Well-Separated Pair Decomposition

Application: geometric spanners
Construction and size
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Motivation

Problem: Connect a set of cities by a new street network.

1. Idea: Euclidean MST
But for any pair (x, y) the graph distance shouldn’t be

much longer than ||z — y]

B

2. Idea: complete graph
The budget for roads only pays for O(n) roads.

3. Idea: sparse t-spanner

A %
O(n) edges  detour < t-shortest path



Applications of distance approximation

fast, approximate distance computation

o o * geometric approximation algorithms for diameter,
© © minimum spanning tree etc.

» exact algorithms: closest pair, nearest neighbor graph,
Voronoi diagrams etc.

~communication and connectivity in networks
» topology control in wireless networks
e ~* routingin networks

* network analysis
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t-spanner

For a set P of n points in R the Euclidean graph £EG(P) = (P, (];)) is the

complete, weighted graph with Euclidean distances as edge weights.

Since £G(P) has ©(n?) edges, we want a sparse graph with O(n) edges such
that the shortest paths in the graph approximate the edge weights of EG(P).

Definition: A weighted graph G with vertex set P is called t-spanner for P and a
stretch factor ¢ > 1, if for all pairs x,y € P:

|xyl] < dg(z,y) <t-|lzyll,

where g (x,y) = length of the shortest z-to-y path in G.
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Quiz

What is the smallest ¢ for which the following graph is a t-spanner?

B: 2 How can we compute a t-spanner?
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add corresponding edge
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Spanner construction paradigms

greedy

 sort point pairs by distance, start with no edges
» if for the next point pair the dilation is > ¢ then

add corresponding edge

cone-based

» subdivide space around each pointinto k£ > 6
non-overlapping cones with angle ¢ = 27 /k

» connect to “closest” point in each cone

distance approximation
» well-separated pair decomposition (next!)
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fast, approximate distance computation

o o * geometric approximation algorithms for diameter,
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Well-Separated Pairs

Definition: A pair of disjoint point sets A and B in R? is called s-well separated
foran s > 0, if A and B both can be covered by a ball of radiusk and the

Note: book uses
1/ here.

distance between the balls is at least sr.

Observation:
» s-well separated = s’-well separated for all s’ < s
» singletons {a} and {b} are s-well separated for all
s > 0
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For a well-separated pair { A, B} the distance between all point pairs in
AR B :={{a,b} |a € A,be B,a # b} is similar.

Goal: o(n?)-data structure that approximates all (g) pairwise distances of a point
set P ={p1,...,Pn}



Well-Separated Pair Decomposition

For a well-separated pair { A, B} the distance between all point pairs in
AR B :={{a,b} |a € A,be B,a # b} is similar.

Goal: o(n?)-data structure that approximates all (g) pairwise distances of a point
set P ={p1,...,Pn}

Definition: For a set of points P2 and s > 0 an s-well separated pair
decomposition (s-WSPD) is a set of pairs {{ A1, B1},...,{Am, Bm} } with
- A;,, B, C Pforall?
- A, N B, = @ forall
 {A;, B;} s-well separated for all 7
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Example

O O

28 pairs of points 12 s-well separated pairs

WSPD of size O(n?) is trivial.
What is the ‘size’? Can we get size O(n)?
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Reminder: quadtrees

Definition: A quadtree is a rooted tree, in which every interior node has 4
children. Every node corresponds to a square, and the squares of children are the

guadrants of the parent’s square.

W SW

NE

Ol®




Reminder: Compressed quadtrees

Definition: A compressed quadtree is a quadtree in which paths of
non-separating inner nodes are compressed to an edge.

e

Theorem 2: A compressed quadtree for n points in R? for
fixed d has size O(n) and can be computed in O(n logn)
time.
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Representative and Level

Definition: For every node u of a quadtree 7 (P) let P, = o, N P,
where o, is the square corresponding to w.

@evel 3 For every leaf u define the representative
q . .
if P, = w is leaf
level|0 rep(u) = b u= AP} )
& otherwise.
55 qr For every inner node v set
O % rep(v) = rep(u) of a non-empty child u of v.
level oo

Notes: (a) levels in book < 0, (b) book works with
A(wu) = radius of circle around square (or 0 for
leaves) instead.




Representative and Level

Definition: For every node u of a quadtree 7 (P) let P, = o, N P,
where o, is the square corresponding to w.

evel 3 For every leaf u define the representative
if P, = u is leaf
level|0 rep(u) = {p u = AP} )
& otherwise.
| 55 qr For every inner node v set
O 4 rep(v) = rep(u) of a non-empty child u of v.
level oo

next: using quadtree to compute WSPD
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Construction of a WSPD

WSPAIRS(u, v, T, S)
Input: quadtree nodes u, v, quadtree 7, s > 0
Output: WSPD for P, ® P,
1: ifrep(u) = @ orrep(v) = I or leaves u = v then return &
2: elseif P, and P, s-well separated then return {{u,v}}
3: else
4. iflevel(u) > level(v) then exchange u and v
5: (Ul,...,Um) < childrenof uin 7T
6: return|J.", wsPars(u;, v, T, s)
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Construction of a WSPD

WSPAIRS (u, v, T, S)

Input: quadtree nodes u, v, quadtree 7, s > 0
Output: WSPD for P, ® P,
1: ifrep(u) = D orrep(v) = I or leaves u = v then return &
2: elseif P, and P, s-well separated then return {{u,v}}
3: else
if level(u) > level(v) then exchange u and v

4.

5
6.
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Construction of a WSPD

WSPAIRS (u, v, T, S)

Input: quadtree nodes u, v, quadtree 7, s > 0
Output: WSPD for P, ® P,
1: ifrep(u) = D orrep(v) = I or leaves u = v then return &
2: elseif P, and P, s-well separated then return {{u,v}}
3: else
if level(u) > level(v) then exchange u and v

4.

5
6.

(ul,...,

Um ) < children of win T

return | ;" , wsPaIrRs(u;, v, T, s)
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i1b, ¢}, {d}}
{{a},{d}}
b ci, et}
{{d},{e}}
{{a},{0}}
{{a},{c}}
{{b7,{c}}
{{a},{e}}



Construction of a WSPD

WSPAIRS (u, v, T, S)

Input: quadtree nodes u, v, quadtree 7, s > 0
Output: WSPD for P, ® P,

1: ifrep(u) = @ orrep(v) = I or leaves u = v then return &
2: elseif P, and P, s-well separated then return {{u,v}}

3: else

4. iflevel(u) > level(v) then exchange u and v

5: (U1,...,Um) < childrenof uin T

6: return|J.", wsPars(u;, v, T, s)

- initial call wsPAIRS(ug, ug, 7T, S)

+ avoid duplicate WsPAIRS (u;, u;, T, ) and WsPAIRS (u, u;, T, )
 pairs of leaves are s-well separated — algorithm terminates

» output are pairs of quadtree nodes
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[s the size of the s-WSPD constructed minimal?

A: Yes, because the s-WSPD is unique.

B: Yes, because all s-WSPDs have the same size.

C: No, not necessarily.
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Quiz

[s the size of the s-WSPD constructed minimal?

A: Yes, because the s-WSPD is unique.

B: Yes, because all s-WSPDs have the same size.

C: No, not necessarily.

Question: How many pairs are generated by the algorithm?



Well-Separated Pair Decomposition

Complexity
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Theorem: For a point set P in R? and s > 1 we can construct an s-WSPD with
O(s%) pairs in time O(nlogn + s%n).

Proof sketch: Assumptions: s > 1, QT uncompressed.
Count the non-terminal calls.

WSPAIRS(u, v, T, S)

af 'f}j < s Input: quadtree nodes u, v, quadtree 7, s > 0

U/ Output: WSPD for P, ® P,

R 1: ifrep(u) = D orrep(v) = I or leaves u = v then return &
2: else if P, and P, s-well separated then return {{u,v}}

3: else

4. iflevel(u) > level(v) then exchange u and v

5. (u1,...,Um) < children of u in T

6: return|J.", wsPARS(u;, v, T, s)
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Analysis of WSPD-Construction

Theorem: For a point set P in R? and s > 1 we can construct an s-WSPD with
O(s%) pairs in time O(nlogn + s%n).
Proof sketch: Assumptions: s > 1, QT uncompressed.

Count the non-terminal calls.

Charging argument: charge non-term. call to the non-split square.
- claim: O(sd) charges to each square

/
lt VL < sax\/d Consider call (u, v) with v smaller of side length z.

U
/ u, v are not separated,
R u is at most factor 2 larger than v
- = distance between the balls
< smax(ry, ) < 257, = szVd
—> distance between their centers
< (1/2 41+ s)zvd < 3szvd =: R,

packing lemma: only O(Sd) such squares.
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Lemma: Let B be a ball of radius 7 in R? and X a set of pairwise disjoint
qguadtree cells with side length > x, that intersect B. Then
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Packing Lemma

Lemma: Let B be a ball of radius 7 in R? and X a set of pairwise disjoint

qguadtree cells with side length > x, that intersect B. Then
X| < (1+[2r/2])"
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Packing Lemma

Lemma: Let B be a ball of radius 7 in R? and X a set of pairwise disjoint

qguadtree cells with side length > x, that intersect B. Then
X| < (1+[2r/2])"

Proof:
T T

e —— e ——

D E
@ e

2r
in every dimension at most 1 + |2r /x| squares can

intersect the ball
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Application: t-spanner



t-spanner

For a set P of n points in R the Euclidean graph £EG(P) = (P, (];)) is the
complete, weighted graph with Euclidean distances as edge weights.

Since £G(P) has ©(n?) edges, we want a sparse graph with O(n) edges such
that the shortest paths in the graph approximate the edge weights of EG(P).
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t-spanner

For a set P of n points in R the Euclidean graph £EG(P) = (P, (];)) is the

complete, weighted graph with Euclidean distances as edge weights.

Since £G(P) has ©(n?) edges, we want a sparse graph with O(n) edges such
that the shortest paths in the graph approximate the edge weights of EG(P).

Definition: A weighted graph G with vertex set P is called t-spanner for P and a
stretch factor ¢ > 1, if for all pairs x,y € P:

|xyl] < dg(z,y) <t-|lzyll,

where g (x,y) = length of the shortest z-to-y path in G.



WSPD and ¢-Spanner

Definition: For n points P in R¢ and a WSPD W of P define the graph
G = (P, F)with E = {{x,y} | {u,v} € W andrep(u) = x,rep(v) = y}.



WSPD and ¢-Spanner

: For n points P in R¢ and a WSPD W of P define the graph
G=(P,E)withE ={{z,y} | {u,v} € Wandrep(u) =z, rep(v) = y}.

A

Reminder: every pair {u,v} € W corresponds to two
quadtree nodes u and v. From each quadtree node a
representative is selected in the following way. For leaf u
define as representative

{p if P, = {p} (uis leaf)

rep(u) =
p( ) & otherwise.

For an inner node v set rep(v) = rep(u) for a non-empty
child u of v.
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WSPD and ¢-Spanner

Definition: For n points P in R¢ and a WSPD W of P define the graph
G = (P, F)with E = {{x,y} | {u,v} € W andrep(u) = x,rep(v) = y}.

Lemma: If W is an s-WSPD for s = 4 - t“ , then GG is a t-spanner for P with
O(s%n) edges. 2r
Proof: induction on distances
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WSPD and ¢-Spanner

Definition: For n points P in R¢ and a WSPD W of P define the graph
G = (P, F)with E = {{x,y} | {u,v} € W andrep(u) = x,rep(v) = y}.

Lemma: If W is an s-WSPD for s = 4 - t“ , then GG is a t-spanner for P with
O(s%n) edges.

Question: How large does s needto beift =1 + ¢

A: 4

B: O(1/¢)

C:O(1/e%)
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Summary

Theorem: For a set P of n pointsin R? and an ¢ € (0, 1] a (1 + ¢)-spanner for P
with O(n/e?) edges can be computed in O(nlogn + n/c%) time.

Proof: Fort = (1 + ¢) it holds with s = 4 - =

aa(( 5 o)

P

' O(nlogn)
compressed quadtree
' O(n/e?)
WSPD
' O(n/e?)

(1 + €)-spanner .
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Applications of the WSPD?

WSPD is always useful, when we don't need the ©(n?) exact distances, but
approximate distances are enough



Discussion

Applications of the WSPD?

WSPD is always useful, when we don't need the ©(n?) exact distances, but
approximate distances are enough

Can't we compute exact solutions in the same time?

Often in R? yes, but not in R for d > 2 (EMST, diameter).

EMST, Voronoi diagrames, . . . can be computed in O(n) time from
quadtress/WSPDs

Additional highlights in book

» very simple from WSPD: closest pair and approximate diameter
» with basic geometry from WSPD: nearest neighbor graph
» semi-separated pair decomposition
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