehnt an y-fast tries: Wähle als Jump Nodes
die tiefsten Knoten die mindestens s := lg n/4 Nachfolger besitzen (Was dazu führt, dass jedes
Kind eines Jump Nodes weniger als s Knoten in seinem Teilbaum besitzt). Darüber hinaus
muss für jeden Knoten überhalb der Jump Nodes ein Zeiger JUMP-DESC[u] auf einen der
nachfolgenden Jump Nodes gespeichert werden.

Wir werden im Folgenden den Teil des Baumes T oberhalb der Jump Nodes als macro tree,
und die Teile unterhalb der Jump Nodes als micro trees bezeichnen. Da die Jump Nodes
Wurzeln von disjunkten Teilbäumen mindestens der Größe s sind, gibt es höchstens n/s Jump
Nodes. Deshalb ist der gesamte Platzverbrauch um alle Jump Pointer zu speichern höchstens

n

s
lg
n

s
≤ n

s
lg n = O(

n

lg n
lg n) = O(n)

und damit linear.
Die Jump Pointer können effizient in Linearzeit bestimmt werden, indem von dem jeweiligen

Jump Node wiederholt den Leitern gefolgt wird. Das heißt, sobald die aktuelle Leiter nicht
mehr ausreicht um die gerade zu speichernde Anfrage beantworten zu können, wechselt man
auf die nächsthöhere. Da allerdings höchstens logarithmisch viele solcher Leiterwechsel benötigt
werden um pro Knoten die logarithmisch vielen Jump Pointer zu bestimmen, kann jeder Jump
Pointer in amortisiert konstanter Zeit bestimmt werden.

Um nun auch noch LevelAncestorT(u, d) für alle Micro Trees beantworten zu können,
kodiert man alle möglichen Bäume mit s′ < s Knoten als ein Bitmuster der Größe 2(s′ − 1):
Schreibe eine ’0’ falls man in einem DFS Schritt auf dem Baum nach unten geht und eine ’1’
falls man nach oben geht.

Nun speichert jeder Micro Tree sein Bitmuster (mit hinten aufgefüllten Nullen um eine Länge
von 2(s − 1) zu erreichen), einen Zeiger auf seinen nächsten Vorgänger im Macro Tree und
eine Tabelle um DFS Nummern in globale Schlüssel umzurechnen. Zusätzlich wird eine globale
Lookup-Tabelle benötigt, die für jedes auftretende Bitmuster die Antworten zu allen möglichen
LevelAncestor-Anfragen enthält, wobei jede Antwort als DFS-Nummer in diesem spezi-
fischen Baum gegeben ist. Zusammen mit der Transformationstabelle lassen sich nun alle

18

LevelAncestorT(u, d) Anfragen für u in einem Micro Tree und LevelAncestorT(u, d) im
selben Micro Tree beantworten. Falls LevelAncestorT(u, d) sich nicht in diesem Micro Tree
befindet, wird die Anfrage durch den im Micro Tree gespeicherten Vorgänger im Macro Tree
beantwortet.

Es ist nun also möglich in konstanter Laufzeit LevelAncestor-Anfragen für alle Knoten
vom Typ LevelAncestorT(u, d) zu beantworten, wobei sich für die Größe der Tabellen ergibt:

Bitmuster der Länge 2s×# der u’s×# der d’s

22s × s× s
was gerade O(2lgn/2s2) = O(

√
n lg2 n) = o(n) ergibt.

6 The Burrows Wheeler Transformation

The Burrows-Wheeler Transformation was originally invented in the 90’s for text compression.
About ten years later, it was noted that it is also a very useful tool in text indexing.

6.1 The Transformation

Definition 12. Let T = t1t2 . . . tn be a text of length n, where tn = $ is a unique character
lexicographically smaller than all other characters in Σ. Then the i-th cyclic shift of T is
Ti...nT1...i−1. We denote it by T (i).

Example 1.

T = CACAACCAC$

1 2 3 4 5 6 7 8 9 10

T (6) = CCAC$CACAA

The Burrows-Wheeler-Transformation (BWT) is obtained by the following steps:

1. Write all cyclic shifts T (i), 1 ≤ i ≤ n, column-wise next to each other.

2. Sort the columns lexicographically.

3. Output the last row L. This is the Burrows-Wheeler-Transformation.

Example 2.

T = CACAACCAC$

1 2 3 4 5 6 7 8 9 10

C A C A A C C A C $
A C A A C C A C $ C
C A A C C A C $ C A
A A C C A C $ C A C
A C C A C $ C A C A
C C A C $ C A C A A
C A C $ C A C A A C
A C $ C A C A A C C
C $ C A C A A C C A
$ C A C A A C C A C

T (1) T (6)

$ A A A A C C C C C
C A C C C $ A A A C
A C $ A C C A C C A
C C C A A A C $ A C
A A A C C C C C A $
A C C C $ A A A C C
C $ A C C A C C C A
C C A A A C $ A A C
A A C $ C C C A C A
C C C C A A A C $ A

1 2 3 4 5 6 7 8 9 10

F (first)

TBWT =
L (last)

T (1)

⇒
sort

columns
lexicogr.

19

We use the letter L to denote the BWT since it is the last row in the sorted matrix. Similarly,
we use F to denote the f irst row in the sorted matrix.

• Every row in the BWT-matrix is a permutation of the characters in T .

• Row F is a sorted list of all characters in T .

• In row L, similar characters are grouped together. This is why L can be compressed more
easily than T , as we shall see later.

6.2 Construction of the BWT

The BWT-matrix need not to be constructed explicitly in order to obtain the BWT L. Since
T is terminated with the special character $, which is lexicographically smaller than any a ∈ Σ,
the shifts T (i) are sorted exactly like T ’s suffixes. Because the last row consists of the characters
preceding the corresponding suffixes, we have

L[i] = tA[i]−1 ,

where A denotes again T ’s suffix array, and t0 is defined to be tn (read T cyclically!). Because
the suffix array can be constructed in linear time (Thm. 1), we get:

Theorem 10. The BWT of a text length-n text over an integer alphabet can be constructed in
O(n) time.

Example 3.

T = CACAACCAC$

$ A A A A C C C C C
C A C C C $ A A A C
A C $ A C C A C C A
C C C A A A C $ A C
A A A C C C C C A $
A C C C $ A A A C C
C $ A C C A C C C A
C C A A A C $ A A C
A A C $ C C C A C A
C C C C A A A C $ A

1 2 3 4 5 6 7 8 9 10

F (first)

TBWT =
L (last)

A=10 4 8 2 5 9 3 7 1 6

6.3 The Reverse Transformation

The amazing property of the BWT is that it is not a random permutation of T ’s letters, but
that it can be transformed back to the original text T . For this, we need the following definition:

Definition 13. Let F and L be the strings resulting from the BWT. Then the last-to-front
mapping lf is a permutation of [1, n], defined by

lf(i) = j⇐⇒ A[j] = A[i]− 1 .

Thus, lf(i) tells us the position in F where L[i] occurs.

20

Example 4.

T = CACAACCAC$

$ A A A A C C C C C
C A C C C $ A A A C
A C $ A C C A C C A
C C C A A A C $ A C
A A A C C C C C A $
A C C C $ A A A C C
C $ A C C A C C C A
C C A A A C $ A A C
A A C $ C C C A C A
C C C C A A A C $ A

1 2 3 4 5 6 7 8 9 10

F (first)

TBWT =
L (last)

LF = 6 7 8 9 2 3 4 10 1 5

Observation 3. Equal characters preserve the same order in F and L. That is, if L[i] =
L[j] and i < j, then lf(i) < lf(j). To see why this is so, recall that the BWT-matrix is
sorted lexicographically. Because both the lf(i)’th and the lf(j)’th column start with the same
character a = L[i] = L[j], they must be sorted according to what follows this character a, say α
and β. But since i < j, we know α <lex β, hence lf(i) < lf(j).

F

L

aa

a a

α
α

β
β

i j

lf(i) lf(j)

This observation allows us to compute the lf-mapping without knowing the suffix array of
T . Using lf, we can recover T = t1t2 . . . tn from right to left : we know that tn = $, and the
corresponding cyclic shift T (n) appears in column 1 in the BWT. Hence, tn−1 = L[1]. Shift
T (n−1) appears in column lf(1), and thus tn−2 = L[lf(1)]. This continues until the whole text
has been recovered:

tn−i = L[lf(lf(. . . (lf(1)) . . .))︸ ︷︷ ︸
i−1 applications of lf

]

Example 5.

Tn = $, k = 1
L[1] = C) Tn�1 = C , k = LF(1) = 6
L[6] = C) Tn�2 = A , k = LF(6) = 3
L[3] = C) Tn�3 = C , k = LF(3) = 8
L[8] = C) Tn�4 = C , k = LF(8) = 10
L[10] etc.

T reversed

C = 0 1 5

F = $ A A A A C C C C C

L = C C C C A A A C $ A

occ(L[i], i) = 1 2 3 4 1 2 3 5 1 4

$ A C

21

6.4 Compression

Storing the BWT L plainly needs the same space as storing the original text T . However,
because equal characters are grouped together in L, we can compress it in a second stage.

We can directly exploit that L consists of many equal-letter runs. Each such run a` can be
encoded as a pair (a, `) with a ∈ Σ, ` ∈ [1, n]. This is known as run-length encoding.

Example 6.

T BWT = CCCCAAAC$A
1 2 3 4 5 6 7 8 9 10

⇒ RLE(T BWT)=(C,4),(A,4),(C,1),($,1),(A,1)

A different possibility for compression is to proceed in two steps: first, we perform a move-
to-front encoding of the BWT. Then, we review different methods for compressing the output
of the move-to-front algorithm using a 0-order compressor. Both steps are explained in the
following sections.

6.4.1 Move-to-front (MTF)

• Initialize a list Y containing each character in Σ in alphabetic order.

• In a left-to-right scan of L (i = 1, . . . , n), compute a new array R[1, n]:

– Write the position of character L[i] in Y to R[i].

– Move character L[i] to the front of Y .

MTF is easy to reverse.

Observation 4. MTF produces “many small” numbers for equal characters that are “close
together” in the BWT L. These can be compressed using an order-0 compressor, as explained
next.

6.4.2 0-Order Compression

We looked at Huffman-, unary-, Elias-γ and Elias-δ codes, but found that Huffman is definitely
the best choice in this setting.

7 Backwards Search and FM-Indices

We are now going to explore how the BW-transformed text is helpful for (indexed) pattern
matching. Indices building on the BWT are called FM-indices, most likely in honor of their
inventors P. Ferragina and G. Manzini.

7.1 Model of Computation and Space Measurement

For the rest of this lecture, we work with the word-RAM model of computation. This means that
we have a processor with registers of width w (usually w = 32 or w = 64), where usual arithmetic
operations (additions, shifts, comparisons, etc.) on w-bit wide words can be computed in
constant time. Note that this matches all current computer architectures. We further assume
that n, the input size, satisfies n ≤ 2w, for otherwise we could not even address the whole input.

22

From now on, we measure the space of all data structures in bits instead of words, in order to
be able to differentiate between the various text indexes. For example, an array of n numbers
from the range [1, n] occupies ndlog ne bits, as each array cell stores a binary number consisting
of dlog ne bits. As another example, a length-n text over an alphabet of size σ occupies ndlog σe
bits. In this light, all text indexes we have seen so far (suffix trees, suffix arrays, suffix trays)
occupy O(n log n+ n log σ) bits. Note that the difference between log n and log σ can be quite
large, e. g., for the human genome with σ = 4 and n = 3.4 × 109 we have log σ = 2, whereas
log n ≈ 32. So the suffix array occupies about 16 times more memory than the genome itself!

7.2 Backward Search

This section describes how the Burrows-Wheeler-Transformation can be used as an index on
the text. We first focus our attention on the counting problem (p. 4); i.e., on finding the number
of occurrences of a pattern P1...m in T1...n.

We define two functions that are needed by the backwards-search algorithm.

• C(a) denotes the number of occurrences in T of characters lexicographically smaller than
a ∈ Σ.

• ranka(L, i) denotes the number of occurrences of the letter a ∈ Σ in L[1, i].

The C-function can be stored as a plain array, using σdlog ne bits, which is o(n) bits if
σ = o(n/ log σ). Solutions for rank will be given in Sect. 7.4.

Our aim is identify the interval of P in A by searching P from right to left (= backwards).
To this end, suppose we have already matched Pi+1...m, and know that the suffixes starting with
Pi+1...m form the interval [si+1, ei+1] in A. In a backwards search step, we wish to calculate the
interval [si, ei] of Pi...m. First note that [si, ei] must be a sub-interval of [C(Pi) + 1, C(Pi + 1)],
where (Pi + 1) denotes the character that follows Pi in Σ.

A =

C(Pi) + 1 C(Pi + 1)si ei ei+1si+1

Pi...m
Pi+1...m

PiPi F

backwards search step

So we need to identify, among those suffixes starting with Pi, those which continue with
Pi+1...m. Looking at row L in the range from si+1 to ei+1, we see that there are exactly
ei − si + 1 many positions j ∈ [si+1, ei+1] where L[j] = Pi.

23

A =

ei+1si+1

Pi+1...m

F

L

= Pi = Pi

6= Pi

From the BWT decompression algorithm, we know that characters preserve the same order in
F and L. Hence, if there are x occurrences of Pi before si+1 in L, then si will start x positions
behind C(Pi) + 1. This x is given by rankPi(L, si+1 − 1). Likewise, if there are y occurrences of
Pi within L[si+1, ei+1], then ei = si + y − 1. Again, y can be computed from the rank-function.

A =

C(Pi) + 1 C(Pi + 1)si ei ei+1si+1

Pi...m

Pi+1...m
PiPi F

L

= Pi = Pi

= rankPi
(L, si+1 − 1)

This gives rise to the following, elegant algorithm for backwards search:

Algorithm 6: function backwards-search(P1...m)

1 s← 1; e← n;
2 for i = m. . . 1 do
3 s← C(Pi) + rankPi(L, s− 1) + 1;
4 e← C(Pi) + rankPi(L, e);
5 if s > e then
6 return “no match”;
7 end

8 end
9 return [s, e];

The reader should compare this to the “normal” binary search algorithm in suffix arrays.
Apart from matching backwards, there are two other notable deviations:

1. The suffix array A is not accessed during the search.

24

2. There is no need to access the input text T .

Hence, T and A can be deleted once the BWT L has been computed. It remains to show how
array C and the rank-function are implemented. Array C is actually very small and can be
stored plainly using σ log n bits.1 For rank, we have several options that are explored in the rest
of this chapter. This is where the different FM-Indices deviate from each other. In fact, we will
see that there is a natural trade-off between time and space: using more space leads to a faster
computation of the rank-values, while using less space implies a higher query time.

Theorem 11. With backwards search, we can solve the counting problem in O(m · trank) time,
where trank denotes the time to answer an ranka(L, ·)-query for a ∈ Σ.

7.3 First Ideas for Implementing rank

For answering ranka(L, i), there are at least the following two extreme possibilities:

1. Scan L every time a rank-query has to be answered. This occupies no space, but needs
O(n) time for answering a single rank-query, leading to a total query time of O(mn) for
backwards search.

2. Store all answers to ranka(L, i) in a two-dimensional table. This table occupies O(nσ log n)
bits of space, but allows constant-time ranka-queries. Total time for backwards search is
optimal O(m).

For a more more practical implementation between these two extremes, let us do the following:
For each character a ∈ Σ, store an indicator bit vector Ba[1, n] such that Ba[i] = 1 iff L[i] = a.
Then

ranka(L, i) = rank1(Ba, i) .

We shall see presently that a bit-vector B, together with additional information for constant-
time rank1-operations, can be stored in n+ o(n) bits. Hence, the total space for all σ indicator
bit vectors is σn+ o(σn) bits.

Theorem 12. With backwards search and constant-time rank1 operations on bit-vectors, we can
answer counting queries in optimal O(m) time. The space (in bits) is n log σ + σ log n + σn +
o(σn).

Note that for reporting queries, we still need the suffix array to output the values in A[s, e]
after the backwards search.

Example 7.

L = CCCCAAAC$A

B$ = 0000000010
BA = 0000111001
BC = 1111000100

1 2 3 4 5 6 7 8 9 10

1More precisely, we should say σdlogne bits, but we will usually omit floors and ceilings from now on.

25

7.4 Compact Data Structures on Bit Vectors

We now show that a bit-vector B of length n can be augmented with a data structure of size
o(n) bits such that rank-queries can be answered in O(1) time. First note that

rank0(B, i) = i− rank1(B, i) ,

so considering rank1 will be enough.
We conceptually divide the bit-vector B into blocks of length s = b logn

2 c and super-blocks of
length s′ = s2 = Θ(log2 n).

s

s′

B =

The idea is to decompose a rank1-query into 3 sub-queries that are aligned with the block- or
super-block-boundaries. To this end, we store three types of arrays:

1. For all of the b ns′ c super-blocks, M ′[i] stores the number of 1’s from B’s beginning up to
the end of the i’th superblock. This table needs order of

n/s′︸︷︷︸
#superblocks

× log n︸︷︷︸
value from [1,n]

= O

(
n

log n

)
= o(n)

bits.

2. For all of the bns c blocks, M [i] stores the number of 1’s from the beginning of the superblock
in which block i is contained up to the end of the i’th block. This needs order of

n/s︸︷︷︸
#blocks

× log s′︸ ︷︷ ︸
value from [1,s′]

= O

(
n log logn

log n

)
= o(n)

bits of space.

3. For all bit-vectors V of length s and all 1 ≤ i ≤ s, P [V][i] stores the number of 1-bits in

V [1, i]. Because there are only 2s = 2
logn
2 such vectors V , the space for table P is order of

2
logn
2︸ ︷︷ ︸

#possible blocks

× s︸︷︷︸
#queries

× log s︸︷︷︸
value from [1,s]

= O
(√
n log n log log n

)
= o(n)

bits.

Example 8.

26

B = 0 1 0 1 1 0 1 1 1 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 0

M ′ = 6 10 14
M = 1 3 6 0 3 4 1 3 4

s = 3 s′ = 9

000 0 0 0
001 0 0 1
010 0 1 1
011 0 1 2
100 1 1 1
101 1 1 2
110 1 2 2
111 1 2 3

1 2 3V
iP :

A query rank1(B, i) is then decomposed into 3 sub-queries, as seen in the following picture:

B =

1 2 3 i

rank1(1, i)

1© superblock query: precomputed in M ′

2© block-query:
precomp. in M

3© in-block-query:
precomp. in P

Thus, computing the block number as q = b i−1
s c, and the super-block number as q′ = b i−1

s′ c,
we can answer

rank1(B, i) = M ′[q′] +M [q] + P [B[qs+ 1, (q + 1)s]︸ ︷︷ ︸
i′s block

] [i− qs]︸ ︷︷ ︸
index in block

in constant time.

Example 9. Continuing the example above, we answer rank1(B, 17) as follows: the block num-
ber is q = b17−1

3 c = 5, and the super-block number is q′ = b17−1
9 c = 1. Further, i’s block is

B[5 × 3 + 1, 6 × 3] = B[16, 18] = 001, and the index in that block is 17 − 5 × 3 = 2. Hence,
rank1(B, 17) = M ′[1] +M [5] + P [001][2] = 6 + 3 + 0 = 9.

This finishes the description of the data structure for O(1) rank-queries on bit-vectors. We
summarize this section in the following theorem.

Theorem 13. An n-bit vector B can be augmented with data structures of size o(n) bits such
that rankb(B, i) can be answered in constant time (b ∈ {0, 1}).

7.5 Wavelet Trees

Armed with constant-time rank1-queries, we now develop a more space-efficient implementation
of the general ranka-function, for any a ∈ Σ. The idea is to use a wavelet tree on the BW-
transformed text L.

27

The wavelet tree of a sequence L[1, n] over an alphabet Σ[1, σ] is a balanced binary search
tree of height O(log σ). It is obtained as follows. We create a root node v, where we divide Σ
into two halves Σl = Σ[1, dσ2 e] and Σr = Σ[dσ2 e + 1, σ] of roughly equal size. Hence, Σl holds
the lexicographically first half of characters of Σ, and Σr contains the other characters. At
v we store a bit-vector Bv of length n (together with data structures for O(1) rank1-queries),
where a ′0′ of position i indicates that character L[i] belongs to Σl, and a ′1′ indicates the it
belongs to Σr. This defines two (virtual) sequences Ll and Lr, where Ll is obtained from L by
concatenating all characters L[i] where Bv[i] = 0, in the order as they appear in L. Sequence
Lr is obtained in a similar manner for positions i with Bv[i] = 1. The left child lv is recursively
defined to be the root of the wavelet tree for Ll, and the right child rv to be the root of the
wavelet tree for LR. This process continues until a sequence consists of only one symbol, in
which case we create a leaf.

Example 10.

L=CCCCAAAC$A

CCCCAAAC$A
1 1 1 1 0 0 0 1 0 0

AAA$A
1 1 1 0 1

CCCCC

$ AAAA

⇒
WT

11101

Σl = {$,A} Σr = {C}

Σl = {$} Σr = {A}

Σ ={$,A,C}

1111000100

Note that the sequences themselves are not stored explicitly; node v only stores a bit-vector
Bv and structures for O(1) rank1-queries.

Theorem 14. The wavelet tree for a sequence of length n over an alphabet of size σ can be
stored in n log σ × (1 + o(1)) bits.

Proof : We concatenate all bit-vectors at the same depth d into a single bit-vector Bd of length
n, and prepare it for O(1)-rank-queries. Hence, at any level, the space needed is n+ o(n) bits.
Because the depth of the tree is dlog σe the claim on the space follows. In order to “know” the
sub-interval of a particular node v in the concatenated bit-vector Bd at level d, we can store two
indices αv and βv such that Bd[αv, βv] is the bit-vector Bv associated to node v. This accounts
for additional O(σ log n) bits. Then a rank-query is answered as follows (b ∈ {0, 1}):

rankb(Bv, i) = rankb(Bd, αv + i− 1)− rankb(Bd, αv − 1) ,

where it is assumed that i ≤ βv − αv + 1, for otherwise the result is not defined.
NB: we noted in the lecture that (1) we should rather concatenate all bit-vectors into one

large bit-vector of size n lg σ bits and build the rank-data structure onto this, and (2) that the
above-mentioned αv’s/βv’s are not really necessary, since these values can be recovered from
appropriate rank1-queries when descending in the tree.

How does the wavelet tree help for implementing general ranka-queries for a ∈ Σ? Suppose
we want to compute ranka(L, i), i. e., the number of occurrences of a ∈ Σ in L[1, i]. We start

28

at the root r of the wavelet tree, and check if a belongs to the first or to the second half of the
alphabet. In the first case, we know that the a’s are “stored” in the left child of the root, namely
Ll. Hence, the number of a’s in L[1, i] corresponds to the number of a’s in Ll[1, rank0(Br, i)].
If, on the other hand, a belongs to the second half of the alphabet, we know that the a’s are
“stored” in the subsequence Lr that corresponds to the right child of r, and hence compute the
number of occurrences of a in Lr[1, rank1(Br, i)] as the number of a’s in L[1, i]. This leads to the
following recursive procedure for computing ranka(L, i), to be invoked with WT-rank(a, i, 1, σ, r),
where r is the root of the wavelet tree. (Recall that we assume that the characters in Σ can be
accessed as Σ[1], . . . ,Σ[σ].)

Algorithm 7: function WT-rank(a, i, σl, σr, v)

1 if σl = σr then
2 return i;
3 end

4 σm = bσl+σr2 c;
5 if a ≤ Σ[σm] then
6 return WT-rank(a, rank0(Bv, i), σl, σm, lv);
7 else
8 return WT-rank(a, rank1(Bv, i), σm + 1, σr, rv);
9 end

Due to the depth of the wavelet tree, the time for WT-rank(·) is O(log σ). This leads to the
following theorem.

Theorem 15. With backward-search and a wavelet-tree on the Burrows-Wheeler-transform L,
we can answer counting queries in O(m log σ) time. The space (in bits) is

n log σ︸ ︷︷ ︸
wavelet tree on L

+ o(n log σ)︸ ︷︷ ︸
rank1 data structure

+O(σ log n)︸ ︷︷ ︸
|C|

.

Note that we can upper bound the O(σ log n)-term for C by O(n) bits, since if σ log n ≥ n,
instead of C we can always use a bit-vector BC of length n that marks the bucket endings with
a ’1’, such that C[i] = rank1(Bc, i).

7.6 Sampling the Suffix Array

If we also want to solve the reporting problem (outputting all starting positions of P in T , see p.
4), we do need the actual suffix array values. A simple way to solve this is to sample regular text
positions in A, and use the lf-function to recover unsampled values. More precisely, we choose a
sampling parameter s, and in an array A′ we write the values 1, s, 2s, 3s, . . . in the order as they
appear in the full suffix array A. Array A′ takes O(n/s log n) bits. In a bit-vector S of length
n, we mark the sampled suffix array values with a ’1’, and augment S with constant-time rank1-
information. Now let i be a position for which we want to find the value of A[i]. We first check
if S[i] = 1, and if so, return the value A′[rank1(S, i)]. If not (S[i] = 0), we go to position lf(i) in
time tlf, making use of the fact that if A[i] = j, then A[lf(i)] = j− 1. This processes continues
until we hit a sampled position d, which takes at most s steps. We then add the number of
times we followed lf to the sampled value of A′[d]; the result is A[i]. The overall time for this
process is O(s · trank) for a single suffix array value. Choosing s = logσ n and wavelet trees for

29

implementing the rank-function, we get an index of O(n log σ) space, O(m log σ) counting time,
and O(k log n) reporting time for k occurrences to be reported.

It remains to show how to store the lf-function space-efficiently (storing it plainly would use
O(n log n) bits, which is too much). The following lemma shows that a special case of rank can
be also used for this purpose – hence the wavelet tree on L suffices.

Lemma 16. We have
lf(i) = C(L[i]) + rankL[i](L, i) .

Proof : Follows immediately from observation 3.
We saw in the lecture that we can also use the wavelet tree on the BWT L to access any

character L[i] in O(log σ) time. Hence, the text can be deleted once the wavelet tree is con-
structed.

7.7 The Final FM-Index

A full-fledged FM-index consists of the following information:

• The wavelet tree on the BWT L, occupying n log σ + o(n log σ) bits;

• the array C[1, σ], occupying σ log n bits;

• the sampled suffix array A′, occupying n
s log n bits for a sampling parameter s;

• and the bit-vector S marking the sampled suffix-array values, occupying n bits.

7.7.1 Further Applications of Wavelet Trees

We looked at range quantile queries (find the i’th smallest element in a given range B[`, r]),
range next value queries (in a given range B[`, r], find the smallest value ≥ i, and 4-sided
2-dimensional range searching (given n static points on a grid [1, n] × [1, n], list all points in
[x`, xr] × [yb, yt]). All of these queries have applications in text indexing, as we saw in the
lectures/exercises.

8 Inverted Indexes

An inverted index is a word -based data structure for answering queries of the form “which
documents contain pattern P?” (and more complicated ones, such as queries with multiple
patterns), as we know them from the search engines that we use everyday on the internet.

More formally, let S = {T1, . . . , Tk} the set of documents to be indexed, each consisting
of words over an alphabet Σ. Let n denote the total size of the documents (n =

∑k
i=1 |Ti|),

and w the total number of words. (Texts can be tokenized into words by taking, for example,
all alphanumeric characters between two consecutive non-alphanumeric characters.) A simple
inverted index over S consists of the following two components:

Vocabulary V : The set different words occurring in S. An empirical observation (“Heap’s
Law”) is that |V | = O(wb), usually 4/10 < b < 6/10. We assume a total order on V (e.g.,
lexicographic).

Postings Lists L1, . . . , L|V |: For the i’th word Si in the vocabulary V , Li consists of all docu-
ment numbers where Si occurs as a word, listed in some total order on S (e.g., ranked by
a static measure of document importance).

30

8.1 Queries

The above data structure—vocabulary plus postings lists—are already enough to answer basic
one-pattern queries. For queries with more than one pattern (P1P2 . . . Pq), we first look at the
possible semantics of those queries (for simplicity only for two patterns P1 and P2):

conjunctive: List all documents containing P1 and P2. Here, the postings lists for P1 and P2

have to be intersected.

disjunctive: List all documents containing P1 or P2. Here, the postings lists for P1 and P2 have
to be united.

phrase query: List all documents containing the sequence P1P2 exactly in this order—those
queries are often specified by quotes. We will see later (in the chapter on suffix arrays)
how to handle those queries.

8.2 Representing the Vocabulary

Tries from Sect. 2 are an obvious possibility for representing V . Each leaf in the trie would then
store a pointer to the corresponding inverted list.

Another possibility are hash tables. Assume we have a hash function h from Σ? to [0,m), for
m = C · |V | denoting the size of the hash table with constant C > 1 (e.g., C = 2). Then we
allocate a table M of size m, and at M [h(Si)] we store the inverted list Li. The location h(Si)
also stores the string Si, in order to decide if the query word P really equals Si. Collisions in
M are handled in one of the usual ways, e.g., chaining or linear probing.

The question that remains to be answered is: “What is a good hash-function for (potentially
unbounded-length) strings?”. In actual programming languages, one often finds functions like
h(t1t2 . . . t`) = (t1 +K · h(t2 . . . t`)) mod m for some constant K. Those functions are easy to
fool because they have some predetermined worst-case behavior. Better are so-called randomized
hash functions like

h(t1t2 . . . t`) =

((∑̀
i=1

ai · ti
)

mod p

)
mod m

for a prime p ≥ m and random ai ∈ [1, p) (“multiplicative hashing”). Those functions have good
worst-case guarantees, like Prob [h(x) = h(y)] = O(1/m) for x 6= y. Note that the necessary
random numbers could be generated “on the fly” from a single random seed while computing
the sum. However, at least for strings no longer than a certain threshold those random values
should be precomputed and stored in RAM—then only for the longer ones the random numbers
have to be recomputed.

8.3 List Intersection

As already said in Sect. 8.1, we need algorithms for intersecting two lists L1 and L2 (list union
algorithms are similar). Assume w.l.o.g. that |L1| ≤ |L2|. To compute L1 ∩ L2, we can do the
following:

1. Search every element from L1 by a binary search in L2. Time is O(|L1| log |L2|).

2. Walk simultaneously through both lists with one pointer each, increasing the pointer
pointing to the smaller of the two values, and outputting numbers that occur in both
lists. (This is similar to the merging-procedure in Merge-Sort.) Time is O(|L1|+ |L2|).

31

3. Double Binary Search: Take the median L1[µ] of L1 (µ = b|L1|/2c), and do a binary
search in L2 to locate the position of µ in L2, say at position λ. (If L1[µ] = L2[λ], then
L1[µ] is output at this point and the element is removed from both lists.) Then do two
recursive calls of the same procedure, one for computing L1[1, µ] ∩ L2[1, λ], and another
one for computing L1[µ + 1, |L1|] ∩ L2[λ + 1, |L2|]. We analyzed in the lecture that this
algorithm results in worst-case time O(|L1| log(|L2|/|L1|)). Note in particular that this is
never worse than possibilities (1) and (2) above—for if |L2| = K · |L1| with constant K,
we have O(|L1| log(|L2|/|L1|)) = O(|L1| logK) = O(|L1|).

4. Exponential Search: This method is particularly useful if the lists are too long to be loaded
entirely from disk into main memory (which is needed for method (3) above). Suppose
we have already processed elements L1[1, k], and suppose the place for L1[k] in L2 is x.
Then to locate L1[k + 1] in L2, we compare it successively to L2[x], L2[x+ 1], L2[x+ 2],
L2[x + 4], . . . , until the element L2[x + 2i] is larger than L1[k + 1] (if it is “=”, we are
done). We then binary search L1[k+ 1] in L2[x+ 2i−1, x+ 2i]. The whole procedure takes
O(log dk) if the distance between L1[k] and L1[k + 1] in L2 is dk. This results in overall

O(
∑|L1|

i=1 log di) running time, which is maximized for di = |L2|/|L1| for all i, and in this
case the time is again O(|L1| log(|L2|/|L1|)).

8.4 Postings List Compression

Look at a particular list Li = [d1, d2, . . . , d|Li|]. Since the document ids listed in Li are sorted, it
can be beneficial to encode the differences between consecutive entries, in particular for dense
lists. Formally, define δi = di − di−1 with d0 = 0. Since for dense lists we have that most δi’s
must be small, we now need to find codes that encode small numbers in few bits. Ideally, we
would want to represent an integer x ≥ 1 in blog2 xc + 1 bits (binary representation without
leading 0’s - denote this code by (x)2). But this is problematic, since in a stream of such words
we could not tell where the encodings of the δi’s start and end.

8.4.1 Unary Code

To get the unary code for x, we write (x− 1) 1’s, followed by a single 0. More formally, we let
(x)1 = 1x−1 ◦ 0 denote the unary representation of x, where “◦” denotes the concatenation of
bit-strings. The length of this code is |(x)1| = x bits.

8.4.2 Elias Codes

We first introduce the γ-code. We encode x as

(x)γ = (|(x)2|)1 ◦ (x)2

= (blog2 xc+ 1)1 ◦ (x)2

where we omit the leading ’1’ in the (x)2 (since it is redundant, once we know the length of
(x)2. The length of this code is |(x)γ | ≈ 2 log2 x bits, since both the unary and the binary part
take about log2 x bits each.

Now the δ-code is similar, but the unary part is replaced by γ-coded numbers:

(x)δ = (|(x)2|)γ ◦ (x)2

= (blog2 xc+ 1)γ ◦ (x)2

32

where again we omit the leading ’1’ in the (x)2. The length of this code is |(x)δ| ≈ log2 x +
log2 log2 x bits.

8.5 Ternary Code

We write x − 1 in ternary and then substitute the trit 0 by the two bits 00, the trit 1 by the
two trits 01, and the trit 2 by the bits 10. Finally, a pattern 11 is appended, and the resulting
representation of x is denoted by (x)3. The length of this code is |(x)3| = 2blog3(x − 1)c + 2
bits.

8.6 Fibonacci Code

Every integer x can be represented by the sum of different Fibonacci numbers, such that no two
adjacent Fibonacci numbers appear in the sum. We can encode the Fibonacci numbers that
contribute to this sum by 1-bits (higher Fibonacci-numbers should be written at the right end,
in contrast to the usual ’most-significant-bit-left’ rule). Since the pattern ’11’ does not appear
in the resulting bit-sequence, we finally append a ’1’ to the bit-sequence to obtain the Fibonacci
code (x)φ for x.

8.7 Golomb Codes

The following paragraph is quoted more or less verbatim from:

• R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley,
second edition, 2011.

For some parameter b, let q and r be the quotient and remainder, respectively, of dividing
x − 1 by b: q = b(x − 1)/bc and r = (x − 1) − qb. Then x is coded by concatenating the
unary representation of q+ 1 and the binary representation of r, using either blog2 bc or dlog2 be
bits for the latter, in the following way: If r < 2blog2 bc−1, then r uses blog2 bc bits, and the
representation always starts with a 0-bit. Otherwise, it uses dlog2 be bits, where the first bit is
’1’, and the remaining bits encode the value r − 2blog2 bc−1 in blog2 bc binary digits.

For example, for b = 3 there are three possible remainders, and those are coded as 0, 10, and
11, for r = 0, r = 1, and r = 2, respectively. For b = 5 there are five possible remainders r, 0
through 4, and these are assigned the codes 00, 01, 100, 101, and 110.

The Golomb code of x with parameter b is denoted by (x)Gol(b). Plots showing the sizes of
the different codes can be seen in Fig. 4.

9 Range Minimum Queries

Range Minimum Queries (RMQs) are a versatile tool for many tasks in exact and approximate
pattern matching, as we shall see at various points in this lecture. They ask for the position of
the minimum element in a specified sub-array, formally defined as follows.

Definition 14. Given an array H[1, n] of n integers (or any other objects from a totally ordered
universe) and two indices 1 ≤ i ≤ j ≤ n, rmqH(i, j) is defined as the position of the minimum
in H’s sub-array ranging from i to j, in symbols: rmqH(i, j) = argmini≤k≤j H[k].

We often omit the subscript H if the array under consideration is clear from the context.

33

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35 40 45 50

unary

binary

gamma

delta

ternary

fibonacci

gol3

gol3compr

(a) Small numbers.

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1.000 10.000 1E+05 1E+06 1E+07 1E+08 1E+09 1E+10 1E+11 1E+12

unary

binary

gamma

delta

ternary

fibonacci

gol3

gol3compr

(b) Asymptotic Behavior.

Figure 4: Sizes of different codes for integers x ≥ 1. c©Jens Quedenfeld 2014

34

Of course, an RMQ can be answered in a trivial manner by scanning H[i, j] (H’s sub-array
ranging from position i to j) for the minimum each time a query is posed. In the worst case,
this takes O(n) query time.

However, if H is static and known in advance, and there are several queries to be answered on-
line, it makes sense to preprocess H into an auxiliary data structure (called index or scheme)
that allows to answer future queries faster. As a simple example, we could precompute all
possible

(
n+1

2

)
RMQs and store them in a table M of size O(n2) — this allows to answer future

RMQs in O(1) time by a single lookup at the appropriate place in M .
We will show in this section that this naive approach can be dramatically improved, as the

following proposition anticipates:

Proposition 17. An array of length n can be preprocessed in time O(n) such that subsequent
range minimum queries can be answered in optimal O(1) time.

9.1 Linear Equivalence of RMQs and LCAs

Recall the definition of range minimum queries (RMQs): rmqD(`, r) = argmin`≤k≤rD[k] for an
array D[1, n] and two indices 1 ≤ ` ≤ r ≤ n. We show in this section that a seemingly unrelated
problem, namely that of computing lowest common ancestors (LCAs) in static rooted trees,
can be reduced quite naturally to RMQs.

Definition 15. Given a rooted tree T with n nodes, lcaT (v, w) for two nodes v and w denotes
the unique node ` with the following properties:

1. Node ` is an ancestor of both v and w.

2. No descendant of ` has property (1).

Node ` is called the lowest common ancestor of v and w.

The reduction of an LCA-instance to an RMQ-instance works as follows:

• Let r be the root of T with children u1, . . . , uk.

• Define T ’s inorder tree walk array I = I(T) recursively as follows:

– If k = 0, then I = [r].

– If k = 1, then I = I(Tu1) ◦ [r].

– Otherwise, I = I(Tu1) ◦ [r] ◦ I(Tu2) ◦ [r] ◦ · · · ◦ [r] ◦ I(Tuk), where “◦” denotes array
concatenation. Recall that Tv denotes T ’s subtree rooted at v.

• Define T ’s depth array D = D(T) (of the same length as I) such that D[i] equals the
tree-depth of node I[i].

• Augment each node v in T with a “pointer” pv to an arbitrary occurrence of v in I (pv = j
only if I[j] = v).

Lemma 18. The length of I (and of D) is between n (inclusively) and 2n (exclusively).

Proof. By induction on n.

n = 1: The tree T consists of a single leaf v, so I = [v] and |I| = 1 < 2n.

35

≤ n→ n+ 1: Let r be the root of T with children u1, . . . , uk. Let ni denote the number of
nodes in Tui . Recall I = I(Tu1) ◦ [r] ◦ · · · ◦ [r] ◦ I(Tuk). Hence,

|I| = max(k − 1, 1) +
∑

1≤i≤k
|I(Tui)|

≤ max(k − 1, 1) +
∑

1≤i≤k
(2ni − 1) (by the induction hypothesis)

= max(k − 1, 1)− k + 2
∑

1≤i≤k
ni

≤ 1 + 2
∑

1≤i≤k
ni

= 1 + 2(n− 1)

< 2n .

Here comes the desired connection between LCA and RMQ:

Lemma 19. For any pair of nodes v and w in T , lcaT (v, w) = I[rmqD(pv, pw)].

Proof. Consider the inorder tree walk I = I(T) of T . Assume pv ≤ pw (otherwise swap). Let
` denote the LCA of v and w, and let u1, . . . , uk be `’s children. Look at

I(T`) = I(Tu1) ◦ · · · ◦ I(Tux) ◦ [`] ◦ · · · ◦ [`] ◦ I(Tuy) ◦ · · · ◦ I(Tuk)

such that v ∈ Tux and w ∈ Tuy (v = ` or w = ` can be proved in a similar manner).
Note that I(T`) appears in I exactly the same order, say from a to b: I[a, b] = I(T`). Now

let d be the tree depth of `. Because `’s children ui have a greater tree depth than d, we see
that D attains its minima in the range [a, b] only at positions i where the corresponding entry
I[i] equals `. Because pv, pw ∈ [a, b], and because the inorder tree walk visits ` between ux and
uy, we get the result.

To summarize, if we can solve RMQs in O(1) time using O(n) space, we also have a solution
for the LCA-problem within the same time- and space-bounds.

9.1.1 Reverse Direction (*)

Interestingly, this reduction also works the other way around: a linear-space data structure for
O(1) LCAs implies a linear-space data structure for O(1) RMQs. To this end, we need the
concept of Cartesian Trees:

Definition 16. Let A[1, n] be an array of size n. The Cartesian Tree C(A) of A is a labelled
binary tree, recursively defined as follows:

• Create a root node r and label it with p = argmin1≤i≤nA[i].

• The left and right children of r are the roots of the Cartesian Trees C(A[1, p − 1]) and
C(A[p+ 1, n]), respectively (if existent).

Constructing the Cartesian Tree according to this definition requires O(n2) time (scanning
for the minimum in each recursive step), or maybe O(n log n) time after an initial sorting of A.
However, there is also a linear time algorithm for constructing C(A), which we describe next.

36

Let Ci denote the Cartesian Tree for A[1, i]. Tree C1 just consists of a single node r labelled
with 1. We now show how to obtain Ci+1 from Ci. Let the rightmost path of Ci be the path
v1, . . . , vk in Ci, where v1 is the root, and vk is the node labelled i. Let li be the label of node
vi for 1 ≤ i ≤ k.

To get Ci+1, climb up the rightmost path (from vk towards the root v1) until finding the first
node vy where the corresponding entry in A is not larger than A[i+ 1]:

A[ly] ≤ A[i+ 1], and A[lz] > A[i+ 1] for all y < z ≤ k .

Then insert a new node w as the right child of vy (or as the root, if vy does not exist), and label
w with i+ 1. Node vy+1 becomes the left child of w. This gives us Ci+1.

The linear running time of this algorithm can be seen by the following amortized argument:
each node is inserted onto the rightmost path exactly once. All nodes on the rightmost path
(except the last, vy) traversed in step i are removed from the rightmost path, and will never
be traversed again in steps j > i. So the running time is proportional to the total number of
removed nodes from the rightmost path, which is O(n), because we cannot remove more nodes
than we insert.

How is the Cartesian Tree related to RMQs?

Lemma 20. Let A and B be two arrays with equal Cartesian Trees. Then rmqA(`, r) =
rmqB(`, r) for all 1 ≤ ` ≤ r ≤ n.

Proof. By induction on n.

n = 1: C(A) = C(B) consists of a single node labelled 1, and rmq(1, 1) = 1 in both arrays.

≤ n→ n+ 1: Let v be the root of C(A) = C(B) with label µ. By the definition of the Cartesian
Tree,

argmin
1≤k≤n

A[k] = µ = argmin
1≤k≤n

B[k] . (1)

Because the left (and right) children of C(A) and C(B) are roots of the same tree, this
implies that the Cartesian Trees C(A[1, µ− 1]) and C(B[1, µ− 1]) (and C(A[µ+ 1, n]) and
C(B[µ+ 1, n])) are equal. Hence, by the induction hypothesis,

rmqA(`, r) = rmqB(`, r)∀1 ≤ ` ≤ r < µ, and rmqA(`, r) = rmqB(`, r)∀µ < ` ≤ r ≤ n.
(2)

In total, we see that rmqA(`, r) = rmqB(`, r) for all 1 ≤ ` ≤ r ≤ n, because a query must
either contain position µ (in which case, by (1), µ is the answer to both queries), or it
must be completely to the left/right of µ (in which case (2) gives what we want).

9.2 O(1)-RMQs with O(n logn) Space

We already saw that with O(n2) space, O(1)-RMQs are easy to realize by simply storing the
answers to all possible RMQs in a two-dimensional table of size n× n. We show in this section
a little trick that lowers the space to O(n log n).

The basic idea is that it suffices to precompute the answers only for query lengths that are
a power of 2. This is because an arbitrary query rmqD(l, r) can be decomposed into two
overlapping sub-queries of equal length 2h with h = blog2(r − l + 1)c:

m1 = rmqD(l, l + 2h − 1) and m2 = rmqD(r − 2h + 1, r)

37

The final answer is then given by rmqD(l, r) = argminµ∈{m1,m2}D[µ]. This means that the
precomputed queries can be stored in a two-dimensional table M [1, n][1, blog2 nc], such that

M [x][h] = rmqD(x, x+ 2h − 1)

whenever x+ 2h − 1 ≤ n. Thus, the size of M is O(n log n). With the identity

M [x][h] = rmqD(x, x+ 2h − 1)

= argmin{D[i] : i ∈ {x, . . . , x+ 2h − 1}}
= argmin{D[i] : i ∈ {rmqD(x, x+ 2h−1 − 1),rmqD(x+ 2h−1, x+ 2h − 1)}}
= argmin{D[i] : i ∈ {M [x][h− 1],M [x+ 2h−1][h− 1]}} ,

we can use dynamic programming to fill M in optimal O(n log n) time.

9.3 O(1)-RMQs with O(n) Space

We divide the input array D into blocks B1, . . . , Bm of size s := log2 n
4 (where m = dns e denotes

the number of blocks): B1 = D[1, s], B2 = D[s + 1, 2s], and so on. The reason for this is that
any query rmqD(l, r) can be decomposed into at most three non-overlapping sub-queries:

• At most one query spanning exactly over several blocks.

• At most two queries completely inside of a block.

We formalize this as follows: Let i = d lse and j = d rse be the block numbers where l and r
occur, respectively. If i = j, then we only need to answer one in-block-query to obtain the final
result. Otherwise, rmqD(l, r) is answered by rmqD(l, r) = argminµ∈{m1,m2,m3}D[µ], where the
mi’s are obtained as follows:

• m1 = rmqD(l, is)

• m2 = rmqD(is+ 1, (j − 1)s) (only necessary if j > i+ 1)

• m3 = rmqD((j − 1)s+ 1, r)

We first show how to answer queries spanning exactly over several blocks (i.e., finding m2).

9.3.1 Queries Spanning Exactly over Blocks

Define a new array D′[1,m], such that D′[i] holds the minimum inside of block Bi: D′[i] =
min(i−1)s<j≤isD[j]. We then prepare D′ for constant-time RMQs with the algorithm from Sect.
9.2, using

O(m logm) = O(
n

s
log(

n

s
)) = O(

n

log n
log

n

log n
) = O(n)

space.
We also define a new array W [1,m], such that W [i] holds the position where D′[i] occurs in

D: W [i] = argmin(i−1)s<j≤isD[j]. A query of the form rmqD(is+ 1, (j − 1)s) is then answered
by W [rmqD′(i+ 1, j − 1)].

38

9.3.2 Queries Completely Inside of Blocks

We are left with answering “small” queries that lie completely inside of blocks of size s. These
are actually more complicated to handle than the “long” queries from Sect. 9.3.1.

As a consequence of Lemma 20, we only have to precompute in-block RMQs for blocks with
different Cartesian Trees, say in a table called P . But how do we know in O(1) time where
to look up the results for block Bi? We need to store a “number” for each block in an array
T [1,m], such that T [i] gives the corresponding row in the lookup-table P .

Lemma 21. A binary tree T with s nodes can be represented uniquely in 2s+ 1 bits.

Proof. We first label each node in T with a ’1’ (these are not the same labels as for the
Cartesian Tree!). In a subsequent traversal of T , we add “missing children” (labelled ’0’) to
every node labelled ’1’, such that in the resulting tree T ′ all leaves are labelled ’0’. We then
list the 0/1-labels of T ′ level-wise (i.e., first for the root, then for the nodes at depth 1, then
for depth 2, etc.). This uses 2s + 1 bits, because in a binary tree without nodes of out-degree
1, the number of leaves equals the number of internal nodes plus one.

It is easy to see how to reconstruct T from this sequence. Hence, the encoding is unique.
So we perform the following steps:

1. For every block Bi, we compute the bit-encoding of C(Bi) and store it in T [i]. Because
s = logn

4 , every bit-encoding can be stored in a single computer word.

2. For every possible bit-vector t of length 2s+ 1 that describes a binary tree on s nodes, we
store the answers to all RMQs in the range [1, s] in a table:

P [t][l][r] = rmqB(l, r) for some array B of size s whose Cartesian Tree has bit-encoding t

Finally, to answer a query rmqD(l, r) which is completely contained within a block i = d lse =
d rse, we simply look up the result in P [T [i]][l − (i− 1)s][r − (i− 1)s].

To analyze the space, we see that T occupies m = n/ log n = O(n) words. It is perhaps more
surprising that also P occupies only a linear number of words, namely order of

22s · s · s =
√
n · log2 n = O(n) .

Construction time of the data structures is O(ms) = O(n) for T , and O(22s · s · s · s) =
O(
√
n · log3 n) = O(n) for P (the additional factor s accounts for finding the minimum in each

precomputed query interval).
This finishes the description of the algorithm.

10 Document Retrieval

10.1 The Task

You are given a collection S = {S1, . . . , Sm} of sequences Si ∈ Σ∗ (web pages, protein or DNA-
sequences, or the like). Your task is to build an index on S such that the following type of
on-line queries can be answered efficiently :

given: a pattern P ∈ Σ∗.

return: all j ∈ [1,m] such that Sj contains P .

39

10.2 The Straight-Forward Solution

Define a string
T = S1#S2# . . .#Sm#

of length n :=
∑

1≤i≤m(|Si|+ 1) = m+
∑

1≤i≤m |Si|. Build the suffix array A on T . In an array
D[1, n] remember from which string in S the corresponding suffix comes from:

D[i] = j iff

j−1∑
k=1

(|Sk|+ 1) < A[i] ≤
j∑

k=1

(|Sk|+ 1) .

When a query pattern P arrives, first locate the interval [`, r] of P in A. Then output all
numbers in D[`, r], removing the duplicates (how?).

10.3 The Problem

Even if we can efficiently remove the duplicates, the above query algorithm is not output
sensitive. To see why, consider the situation where P occurs many (say x) times in S1, but
never in Sj for j > 1. Then the query takes O(|P | + x) time, just to output one sequence
identifier (namely nr. 1). Note that x can be as large as Θ(n), e.g., if |S1| ≥ n

2 .

10.4 An Optimal Solution

The following algorithm solves the queries in optimal O(|P | + d) time, where d denotes the
number of sequences in S where P occurs.

We set up a new array E[1, n] such that E[i] points to the nearest previous occurrence of D[i]
in D:

E[i] =

{
j if there is a j < i with D[j] = D[i], and D[k] 6= D[i] for all j < k < i ,
−1 if no such j exists.

It is easy to compute E with a single left-to-right scan of D. We further process E for constant-
time RMQs.

When a query pattern P arrives, we first locate P ’s interval [`, r] in A in O(|P |) time (as
before). We then call report(`, r), which is a procedure defined as follows.

The claimed O(d) running time of the call to report(`, r) relies on the following observation.
Consider the range [`, r]. Note that P is a prefix of TA[i] for all ` ≤ i ≤ r. The idea is that the
algorithm visits and outputs only those suffixes TA[i] with i ∈ [`, r] such that the corresponding
suffix σi of SD[i] (σi = TA[i]...e, where e =

∑
1≤j≤D[i](|Sj |+ 1) is the end position of SD[j] in T)

is the lexicographically smallest among those suffixes of SD[i] that are prefixed by P . Because
the suffix array orders the suffixes lexicographically, we must have E[i] ≤ ` for such suffixes σi.
Further, there is at most one such position i in [`, r] for each string Sj . Because the recursion
searches the whole range [`, r] for such positions i, no string Sj ∈ S is missed by the procedure.

Finally, when the recursion stops (i.e., E[m] > `), because E[m] is the minimum in E[i, j], we
must have that the identifiers of the strings SD[k] for all k ∈ [i, j] have already been output in a
previous call to report(i′, j′) for some ` ≤ i′ ≤ j′ < i. Hence, we can safely stop the recursion
at this point.

40

11 Lempel-Ziv Compression

11.1 Longest Common Prefixes and Suffixes

An indispensable tool in pattern matching are efficient implementations of functions that com-
pute longest common prefixes and longest common suffixes of two strings. We will be particu-
larly interested in longest common prefixes of suffixes from the same string T :

Definition 17. For a text T of length n and two indices 1 ≤ i, j ≤ n, lcpT (i, j) denotes the
length of the longest common prefix of the suffixes starting at position i and j in T , in symbols:
lcpT (i, j) = max{` ≥ 0 : Ti...i+`−1 = Tj...j+`−1}.

Note that lcp(·) only gives the length of the matching prefix; if one is actually interested in
the prefix itself, this can be obtained by Ti...i+lcp(i,j)−1.

Note also that the LCP-array H from Sect. 3.1 holds the lengths of longest common prefixes
of lexicographically consecutive suffixes: H[i] = lcp(A[i], A[i − 1]). Here and in the remainder
of this chapter, A is again the suffix array of text T .

But how do we get the lcp-values of suffixes that are not in lexicographic neighborhood? The
key to this is to employ RMQs over the LCP-array, as shown in the next lemma (recall that
A−1 denotes the inverse suffix array of T).

Lemma 22. Let i 6= j be two indices in T with A−1[i] < A−1[j] (otherwise swap i and j). Then
lcp(i, j) = H[rmqH(A−1[i] + 1, A−1[j])].

Proof. First note that any common prefix ω of T i and T j must be a common prefix of TA[k]

for all A−1[i] ≤ k ≤ A−1[j], because these suffixes are lexicographically between T i and T j and
must hence start with ω. Let m = rmqH(A−1[i] + 1, A−1[j]) and ` = H[m]. By the definition
of H, Ti...i+`−1 is a common prefix of all suffixes TA[k] for A−1[i] ≤ k ≤ A−1[j]. Hence, Ti...i+`−1

is a common prefix of T i and T j .
Now assume that Ti...i+` is also a common prefix of T i and T j . Then, by the lexicographic

order of A, Ti...i+` is also a common prefix of TA[m−1] and TA[m]. But |Ti...i+`| = ` + 1,
contradicting the fact that H[m] = ` tells us that TA[m−1] and TA[m] share no common prefix
of length more than `.

The above lemma implies that with the inverse suffix array A−1, the LCP-array H, and
constant-time RMQs on H, we can answer lcp-queries for arbitrary suffixes in O(1) time.

Now consider the “reverse” problem, that of finding longest common suffixes of prefixes.

Definition 18. For a text T of length n and two indices 1 ≤ i, j ≤ n, lcsT (i, j) denotes the
length of the longest common suffix of the prefixes ending at position i and j in T , in symbols:
lcsT (i, j) = max{k ≥ 0 : Ti−k+1...i = Tj−k+1...j}.

For this, it suffices to build the reverse string T̃ , and prepare it for lcp-queries as shown
before. Then lcsT (i, j) = lcpT̃ (n− i+ 1, n− j + 1).

11.2 Longest Previous Substring

We now show how to compute an array L of longest previous substrings, where L[i] holds the
length of the longest prefix of T i that has another occurrence in T starting strictly before i.

Definition 19. The longest-previous-substring-array L[1, n] is defined such that L[i] = max{` ≥
0 : ∃k < i with Ti...i+`−1 = Tk...k+`−1}.

41

Note that for a character a ∈ Σ which has its first occurrence in T at position i, the above
definition correctly yields L[i] = 0, as in this case any position k < i satisfies Ti...i−1 = ε =
Tk...k−1.

If we are also interested in the position of the longest previous substring, we need another
array:

Definition 20. The array O[1, n] of previous occurrences is defined by:

O[i] =

{
k if Ti...i+L[i]−1 = Tk...k+L[i]−1 6= ε

⊥ otherwise

A first approach for computing L is given by the following lemma, which follows directly from
the definition of L and lcp:

Lemma 23. For all 2 ≤ i ≤ n: L[i] = max{lcp(i, j) : 1 ≤ j < i}.

For convenience, from now on we assume that both A and H are padded with 0’s at their
beginning and end: A[0] = H[0] = A[n + 1] = H[n + 1] = 0. We further define T 0 to be the
empty string ε.

Definition 21. Given the suffix array A and an index 1 ≤ i ≤ n in A, the previous smaller
value function PSVA(·) returns the nearest preceding position where A is strictly smaller, in
symbols: PSVA(i) = max{k < i : A[k] < A[i]}. The next smaller value function NSV(·) is
defined similarly for nearest succeeding positions: NSVA(i) = min{k > i : A[k] < A[i]}.

The straightforward solution that stores the answers to all PSV-/NSV-queries in two arrays
P [1, n] and N [1, n] is sufficient for our purposes. Both arrays can be computed from left to
right, setting P [i] to i−1 if A[i−1] < A[i]. Otherwise, continue as follows: if A[P [i−1]] < A[i],
set P [i] to P [i − 1]. And so on (P [P [i − 1]], P [P [P [i − 1]]], . . .), until reaching the beginning
of the array (set P [0] = −∞ for handling the border case). By a similar argument we used for
constructing Cartesian trees, this algorithms takes O(n) time.

The next lemma shows how PSVs/NSVs can be used to compute L efficiently:

Lemma 24. For all 1 ≤ i ≤ n, L[A[i]] = max(lcp(A[PSVA(i)], A[i]), lcp(A[i], A[NSVA(i)])).

Proof. Rewriting the claim of Lemma 23 in terms of the suffix array, we get

L[A[i]] = max{lcp(A[i], A[j]) : A[j] < A[i]}

for all 1 ≤ i ≤ n. This can be split up as

L[A[i]] = max(max{lcp(A[i], A[j]) : 0 ≤ j < i and A[j] < A[i]},
max{lcp(A[i], A[j]) : i < j ≤ n and A[j] < A[i]}) .

To complete the proof, we show that lcp(A[PSV(i)], A[i]) = max{lcp(A[i], A[j]) : 0 ≤ j <
i and A[j] < A[i]} (the equation for NSV follows similarly). To this end, first consider an index
j < PSV(i). Because of the lexicographic order of A, any common prefix of TA[j] and TA[i]

is also a prefix of TA[PSV(i)]. Hence, the indices j < PSV(i) need not be considered for the
maximum. For the indices j with PSV(i) < j < i, we have A[j] ≥ A[i] by the definition of PSV.
Hence, the maximum is given by lcp(A[PSV(i)], A[i]).

To summarize, we build the array L of longest common substrings in O(n) time as follows:

42

• Build the suffix array A and the LCP-array H.

• Calculate two arrays P and N such that PSVA(i) = P [i] and NSVA(i) = N [i].

• Prepare H for O(1)-RMQs, as lcp(A[PSV(i)], A[i]) = H[rmqH(P [i] + 1, i)] by Lemma
22.

• Build L by applying Lemma 24 to all positions i.

The array O of previous occurrences can be filled along with L, by writing to O[A[i]] the
value A[P [i]] if lcp(A[P [i]], A[i]) ≥ lcp(A[N [i]], A[i]), and the value A[N [i]] otherwise.

11.3 Lempel-Ziv Factorization

Although the Lempel-Ziv factorization is usually introduced for data compression purposes
(gzip, WinZip, etc. are all based on it), it also turns out to be useful for efficiently finding
repetitive structures in texts, due to the fact that it “groups” repetitions in some useful way.

Definition 22. Given a text T of length n, its LZ-decomposition is defined as a sequence of k
strings s1, . . . , sk, si ∈ Σ+ for all i, such that T = s1s2 . . . sk, and si is either a single letter not
occurring in s1 . . . si−1, or the longest factor occurring at least twice in s1s2 . . . si.

Note that the “overlap” in the definition above exists on purpose, and is not a typo!
We describe the LZ-factorization by a list of k pairs (b1, e1), . . . , (bk, ek) such that si = Tbi...ei .

We now observe that given our array L of longest previous substrings from the previous section,
we can obtain the LZ-factorization quite easily in linear time:

Algorithm 8: O(n)-computation of the LZ-factorization

1 i← 1, e0 ← 0;
2 while ei−1 < n do
3 bi ← ei−1 + 1;
4 ei ← bi + max(0, L[bi]− 1);
5 ++i;

6 end

11.4 Without LCP-Array and RMQ

We saw in the exercises that the algorithm still runs in linear time if we do not use constant-time
lcp-queries: Suppose that a prefix T1,...,i−1 is already factored into s1s2 . . . sk−1. To find the next
factor sk, we compare the string T [i, n] naively with T [NSVA(A−1[i]), n] and T [PSVA(A−1[i]), n]
until a mismatch occurs—the longer match gives the length of the new factor sk. Here it is
important to note that not the entire L-array is computed.

11.5 A More Space Efficient Algorithm

The idea for an even more space efficient algorithm is to factor the string T by the usual pattern
matching algorithm. Suppose that a prefix T1,...,i−1 is already factored into s1s2 . . . sk−1. To
find the next factor sk, we start matching ti in the text T itself, with the help of the suffix
array A. Suppose the ti-interval in A is [`, r]. Then ti occurs before position i iff there is a
value in A[`, r] that is less than i, in particular iff the minimum in A[`, r] is less than i. This
can be efficiently checked by range minimum queries over A[`, r]. We then continue and find

43

the titi+1-interval in A, and so on, until the minimum in the suffix array range equals i. Since a
single search step in the suffix array takes O(log n) time, the whole algorithm takes O(n log n)
time.

12 Simulation of Suffix Trees

So far, we have seen compressed text indices that have only one functionality: locating all
occurrences of a search pattern P in a text T . In some cases, however, more functionality is
required. From other courses you might know that many sequence-related problems are solved
efficiently with suffix trees (e. g., computing tandem repeats, MUMs, . . .). However, the space
requirement of a suffix tree is huge: it is at least 20–40 times higher then the space of the
text itself, using very proprietary implementations that support only a very small number of all
conceivable suffix tree operations. In this chapter, we present a generic approach that allows
for the simulation of all suffix tree operations, by using only compressed data structures. More
specifically, we will build on the compressed suffix array from Chapter 7, and show how all suffix
tree operations can be simulated by computations on suffix array intervals. Space-efficient data
structures that facilitate these computations will be handled in subsequent chapters.

12.1 Basic Concepts

The reader is encouraged to recall the definitions from Sect. 3.4, in particular Def. 8. From now
on, we regard the suffix tree as an abstract data type that supports the following operations.

Definition 23. A suffix tree S supports the following operations.

• Root(): returns the root of the suffix tree.

• IsLeaf(v): true iff v is a leaf.

• LeafLabel(v): returns l(v) if v is a leaf, and null otherwise.

• IsAncestor(v, w): true iff v is an ancestor of w.

• SDepth(v): returns d(v), the string-depth of v.

• Count(v): the number of leaves in Sv.

• Parent(v): the parent node of v.

• FirstChild(v): the alphabetically first child of v.

• NextSibling(v): the alphabetically next sibling of v.

• lca(v): the lowest common ancestor of v and w.

• Child(v, a): node w such that the edge-label of (v, w) starts with a ∈ Σ.

• EdgeLabel(v, i) the i’th letter on the edge (Parent(v), v).

We recall from from previous chapters that A denotes the suffix array, H the lcp-array,
and rmq a range minimum query. Because we will later be using compressed data structures
(which not necessarily have constant access times), we use variables tsa, tlcp and trmq for the
access time to the corresponding array/function. E. g., with uncompressed (plain) arrays, we

44

have tsa = tlcp = trmq = O(1), while with the sampled suffix array from Sect. 7.6 we have
tsa = O(log n).

We represent a suffix tree node v by the interval [v`, vr] such that A[v`], . . . , A[vr] are exactly
the labels of the leaves below v. For such a representation we have the following basic lemma
(from now on we assume H[1] = H[n+ 1] = −1 for an easy handling of border cases):

Lemma 25. Let [v`, vr] be the interval of an internal node v. Then

(1) For all k ∈ [v` + 1, vr] : H[k] ≥ d(v).

(2) H[v`] < d(v) and H[vr + 1] < d(v).

(3) There is a k ∈ [v` + 1, vr] with H[k] = d(v).

Proof : Condition (1) follows because all suffixes TA[k], k ∈ [v`, vr], have v as their prefix,
and hence H[k] = lcp(TA[k], TA[k−1]) ≥ |v| = d(v) for all k ∈ [v` + 1, vr]. Property (2) follows
because otherwise suffix TA[v`] or TA[vr+1] would start with v, and hence leaves labeled A[v`]
or A[vr + 1] would also be below v. For proving property (3), for the sake of contradiction
assume H[k] > d(v) for all k ∈ [v` + 1, vr]. Then all suffixes TA[k], k ∈ [v`, vr], would start with
va for some a ∈ Σ. Hence, v would only have one outgoing edge (whose label starts with a),
contradicting the fact that the suffix tree is compact (has no unary nodes).

As a side remark, this is actually an “if and only if” statement, as every interval satisfying
the three conditions from Lemma 25 corresponds to an internal node.

Definition 24. Let [v`, vr] be the interval of an internal node v. Any position k ∈ [v` + 1, vr]
satisfying point (3) in Lemma 25 is called a d(v)-index of v.

Our aim is to simulate all suffix tree operations by computations on suffix intervals: given
the interval [v`, vr] corresponding to node v, compute the interval of w = f(v) from the values
v` and vr alone, where f can be any function from Def. 23; e.g., f = Parent. We will see that
most suffix tree operations follow a generic approach: first locate a d(w)-index p of w, and then
search for the (yet unknown) delimiting points w` and wr of w’s suffix interval. For this latter
task (computation of w` and wr from p), we also need the previous- and next-smaller-value
functions as already defined in Def. 21 in Sect. 11.2. However, this time we define them to work
on the LCP-array:

Definition 25. Given the lcp-array H and an index 1 ≤ i ≤ n, the previous smaller value
function PSVH(i) = max{k < i : H[k] < H[i]}. The next smaller value function NSVH(i) is
defined similarly for succeeding positions: NSVH(i) = min{k > i : H[k] < H[i]}.

We use tpnsv to denote the time to compute a value NSVH(i) or PSVH(i). In what follows,
we often use simply PSV and NSV instead of PSVH and NSVH , implicitly assuming that array
H is the underlying array. The following lemma shows how these two functions can be used to
compute the delimiting points w` and wr of w’s suffix interval:

Lemma 26. Let p be a d(w)-index of an internal node w. Then w` = PSV(p), and wr =
NSV(p)− 1.

Proof : Let l = PSV(p), and r = NSV(p). We must show that all three conditions in Lemma
23 are satisfied by [l, r − 1]. Because H[l] < H[p] by the definition of PSV, and likewise
H[r] < H[p], point (1) is clear. Further, because l and r are the closest positions where H
attains a smaller value, condition (2) is also satisfied. Point (3) follows from the assumption
that p is a d(w)-index. We thus conclude that w` = l and wr = r − 1.

45

12.2 Suffix Tree Operations

We now step through the operations from Def. 23 and show how they can be simulated by
computations on the suffix array intervals. Let [v`, vr] denote the interval of an arbitrary node
v. The most easy operations are:

• Root(): returns the interval [1, n].

• IsLeaf(v): true iff v` = vr.

• Count(v): returns vr − v` + 1.

• IsAncestor(v, w): true iff v` ≤ wr ≤ vr.

Time is O(1) for all four operations.

• LeafLabel(v): If v` 6= vr, return null. Otherwise, return A[v`] in O(tsa) time.

• SDepth(v): If v` = vr, return n − A[v`] + 1 in time O(tsa), as this is the length of the
A[v`]’th suffix. Otherwise from Lemma 25 we know that d(v) is the minimum lcp-value
in H[v` + 1, vr]. We hence return H[rmqH(v` + 1, vr)] in time O(trmq + tlcp).

• Parent(v): Because S is a compact tree, either H[v`] or H[vr + 1] equals the string-
depth of the parent-node, whichever is greater. Hence, we first set p = argmax{H[k] : k ∈
{v`, vr+1}}, and then, by Lemma 26, return [PSV(p),NSV(p)−1]. Time is O(tlcp+tpnsv).

• FirstChild(v): If v is a leaf, return null. Otherwise, locate the first d(v)-value in
H[v`, vr] by p = rmqH(v` + 1, vr). Here, we assume that rmq returns the position of the
leftmost minimum, if it is not unique. The final result is [v`, p− 1], and the total time is
O(trmq).

• NextSibling(v): First, compute v’s parent as w = Parent(v). Now, if vr = wr, return
null, since v does not have a next sibling in this case. If wr = vr+1, then v’s next sibling
is a leaf, so we return [wr, wr]. Otherwise, try to locate the first d(w)-value after vr + 1
by p = rmqH(vr + 2, wr). If H[p] = d(w), we return [vr + 1, p − 1] as the final result.
Otherwise (H[p] > d(w)), the final result is [vr + 1, wr]. Time is O(tlcp + tpnsv + trmq).

• lca(v, w): First check if one of v or w is an ancestor of the other, and return that node
in this case. Otherwise, assume vr < w` (otherwise swap v and w). Let u denote the (yet
unknown) lca of v and w, so that our task is to compute u` and ur. First note that all
suffixes TA[k], k ∈ [v`, vr]∪ [w`, wr], must be prefixed by u, and that u is the deepest node
with this property. Further, because none of v and w is an ancestor of the other, v and w
must be contained in subtrees rooted at two different children û and ù of u, say v is in û’s
subtree and w in the one of ù. Because vr ≤ w`, we have ûr ≤ ù`, and hence there must
be a d(u)-index in H between ûr and ù`, which can be found by p = rmqH(vr + 1, w`).
The endpoints of u’s interval are again located by u` = PSV(p) and ur = NSV(p) − 1.
Time is O(trmq + tpnsv).

• EdgeLabel(v, i): First, compute the string-depth of v by d1 = SDepth(v), and that of
u = Parent(v) by d2 = SDepth(u), in total time O(trmq+tlcp+tpnsv). Now if i > d1−d2,
return null, because i exceeds the length of the label of (u, v) in this case. Otherwise,
the result is given by tA[v`]+d2+i−1, since the edge-label of (u, v) is TA[k]+d2...A[k]+d1−1 for
an arbitrary k ∈ [v`, vr]. Total time is thus O(tsa + trmq + tlcp + tpnsv).

46

A final remark is that we can also simulate many other operations in suffix trees not listed
here, e.g. suffix links, Weiner links, level ancestor queries, and many more.

12.3 Compressed LCP-Arrays

We now show how to reduce the space for the lcp-array H from n log n to O(n) bits. To this
end, we first note that the lcp-value can decrease by at most 1 when moving from suffix A[i]−1
to A[i] in H (i. e., when enumerating the lcp-values in text order):

Lemma 27. For all 1 < i ≤ n, H[i] ≥ H[A−1[A[i]− 1]− 1.

Proof : If H[i] = 0, the claim is trivial. Hence, suppose H[i] > 0, and look at the two suffixes
starting at positions A[i] and A[i − 1], which must start with the same character. Suppose
TA[i] = aα and TA[i−1] = aβ for a ∈ Σ, α, β ∈ Σ∗.

Because the suffixes are sorted lexicographically in A, and aα >lex aβ, we know α >lex β,
and that α and β share a common prefix of length H[i] − 1, call it γ. Now note that all
suffixes between β and α in A must also start with γ, as otherwise the suffixes would not
be in lexicographic order. In particular, suffix TA[A−1[A[i]+1]−1] must be prefixed by γ, and
hence H[A−1[A[i] + 1] = lcp(TA[i]+1, TA[A−1[A[i]+1]−1]) = lcp(α, TA[A−1[A[i]+1]−1]) ≥ |γ| =
H[i]− 1.

From the above lemma, we can conclude that I[1, n] = [H[A−1[1]]+1, H[A−1[2]]+2, H[A−1[3]]+
3, . . . ,H[A−1[n]] + n] is an array of increasing integers. Further, because no lcp-value can ex-
ceed the length of corresponding suffixes, we see that H[A−1[i]] ≤ n− i+ 1. Hence, sequence I
must be in range [1, n]. We encode I differentially : writing ∆[i] = I[i]−I[i−1] for the difference
between entry i and i− 1, and defining I[0] = 0 for handling the border case, we encode ∆[i] in
unary as 0∆[i]1. Let the resulting sequence be S.

T = C A C A A C C A C $

A =10 4 8 2 5 9 3 7 1 6

H = 0 0 1 2 2 0 1 2 3 1

I = 4 4 4 4 7 7 9 9 9 10

S =00001 1 1 1 0001 1 001 1 1 01

Note that the number of 1’s in S is exactly n, and that the number of 0’s is at most n, as the
∆[i]’s sum up to at most n. Hence, the length of S is at most 2n bits. We further prepare S for
constant-time rank0- and select1-queries, using additional o(n) bits. Then H[i] can be retrieved
by

H[i] = rank0(S, select1(S,A[i]))−A[i] .

This is because the select-statement points to the position of the terminating ’1’ of 0∆[A[i]]1
in S, and the rank-statement counts the sum of ∆-values before that position, which is I[A[i]].
From this, in order to get H[i], we need to subtract A[i], which has bin “artificially” added
when deriving I from H.

By noting that there are exactly A[i] 1’s up to position select1(S,A[i]) in S (and therefore
select1(S,A[i])−A[i] 0’s), the calculation can be further simplified to

H[i] = select1(S,A[i])− 2A[i] .

We have proved:

47

Theorem 28. The lcp-array H can be stored in 2n+o(n) bits such that retrieving an arbitrary
entry H[i] takes tlcp = O(tsa) time.

Note that with the sampled suffix array from Sect. 7.6, this means that we no more have
constant-time access to H, as tsa = O(log n) in this case.

12.4 Select in o(n) Bits (*)

Definition 26. Given a bit-vector B[1, n], select1(B, i) returns the position of the i’th 1-bit in
B, or n+ 1 if B contains less than i 1’s. Operation select0 is defined similarly.

Note that rank1(B, select(B, i)) = i. The converse select(B, rank(B, i)) is only true if B[i] = 1.
Note also that select0 cannot be computed easily from select1 (as it was the case for rank), so
select1 and select0 have to be considered separately.

Solving select-queries is only a little bit more complicated than solving rank-queries. We
divide the range of arguments for select1 into subranges of size κ = blog2 nc, and store in N [i]
the answer to select1(B, iκ). This table N [1, dnκe] needs O(nκ log n) = O(n

logn) bits, and divides
B into blocks of different size, each containing κ 1’s (apart from the last).

B =

N [3] N [4]N [1] N [2] etc.

A block is called long if it spans more than κ2 = Θ(log4 n) positions in B, and short otherwise.
For the long blocks, we store the answers to all select1-queries explicitly. Because there are at
most n

log4 n
long blocks, this requires

O
(n
κ2
κ log n

)
= O(n/ log4 n︸ ︷︷ ︸

#long blocks

× log2 n︸ ︷︷ ︸
#arguments

× log n︸︷︷︸
value from [1,n]

) = O

(
n

log n

)
= o(n) bits.

Short blocks contain κ 1-bits and span at most κ2 positions in B. We divide again their range
of arguments into sub-ranges of size κ′ = blog2 κc = Θ(log2 log n). In N ′[i], we store the answer
to select1(B, iκ′), relative to the beginning of the block where i occurs:

N ′[i] = select1(B, iκ′)−N [b iκ
′ − 1

κ
c︸ ︷︷ ︸

block before i

] .

Because the values in N ′ are in the range [1, κ2], table N ′[1, d nκ′ e] needs

O
(n
κ′

log κ2
)

= O

(
n

log2 log n
log log n

)
= o(n)

bits. Table N ′ divides the blocks into miniblocks, each containing κ′ 1-bits.

Miniblocks are long if they span more than
√
κ

2 = Θ(log n) bits, and short otherwise. For long
miniblocks, we store again the answers to all select-queries explicitly, relative to the beginning of
the corresponding block. Because the miniblocks are contained in short blocks of length ≤ κ2,

48

the answer to such a select-query takes O(log κ) bits of space. Thus, the total space for the long
miniblocks is

O(n/
√
κ︸ ︷︷ ︸

#long miniblocks

× κ′︸︷︷︸
#arguments

× log κ) = O

(
n log3 log n

log n

)
= o(n)

bits.
Finally, because short miniblocks are of length logn

2 , we can use a global lookup table (anal-
ogous to P in the solution for rank) to answer select1-queries within short miniblocks.

B =

long blocks short blocks short miniblocks

κ 1s κ 1s κ 1s κ 1s

κ2
√
κ long miniblocks

etc.

Answering select-queries is done by following the description of the data structure.
The structures need to be duplicated for select0. We summarize this section in the following

theorem.

Theorem 29. An n-bit vector B can be augmented with data structures of size o(n) bits such
that rankb(B, i) and selectb(B, i) can be answered in constant time (b ∈ {0, 1}).

13 Succinct Data Structures for RMQs and PSV/NSV Queries

This chapter shows that O(n) bits are sufficient to answer rmqs and PSV/NSV-queries in
constant time. For our compressed suffix tree, we assume that all three queries are executed on
the lcp-array H, although the data structures presented in this chapter are applicable to any
array of ordered objects.

13.1 2-Dimensional Min-Heaps

We first define a tree that will be the basis for answering rmqs and NSV-queries. The solution
for PSV-queries is symmetric. The following definition assumes that H[n + 1] is always the
smallest value in H, what can be enforced by introducing a “dummy” element H[n+ 1] = −∞.

Definition 27. Let H[1, n + 1] be an array of totally ordered objects, with the property that
H[n+ 1] < H[i] for all 1 ≤ i ≤ n. The 2-dimensional Min-Heap MH of H is a tree an n nodes
1, . . . , n, defined such that NSV(i) is the parent-node of i for 1 ≤ i ≤ n.

Note that MH is a well-defined tree whose root is n+ 1.

Example 11.

49

H = -1 0 0 3 1 2 0 1 1 −∞
1 2 3 4 5 6 7 8 9 10

10

987

5 6

4

1 2 3

From the definition of MH , it is immediately clear that the value NSV(i) is given by the
parent node of i (1 ≤ i ≤ n). The next lemma shows that MH is also useful for answering
rmqs on H.

Lemma 30. For 1 ≤ i < j ≤ n, let l = lcaMH
(i, j). Then if l = j, rmqH(i, j) = j. Otherwise,

rmqH(i, j) is given by the child of l that is on the path from l to i.

Proof : “graphical proof”:

H =

MH =

NSV (i) NSV NSV NSV

RMQH(i, j)i j

i j

parent(i)

child on
path to i l

Example 12. Continuing the example above, let i = 4 and j = 6. We have lcaMH
(4, 6) = 7,

and 5 is the child of 7 on the path to 4. Hence, rmqH(4, 6) = 5.

13.2 Balanced Parentheses Representation of Trees

Any ordered tree T on n nodes can be represented by a sequence B of 2n parentheses as follows:
in a depth-first traversal of T , write an opening parenthesis ’(’ when visiting a node v for the
first time, and a closing parenthesis ’)’ when visiting v for the last time (i. e., when all nodes in
Tv have been traversed).

Example 13. Building on the 2d-Min-Heap from the Example 11, we have B = (()()()((())())()()).

In a computer, a ’(’ could be represented by a ’1’-bit, and a ’)’ by a ’0’-bit, so the space for
B is 2n bits. In the lecture “Advanced Data Structures” it is shown that this representation
allows us to answer queries like rank((B, i) and select)(B, i), by using only o(n) additional space.

Note that the sequence B is balanced, in the sense that in each prefix the number of closing
parentheses is no more than the number of opening parenthesis, and that there are n opening
and closing parentheses each in total. Hence, this representation of trees is called balanced
parentheses sequence (BPS).

We also need the following operation.

50

Definition 28. Given a sequence B[1, 2n] of balanced parentheses and a position i with B[i] =’)’,
enclose(B, i) returns the position of the closing parenthesis of the nearest enclosing ’()’-pair.

In other words, if v is a node with closing parenthesis at position i < 2n in B, and w is
the parent of v with closing parenthesis at position j in B, then enclose(B, i) = j. Note that
enclose(i) > i for all i, because of the order in which nodes are visited in a depth first traversal.

Example 14.

B = (() () () ((()) ()) () ())

enclose

We state the following theorem that is also shown in the lecture “Advanced Data Structures.”

Theorem 31. There is a data structure of size O
(
n log logn

logn

)
= o(n) bits that allows for

constant-time enclose-queries.

(The techniques are roughly similar to the techniques for rank- and select-queries.)
Now look at an arbitrary position i in B, 1 ≤ i ≤ 2n. We define the excess-value E[i] at

position i as the number of opening parenthesis in B[1, i] minus the number of closing parenthesis
in B[1, i]. Note that the excess-values do not have to be stored explicitly, as

|E[i]| = rank((B, i)− rank)(B, i)

= i− rank)(B, i)− rank)(B, i)

= i− 2rank)(B, i) .

Example 15.

B = (() () () ((()) ()) () ())

E = 1 2 1 2 1 2 1 2 3 4 3 2 3 2 1 2 1 2 1 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Note:

1. E[i] > 0 for all 1 ≤ i < 2n

2. E[2n] = 0

3. If i is the position of the closing parenthesis of node v, then E[i] is the depth of v.
(Counting starts at 0, so the root has depth 0.)

We also state the following theorem without proof.

Theorem 32. Given a sequence B of balanced parentheses, there is a data structure of size

O
(
n log logn

logn

)
= o(n) bits that allows to answer rmqs on the associated excess-sequence E in

constant time.

(The techniques are again similar to rank and select: blocking and table-lookups. Note in

particular that logn
2 excess-values E[x], E[x + 1], . . . , E

[
x+ logn

2 − 1
]

are encoded in a single

computer-word B
[
x, x+ logn

2 − 1
]
, and hence it is again possible to apply the Four-Russians-

Trick!)

51

13.3 Answering Queries

We represent MH by its BPS B, and identify each node i in MH by the position of its closing
parenthesis in B.

Example 16.

B = (() () () ((()) ()) () ())

E = 1 2 1 2 1 2 1 2 3 4 3 2 3 2 1 2 1 2 1 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10

1 2 3

4

5 6

7 8 9

10

MH=

Note that the (closing parenthesis of) nodes appear in B in sorted order - this is simply
because in MH node i hast post-order number i, and the closing parenthesis appear in post-
order by the definition of the BPS. This fact allows us to jump back and forth between indices
in H and positions of closing parentheses ’)’ in B, by using rank- and select-queries in the
appropriate sequences.

Answering NSV-queries is now simple. Suppose we wish to answer NSVH(i). We then move
to the position of the i’th ’)’ by

x← select)(B, i) ,

and then call
y ← enclose(B, x)

in order to move to the position y of the closing parenthesis of the parent j of i in MH . The
(yet unknown) value j is computed by

j ← rank)(B, y) .

Example 17. We want to compute NSV(7). First compute x ← select)(B, 7) = 15, and then
y ← enclose(15) = 20. The final result is j ← rank)(B, 20) = 10.

Answering rmqs is only slightly more complicated. Suppose we wish to answer rmqH(i, j)
for 1 ≤ i < j ≤ n. As before, we go to the appropriate positions in B by

x← select)(B, i) and

y ← select)(B, j) .

We then compute the position of the minimum excess-value in the range [x, y] by

z ← rmqE(x, y) ,

and map it back to a position in H by

m← rank)(B, z) .

This is the final answer.

52

Example 18. We want to compute rmqH(4, 9). First, compute x ← select)(B, 4) = 11 and
y ← enclose(B, 9) = 19. The range minimum query yields z ← rmqE(11, 19) = 15. Finally,
m← rank)(B, 15) = 7 is the result.

We now justify the correctness of this approach. First assume that ` = lcaMH
(i, j) is

different from j. Let `1, . . . , `k be the children of `, and assume i ∈ T`γ and j ∈ T`δ for some
1 ≤ γ < δ ≤ k. By Lemma 30, we thus need to show that the position of the closing parenthesis
of `γ is the position where E attains the minimum in E[x, y].

Example 19.

B = (()))))))
a x y b

j

j

i

il1 lγ lδ lk

l1 lγ lδ lk

l

E = d d d d d-1

≥ d ≥ d

RMQE(x, y)

aa

l

Let d−1 be the tree-depth of `, and let B[a, b] denote the part of B that “spells out” T` (i.e.,
B[a, b] is the BPS of the sub-tree of T rooted at `). Note that a < x < y < b, as i and j are
both below ` in T .

Because B[a] is the opening parenthesis of node `, we have E[a] = d. Further, because B is
balanced, we have E[c] ≥ d for all a < c < b. But E assumes the values d at the positions of the
closing parenthesis of nodes `β (1 ≤ β ≤ k), in particular for `γ . Hence, the leftmost minimum
in E[x, y] is attained at the position z of the closing parenthesis of node `γ , which is computed
by an RMQ in E. The case where ` = j is similar (and even simpler to prove). Thus, we get:

Theorem 33. With a data structure of size 2n + o(n) bits, we can answer rmqs and NSV-
queries on an array of n ordered objects on O(1) time.

The drawback of the 2d-Min-Heap, however, is that it is inherently asymmetric (as the parent-
relationship is defined by the minimum to the right), and cannot be used for answering PSV-
queries as well. For this, we could build another 2d-Min-Heap MR

H on the reversed sequence
HR, using another 2n + o(n) bits. (Note that an interesting side-effect of this MR

H is that it
would allow to compute the rightmost minimum in any query range, instead of the leftmost,
which could have interesting applications in compressed suffix trees.)

In the lecture we also discussed the possibility to just add another bit-vector of length n bits
— however, this seems only to work if we represent the 2d-Min-Heap by DFUDS (instead of
BPS). If we plug all these structures into the compressed suffix tree from Chapter 12 (which
was indeed the reason for developing the solutions for RMQs and PNSVs), we get:

Theorem 34. A suffix tree on a text of length n over an alphabet of size σ can be stored in
|SA| + 3n + o(n) bits of space (where |SA| denotes the space for the suffix array), such that

53

operations Root, IsLeaf, Count, IsAncestor, FirstChild, and lca take O(1) time, and
operations LeafLabel, SDepth, Parent, NextSibling and EdgeLabel take O(tsa) time
(where tsa denotes the time to retrieve an element from the suffix array).

54

	Recommended Reading
	Tries
	Suffix Trees and Arrays
	Suffix- and LCP-Arrays
	Construction of Suffix Arrays
	O(nlgn)-Time Construction
	Linear-Time Construction

	Linear-Time Construction of LCP-Arrays
	Suffix Trees
	Searching in Suffix Trees
	Linear-Time Construction of Suffix Trees
	Practical Improvements*

	Searching in Suffix Arrays
	Exact Searches
	Accelerated Search in Suffix Arrays*

	Lempel-Ziv Compression
	LZ77
	LZ78

	Level Ancestor Queries (Deutsch, danke an Maximilian Schuler (KIT) für's texen!)
	Literaturempfehlungen
	Einführung
	O(1) Level Ancestor mit O(n lgn) Platzverbrauch
	Jump-Pointer Algorithmus
	Ladder Algorithmus
	Beide Techniken verbinden

	O(1) Level Ancestor mit O(n) Platzverbrauch

	The Burrows Wheeler Transformation
	The Transformation
	Construction of the BWT
	The Reverse Transformation
	Compression
	Move-to-front (MTF)
	0-Order Compression

	Backwards Search and FM-Indices
	Model of Computation and Space Measurement
	Backward Search
	First Ideas for Implementing rank
	Compact Data Structures on Bit Vectors
	Wavelet Trees
	Sampling the Suffix Array
	The Final FM-Index
	Further Applications of Wavelet Trees

	Inverted Indexes
	Queries
	Representing the Vocabulary
	List Intersection
	Postings List Compression
	Unary Code
	Elias Codes

	Ternary Code
	Fibonacci Code
	Golomb Codes

	Range Minimum Queries
	Linear Equivalence of RMQs and LCAs
	Reverse Direction (*)

	O(1)-RMQs with O(nlogn) Space
	O(1)-RMQs with O(n) Space
	Queries Spanning Exactly over Blocks
	Queries Completely Inside of Blocks

	Document Retrieval
	The Task
	The Straight-Forward Solution
	The Problem
	An Optimal Solution

	Lempel-Ziv Compression
	Longest Common Prefixes and Suffixes
	Longest Previous Substring
	Lempel-Ziv Factorization
	Without LCP-Array and RMQ
	A More Space Efficient Algorithm

	Simulation of Suffix Trees
	Basic Concepts
	Suffix Tree Operations
	Compressed LCP-Arrays
	Select in o(n) Bits (*)

	Succinct Data Structures for RMQs and PSV/NSV Queries
	2-Dimensional Min-Heaps
	Balanced Parentheses Representation of Trees
	Answering Queries

