Shifting a grid over a point set

for simple and fast approximation algorithms

Shifted partition of the real line

Let $\Delta>0$ and $b \in[0, \Delta]$ uniformly distributed.
We shift the grid G_{Δ} by b

Shifted partition of the real line

Let $\Delta>0$ and $b \in[0, \Delta]$ uniformly distributed.
We shift the grid G_{Δ} by b

Shifted partition of the real line

Let $\Delta>0$ and $b \in[0, \Delta]$ uniformly distributed.
We shift the grid G_{Δ} by b

Remark: If $\left|b-b^{\prime}\right|=i \Delta$ for some $i \geq 0$, then b and b^{\prime} induce the same partition. (Later we will use this to choose $b \in[y+i \Delta, y+j \Delta]$ for $i<j$.)

Shifted partition of the real line

Let $\Delta>0$ and $b \in[0, \Delta]$ uniformly distributed.
We shift the grid G_{Δ} by b

Remark: If $\left|b-b^{\prime}\right|=i \Delta$ for some $i \geq 0$, then b and b^{\prime} induce the same partition. (Later we will use this to choose $b \in[y+i \Delta, y+j \Delta]$ for $i<j$.)

Lemma: For $x, y \in \mathbb{R}$ holds $\mathbb{P}\left[h_{b, \Delta}(x) \neq h_{b, \Delta}(y)\right]=\min \left(\frac{|x-y|}{\Delta}, 1\right)$

Shifted partition of the real line

Let $\Delta>0$ and $b \in[0, \Delta]$ uniformly distributed.
We shift the grid G_{Δ} by b

Remark: If $\left|b-b^{\prime}\right|=i \Delta$ for some $i \geq 0$, then b and b^{\prime} induce the same partition. (Later we will use this to choose $b \in[y+i \Delta, y+j \Delta]$ for $i<j$.)

Lemma: For $x, y \in \mathbb{R}$ holds $\mathbb{P}\left[h_{b, \Delta}(x) \neq h_{b, \Delta}(y)\right]=\min \left(\frac{|x-y|}{\Delta}, 1\right)$
Proof: Wlog $x<y$. Claim holds trivially if $|x-y|>\Delta$.
Otherwise assume $b \in[x, x+\Delta]$. Then $h_{b, \Delta}(x) \neq h_{b, \Delta}(y) \Leftrightarrow b \in[x, y]$.

Shifted partition of space

Now let P be a point set in \mathbb{R}^{d} and $b=\left(b_{1}, \ldots, b_{d}\right)$ uniformly randomly choosen from the hypercube $[0, \Delta]^{d}$. Consider the (shifted) grid $G^{d}(b, \Delta)$ with origin in b and sidelength Δ.

Shifted partition of space

Now let P be a point set in \mathbb{R}^{d} and $b=\left(b_{1}, \ldots, b_{d}\right)$ uniformly randomly choosen from the hypercube $[0, \Delta]^{d}$. Consider the (shifted) grid $G^{d}(b, \Delta)$ with origin in b and sidelength Δ.

Shifted partition of space

Now let P be a point set in \mathbb{R}^{d} and $b=\left(b_{1}, \ldots, b_{d}\right)$ uniformly randomly choosen from the hypercube $[0, \Delta]^{d}$. Consider the (shifted) grid $G^{d}(b, \Delta)$ with origin in b and sidelength Δ.

$$
h_{b, \Delta}(x)=\left(h_{b_{1}, \Delta}\left(x_{1}\right), h_{b_{2}, \Delta}\left(x_{2}\right), \ldots, h_{b_{d}, \Delta}\left(x_{d}\right)\right)
$$

Shifted partition of space

Now let P be a point set in \mathbb{R}^{d} and $b=\left(b_{1}, \ldots, b_{d}\right)$ uniformly randomly choosen from the hypercube $[0, \Delta]^{d}$. Consider the (shifted) grid $G^{d}(b, \Delta)$ with origin in b and sidelength Δ.

Lemma: Let B be a ball in \mathbb{R}^{d} with Radius r (or an axis-parallel hypercube with sidelength $2 r$). The probability that B is not in a single cell of $G^{d}(b, \Delta)$ is at most $\min \left(\frac{2 d r}{\Delta}, 1\right)$.

$$
h_{b, \Delta}(x)=\left(h_{b_{1}, \Delta}\left(x_{1}\right), h_{b_{2}, \Delta}\left(x_{2}\right), \ldots, h_{b_{d}, \Delta}\left(x_{d}\right)\right)
$$

Shifted partition of space

Now let P be a point set in \mathbb{R}^{d} and $b=\left(b_{1}, \ldots, b_{d}\right)$ uniformly randomly choosen from the hypercube $[0, \Delta]^{d}$. Consider the (shifted) grid $G^{d}(b, \Delta)$ with origin in b and sidelength Δ.

Lemma: Let B be a ball in \mathbb{R}^{d} with Radius r (or an axis-parallel hypercube with sidelength $2 r$). The probability that B is not in a single cell of $G^{d}(b, \Delta)$ is at most $\min \left(\frac{2 d r}{\Delta}, 1\right)$.

Proof: Project B onto the $i^{\text {th }}$ coordinate, giving an interval B_{i} of length $2 r$ and the shifted 1-dim grid $G^{1}\left(b_{i}, \Delta\right)$.
Obviously, B lies in a single if this holds for all coordinates. Let E_{i} be the event, that this is not the case for coordinate i.
Then $\mathbb{P}\left[\cup_{i=1}^{d} E_{i}\right] \leq \sum_{i=1}^{d} \mathbb{P}\left[E_{i}\right] \leq 2 d r / \Delta$

$$
h_{b, \Delta}(x)=\left(h_{b_{1}, \Delta}\left(x_{1}\right), h_{b_{2}, \Delta}\left(x_{2}\right), \ldots, h_{b_{d}, \Delta}\left(x_{d}\right)\right)
$$

Covering with unit disks

Goal: We want to find a minimal unit disk cover of a point set P of n points in the plane

Covering with unit disks

Goal: We want to find a minimal unit disk cover of a point set P of n points in the plane First we test if a cover of size k exists in time $O\left(k n^{2 k+1}\right)$

Covering with unit disks

Goal: We want to find a minimal unit disk cover of a point set P of n points in the plane First we test if a cover of size k exists in time $O\left(k n^{2 k+1}\right)$

Consider a unit disk D which covers $Q \subseteq P$

Covering with unit disks

Goal: We want to find a minimal unit disk cover of a point set P of n points in the plane First we test if a cover of size k exists in time $O\left(k n^{2 k+1}\right)$

Consider a unit disk D which covers $Q \subseteq P$ We can move D such that two points lie on its boundary or one top

Covering with unit disks

Goal: We want to find a minimal unit disk cover of a point set P of n points in the plane First we test if a cover of size k exists in time $O\left(k n^{2 k+1}\right)$

Consider a unit disk D which covers $Q \subseteq P$ We can move D such that two points lie on its boundary or one top

Remark:

- Each pair of points p, q in P defines (at most) two canonical unit disks if $\|p-q\| \leq 2$.

Covering with unit disks

Goal: We want to find a minimal unit disk cover of a point set P of n points in the plane First we test if a cover of size k exists in time $O\left(k n^{2 k+1}\right)$

Consider a unit disk D which covers $Q \subseteq P$ We can move D such that two points lie on its boundary or one top

Remark:

- Each pair of points p, q in P defines (at most) two canonical unit disks if $\|p-q\| \leq 2$.
- The same set $Q \subseteq P$ can be covered by more than one canonical unit disk.

Covering with unit disks

Goal: We want to find a minimal unit disk cover of a point set P of n points in the plane First we test if a cover of size k exists in time $O\left(k n^{2 k+1}\right)$

Consider a unit disk D which covers $Q \subseteq P$ We can move D such that two points lie on its boundary or one top

Remark:

- Each pair of points p, q in P defines (at most) two canonical unit disks if $\|p-q\| \leq 2$.
- The same set $Q \subseteq P$ can be covered by more than one canonical unit disk.

Hence there are at most $2\binom{n}{2}+n \leq n^{2}$ canonical unit disks; wlog we cover only with these.

Covering with unit disks

Goal: We want to find a minimal unit disk cover of a point set P of n points in the plane First we test if a cover of size k exists in time $O\left(k n^{2 k+1}\right)$

Consider a unit disk D which covers $Q \subseteq P$
We can move D such that two points lie on its boundary or one top

Remark:

- Each pair of points p, q in P defines (at most) two canonical unit disks if $\|p-q\| \leq 2$.
- The same set $Q \subseteq P$ can be covered by more than one canonical unit disk.

Hence there are at most $2\binom{n}{2}+n \leq n^{2}$ canonical unit disks; wlog we cover only with these.
We try all at most $n^{2 k}$ many k - tuples of these; each we test in $O(n k)$ time.

Covering with unit disks

Goal: We want to find a minimal unit disk cover of a point set P of n points in the plane First we test if a cover of size k exists in time $O\left(k n^{2 k+1}\right)$

Consider a unit disk D which covers $Q \subseteq P$
We can move D such that two points lie on its boundary or one top

Remark:

- Each pair of points p, q in P defines (at most) two canonical unit disks if $\|p-q\| \leq 2$.
- The same set $Q \subseteq P$ can be covered by more than one
 canonical unit disk.

Hence there are at most $2\binom{n}{2}+n \leq n^{2}$ canonical unit disks; wlog we cover only with these.
We try all at most $n^{2 k}$ many k - tuples of these; each we test in $O(n k)$ time.
Lemma: For n points in \mathbb{R}^{2}, we can determine in $O\left(k n^{2 k+1}\right)$ time if a k unit disk cover exists.

Covering with unit disks

Goal: We want to find a minimal unit disk cover of a point set P of n points in the plane First we test if a cover of size k exists in time $O\left(k n^{2 k+1}\right)$

Consider a unit disk D which covers $Q \subseteq P$
We can move D such that two points lie on its boundary or one top

Remark:

- Each pair of points p, q in P defines (at most) two canonical unit disks if $\|p-q\| \leq 2$.
- The same set $Q \subseteq P$ can be covered by more than one

 canonical unit disk.

Hence there are at most $2\binom{n}{2}+n \leq n^{2}$ canonical unit disks; wlog we cover only with these.
We try all at most $n^{2 k}$ many k - tuples of these; each we test in $O(n k)$ time.
Lemma: For n points in \mathbb{R}^{2}, we can determine in $O\left(k n^{2 k+1}\right)$ time if a k unit disk cover exists. but k can be linear in n

Faster approximate covering with unit disks

Let $\Delta=12 / \varepsilon$ and consider shifted grid $G^{2}(b, \Delta)$

Faster approximate covering with unit disks

Let $\Delta=12 / \varepsilon$ and consider shifted grid $G^{2}(b, \Delta)$
Algorithm

- compute all grid cells containing points in P
- for each non-empty grid cell
compute minimal \# unit disks containing all points in cell
using slow algorithm

Faster approximate covering with unit disks

Let $\Delta=12 / \varepsilon$ and consider shifted grid $G^{2}(b, \Delta)$

Algorithm

- compute all grid cells containing points in P
- for each non-empty grid cell
compute minimal \# unit disks containing all points in cell

Analysis:

the running time is $n^{O\left(1 / \varepsilon^{2}\right)}$
using hashing and the fact that each grid cell can be covered by $M:=(\Delta+1)^{2}=O\left(1 / \varepsilon^{2}\right)$ many unit disks; hence for at most n cells we can compute this in $O\left(M n^{2 M+2}\right)=n^{O\left(1 / \varepsilon^{2}\right)}$ time

Faster approximate covering with unit disks

Let $\Delta=12 / \varepsilon$ and consider shifted grid $G^{2}(b, \Delta)$

Algorithm

- compute all grid cells containing points in P
- for each non-empty grid cell
compute minimal \# unit disks containing all points in cell

Analysis:

the running time is $n^{O\left(1 / \varepsilon^{2}\right)}$

at most $(1+\varepsilon)$ opt disks are computed in expectation
$\varepsilon=1 \quad \Delta=12$
let $F=\left\{D_{1}, \ldots, D_{\text {opt }}\right\}$ be optimal solution; we construct a valid solution G from F that the algorithm finds.
For each grid cell C, let F_{C} be the disks in F that intersect C. Let $G=\cup_{C} F_{C}$ (a multiset).
For each cell C the algorithm returns at most $\left|F_{C}\right|$ disks.
For $\varepsilon<12$ each disk D in F can intersect at most 4 cells, thus appears at most 4 times in G.
A disk D in F appears more than once in $G \Leftrightarrow D$ lies completely in a cell.
$\mathbb{E}[|G|] \leq \mathbb{E}\left[o p t+\sum_{i=1}^{o p t} 3 X_{i}\right] \leq o p t+\sum_{i=1}^{o p t} 3 \mathbb{E}\left[X_{i}\right] \leq o p t+\sum_{i=1}^{o p t} 3 \frac{4}{\Delta}=\left(1+\frac{12}{\Delta}\right) o p t=(1+\varepsilon)$ opt

Shifting Quadtrees in 1 dimension

Given point set P of n points in $\left[\frac{1}{2}, \frac{3}{4}\right]$. Draw $b \in\left[0, \frac{1}{2}\right]$ uniformly at random.
Consider 1-dim Quadtree T on P with root interval $b+[0,1]$

Shifting Quadtrees in 1 dimension

Given point set P of n points in $\left[\frac{1}{2}, \frac{3}{4}\right]$. Draw $b \in\left[0, \frac{1}{2}\right]$ uniformly at random.
Consider 1-dim Quadtree T on P with root interval $b+[0,1]$
For $\alpha, \beta \in P$ let $\mathbb{L}_{b}(\alpha, \beta)=1-\operatorname{bit}_{\Delta}(\alpha-b, \beta-b)=\operatorname{level}(\operatorname{lca}(\alpha, \beta)$ in $T)$

Shifting Quadtrees in 1 dimension

Given point set P of n points in $\left[\frac{1}{2}, \frac{3}{4}\right]$. Draw $b \in\left[0, \frac{1}{2}\right]$ uniformly at random.
Consider 1-dim Quadtree T on P with root interval $b+[0,1]$
For $\alpha, \beta \in P$ let $\mathbb{L}_{b}(\alpha, \beta)=1-\operatorname{bit}_{\Delta}(\alpha-b, \beta-b)=\operatorname{level}(\operatorname{lca}(\alpha, \beta)$ in $T)$
note that $\mathbb{L}_{b}(\alpha, \beta)$ only depends on α, β, b and can be precomputed

Shifting Quadtrees in 1 dimension

Given point set P of n points in $\left[\frac{1}{2}, \frac{3}{4}\right]$. Draw $b \in\left[0, \frac{1}{2}\right]$ uniformly at random.
Consider 1-dim Quadtree T on P with root interval $b+[0,1]$
For $\alpha, \beta \in P$ let $\mathbb{L}_{b}(\alpha, \beta)=1-\operatorname{bit}_{\Delta}(\alpha-b, \beta-b)=$ level $(\operatorname{lca}(\alpha, \beta)$ in $T)$
note that $\mathbb{L}_{b}(\alpha, \beta)$ only depends on α, β, b and can be precomputed
Lemma: Let $\alpha, \beta \in\left[\frac{1}{2}, \frac{3}{4}\right]$ and $b \in\left[0, \frac{1}{2}\right]$.
For $t \in \mathbb{N}$ holds $\mathbb{P}\left[\mathbb{L}_{b}(\alpha, \beta)>\log _{2}|\alpha-\beta|+t\right] \leq \frac{4}{2^{t}}$

Shifting Quadtrees in 1 dimension

Given point set P of n points in $\left[\frac{1}{2}, \frac{3}{4}\right]$. Draw $b \in\left[0, \frac{1}{2}\right]$ uniformly at random.
Consider 1-dim Quadtree T on P with root interval $b+[0,1]$
For $\alpha, \beta \in P$ let $\mathbb{L}_{b}(\alpha, \beta)=1-\operatorname{bit}_{\Delta}(\alpha-b, \beta-b)=\operatorname{level}(\operatorname{lca}(\alpha, \beta)$ in $T)$ note that $\mathbb{L}_{b}(\alpha, \beta)$ only depends on α, β, b and can be precomputed

Lemma: Let $\alpha, \beta \in\left[\frac{1}{2}, \frac{3}{4}\right]$ and $b \in\left[0, \frac{1}{2}\right]$.
For $t \in \mathbb{N}$ holds $\mathbb{P}\left[\mathbb{L}_{b}(\alpha, \beta)>\log _{2}|\alpha-\beta|+t\right] \leq \frac{4}{2^{t}}$
Proof:
Let $M=\left\lfloor\log _{2}|\alpha-\beta|\right\rfloor$ and consider shifted partition of real line with side length $\Delta_{M+i}=2^{M+i}$ and shift b.
Let $X_{M+i}=1 \mathrm{I}_{\alpha, \beta}$ in different intervals.
If $\mathbb{L}_{b}(\alpha, \beta)=M+i$, then α, β lie in the same interval at level $M+i$, but not $M+i-1$. By previous Lemma $\mathbb{P}\left[X_{M+i}=1\right] \leq \frac{|\alpha-\beta|}{\Delta_{M+i}}$.

Shifting Quadtrees in 1 dimension

Given point set P of n points in $\left[\frac{1}{2}, \frac{3}{4}\right]$. Draw $b \in\left[0, \frac{1}{2}\right]$ uniformly at random.
Consider 1-dim Quadtree T on P with root interval $b+[0,1]$
For $\alpha, \beta \in P$ let $\mathbb{L}_{b}(\alpha, \beta)=1-\operatorname{bit}_{\Delta}(\alpha-b, \beta-b)=\operatorname{level}(\operatorname{lca}(\alpha, \beta)$ in $T)$
note that $\mathbb{L}_{b}(\alpha, \beta)$ only depends on α, β, b and can be precomputed
Lemma: Let $\alpha, \beta \in\left[\frac{1}{2}, \frac{3}{4}\right]$ and $b \in\left[0, \frac{1}{2}\right]$.

Hence $\mathbb{P}\left[\mathbb{L}_{b}(\alpha, \beta)>\log _{2}|\alpha-\beta|+t\right] \leq \sum_{i=1+t}^{\infty} \mathbb{P}\left[\mathbb{L}_{b}(\alpha, \beta)=M+i\right] \leq \sum_{i=t}^{\infty} \mathbb{P}\left[X_{M+i}=1\right]$

$$
\leq \sum_{i=t}^{\infty} \frac{|\alpha-\beta|}{\Delta_{N+i}} \leq \sum_{i=t}^{\infty} 2^{1-i} \leq 2^{2-t}
$$

Shifting Quadtrees in 1 dimension

Given point set P of n points in $\left[\frac{1}{2}, \frac{3}{4}\right]$. Draw $b \in\left[0, \frac{1}{2}\right]$ uniformly at random.
Consider 1-dim Quadtree T on P with root interval $b+[0,1]$
For $\alpha, \beta \in P$ let $\mathbb{L}_{b}(\alpha, \beta)=1-\operatorname{bit}_{\Delta}(\alpha-b, \beta-b)=\operatorname{level}(\operatorname{lca}(\alpha, \beta)$ in $T)$ note that $\mathbb{L}_{b}(\alpha, \beta)$ only depends on α, β, b and can be precomputed

Lemma: Let $\alpha, \beta \in\left[\frac{1}{2}, \frac{3}{4}\right]$ and $b \in\left[0, \frac{1}{2}\right]$.

Corollary: Let $\alpha, \beta \in\left[\frac{1}{2}, \frac{3}{4}\right]$ and $b \in\left[0, \frac{1}{2}\right]$.
For $c>1$ holds $\mathbb{P}\left[\mathbb{L}_{b}(\alpha, \beta)>\log _{2}|\alpha-\beta|+c \log n\right] \leq \frac{4}{n^{c}}$ where $|P|=n$.

Shifting Quadtrees in higher dimensions

Now let P be a set of n points in $\left[\frac{1}{2}, \frac{3}{4}\right]^{d}$ and b in $\left[0, \frac{1}{2}\right]^{d}$.
Consider the shifted compressed quadtree T of P with $b+[0,1]^{d}$ as root cell.

Shifting Quadtrees in higher dimensions

Now let P be a set of n points in $\left[\frac{1}{2}, \frac{3}{4}\right]^{d}$ and b in $\left[0, \frac{1}{2}\right]^{d}$.
Consider the shifted compressed quadtree T of P with $b+[0,1]^{d}$ as root cell. As before, for $p, q \in P$ consider $I c a(p, q)$ in T.
Note that T is the combination of 1 dim Quadtrees T_{1}, \ldots, T_{d} in each coordinate. Hence $\mathbb{L}_{b}(p, q)=\max _{i=1}^{d} \mathbb{L}_{b_{i}}\left(p_{i}, q_{i}\right)$ and is again independent of all other points in P.

Shifting Quadtrees in higher dimensions

Now let P be a set of n points in $\left[\frac{1}{2}, \frac{3}{4}\right]^{d}$ and b in $\left[0, \frac{1}{2}\right]^{d}$.
Consider the shifted compressed quadtree T of P with $b+[0,1]^{d}$ as root cell.
As before, for $p, q \in P$ consider $I c a(p, q)$ in T.
Note that T is the combination of 1 dim Quadtrees T_{1}, \ldots, T_{d} in each coordinate.
Hence $\mathbb{L}_{b}(p, q)=\max _{i=1}^{d} \mathbb{L}_{b_{i}}\left(p_{i}, q_{i}\right)$ and is again independent of all other points in P.
We consider $\mathbb{L}_{b}(p, q)$ as random variable and use

Lemma

For $t>0$ holds $\mathbb{P}\left[\mathbb{L}_{b}(p, q)>\log _{2}\|p-q\|+t\right] \leq \frac{4 d}{2^{t}}$.
$\mathbb{E}\left[\mathbb{L}_{b}(p, q)\right] \leq \log _{2}\|p-q\|+\log _{2} d+6$.
$\mathbb{L}_{b}(p, q) \geq \log _{2}\|p-q\|-\log _{2} d-3$.
(exercise in book)

Low quality ANN-Search

Now we want to use shifted quadtrees to quickly answer ANN-queries in \mathbb{R}^{d}.
That is, we want to preprocess a set P of n points in \mathbb{R}^{d}, so that for query point q we can quickly find $p \in P$, s.t. $\|q-p\| \leq(1+\varepsilon) d(q, P)$ where $d(q, P)=\min _{p \in P}\|q-p\|$.

Low quality ANN-Search

Now we want to use shifted quadtrees to quickly answer ANN-queries in \mathbb{R}^{d}.
That is, we want to preprocess a set P of n points in \mathbb{R}^{d}, so that for query point q we can quickly find $p \in P$, s.t. $\|q-p\| \leq(1+\varepsilon) d(q, P)$ where $d(q, P)=\min _{p \in P}\|q-p\|$.
Data structure: The shifted quadtree T of P, i.e., for P a set of n points in $\left[\frac{1}{2}, \frac{3}{4}\right]^{d}$ and b in $\left[0, \frac{1}{2}\right]^{d}$, we use the shifted compressed quadtree T of P with $b+[0,1]^{d}$ as root cell.

Low quality ANN-Search

Now we want to use shifted quadtrees to quickly answer ANN-queries in \mathbb{R}^{d}.
That is, we want to preprocess a set P of n points in \mathbb{R}^{d}, so that for query point q we can quickly find $p \in P$, s.t. $\|q-p\| \leq(1+\varepsilon) d(q, P)$ where $d(q, P)=\min _{p \in P}\|q-p\|$.
Data structure: The shifted quadtree T of P, i.e., for P a set of n points in $\left[\frac{1}{2}, \frac{3}{4}\right]^{d}$ and b in $\left[0, \frac{1}{2}\right]^{d}$, we use the shifted compressed quadtree T of P with $b+[0,1]^{d}$ as root cell.
For each node v of T choose a representative point rep in P_{v}.

Low quality ANN-Search

Now we want to use shifted quadtrees to quickly answer ANN-queries in \mathbb{R}^{d}.
That is, we want to preprocess a set P of n points in \mathbb{R}^{d}, so that for query point q we can quickly find $p \in P$, s.t. $\|q-p\| \leq(1+\varepsilon) d(q, P)$ where $d(q, P)=\min _{p \in P}\|q-p\|$.
Data structure: The shifted quadtree T of P, i.e., for P a set of n points in $\left[\frac{1}{2}, \frac{3}{4}\right]^{d}$ and b in $\left[0, \frac{1}{2}\right]^{d}$, we use the shifted compressed quadtree T of P with $b+[0,1]^{d}$ as root cell.
For each node v of T choose a representative point $r e p_{v}$ in P_{v}.
Query: For $q \in\left[\frac{1}{2}, \frac{3}{4}\right]^{d}$ let v be the lowest node in T s.t. q in the region of v. If $r e p_{v}$ is defined (i.e. $P_{v} \neq \emptyset$), return it; otherwise return rep $_{\operatorname{par}(v)}$.

Low quality ANN-Search

Now we want to use shifted quadtrees to quickly answer ANN-queries in \mathbb{R}^{d}.
That is, we want to preprocess a set P of n points in \mathbb{R}^{d}, so that for query point q we can quickly find $p \in P$, s.t. $\|q-p\| \leq(1+\varepsilon) d(q, P)$ where $d(q, P)=\min _{p \in P}\|q-p\|$.
Data structure: The shifted quadtree T of P, i.e., for P a set of n points in $\left[\frac{1}{2}, \frac{3}{4}\right]^{d}$ and b in $\left[0, \frac{1}{2}\right]^{d}$, we use the shifted compressed quadtree T of P with $b+[0,1]^{d}$ as root cell.
For each node v of T choose a representative point rep p_{v} in P_{v}.
Query: For $q \in\left[\frac{1}{2}, \frac{3}{4}\right]^{d}$ let v be the lowest node in T s.t. q in the region of v. If $r e p_{v}$ is defined (i.e. $P_{v} \neq \emptyset$), return it; otherwise return rep $\operatorname{par}^{(v)}$.

Analysis:

1. If v is a non-empty leaf, then $r e p_{v}$ is returned
2. If v is an empty leaf, then rep $p_{\text {par(v) }}$ is returned
3. If v is a compressed node, i.e. its region an annulus, we return rep

Low quality ANN-Search

Now we want to use shifted quadtrees to quickly answer ANN-queries in \mathbb{R}^{d}.
That is, we want to preprocess a set P of n points in \mathbb{R}^{d}, so that for query point q we can quickly find $p \in P$, s.t. $\|q-p\| \leq(1+\varepsilon) d(q, P)$ where $d(q, P)=\min _{p \in P}\|q-p\|$.
Data structure: The shifted quadtree T of P, i.e., for P a set of n points in $\left[\frac{1}{2}, \frac{3}{4}\right]^{d}$ and b in $\left[0, \frac{1}{2}\right]^{d}$, we use the shifted compressed quadtree T of P with $b+[0,1]^{d}$ as root cell.
For each node v of T choose a representative point rep p_{v} in P_{v}.
Query: For $q \in\left[\frac{1}{2}, \frac{3}{4}\right]^{d}$ let v be the lowest node in T s.t. q in the region of v. If $r e p_{v}$ is defined (i.e. $P_{v} \neq \emptyset$), return it; otherwise return rep par (v).

Analysis:

1. If v is a non-empty leaf, then $r e p_{v}$ is returned
2. If v is an empty leaf, then rep $p_{\text {par(v) }}$ is returned
3. If v is a compressed node, i.e. its region an annulus, we return rep

In 1. and 3. $\|q-p\| \leq \operatorname{diam}(v)$ and in 2 . $\|q-p\| \leq 2 \operatorname{diam}(v)$

Low quality ANN-Search

Lemma: For $\tau>1$ and query point q, a τ-approximate NN is returned with probability at least $\left(1-4 d^{3 / 2}\right) / \tau$.

Low quality ANN-Search

Lemma: For $\tau>1$ and query point q, a τ-approximate NN is returned with probability at least $\left(1-4 d^{3 / 2}\right) / \tau$.

Proof:

Let p be NN of q in P; consider ball B defined by p, q.
Let u be the lowest node in T that fully contains B.
The query returns either u or one of its successors.

Hence an ANN at distance at most $2 \operatorname{diam}(v) \leq 2 \operatorname{diam}(u)$ is returned.

Low quality ANN-Search

Lemma: For $\tau>1$ and query point q, a τ-approximate NN is returned with probability at least $\left(1-4 d^{3 / 2}\right) / \tau$.

Proof:

Let p be NN of q in P; consider ball B defined by p, q.
Let u be the lowest node in T that fully contains B.
The query returns either u or one of its successors.

Hence an ANN at distance at most $2 \operatorname{diam}(v) \leq 2 \operatorname{diam}(u)$ is returned.
Now let $\ell=\|p-q\| ;$ by a previous lemma, $\mathbb{P}[B$ lies in a cell at level $i] \geq 1-\frac{d \ell}{2^{i}}$

Low quality ANN-Search

Lemma: For $\tau>1$ and query point q, a τ-approximate NN is returned with probability at least $\left(1-4 d^{3 / 2}\right) / \tau$.

Proof:

Let p be NN of q in P; consider ball B defined by p, q.
Let u be the lowest node in T that fully contains B.
The query returns either u or one of its successors.

Hence an ANN at distance at most $2 \operatorname{diam}(v) \leq 2 \operatorname{diam}(u)$ is returned.
Now let $\ell=\|p-q\|$; by a previous lemma, $\mathbb{P}[B$ lies in a cell at level $i] \geq 1-\frac{d \ell}{2^{i}}$
If B lies completely in a cell, let \square be this cell.
The ANN returned has distance $\leq 2 \operatorname{diam}(\square) \leq 2 \sqrt{d} 2^{i}$ hence quality $2 \sqrt{d} 2^{i} / \ell$

Low quality ANN-Search

Lemma: For $\tau>1$ and query point q, a τ-approximate NN is returned with probability at least $\left(1-4 d^{3 / 2}\right) / \tau$.

Proof:

Let p be NN of q in P; consider ball B defined by p, q.
Let u be the lowest node in T that fully contains B.
The query returns either u or one of its successors.

Hence an ANN at distance at most $2 \operatorname{diam}(v) \leq 2 \operatorname{diam}(u)$ is returned.
Now let $\ell=\|p-q\|$; by a previous lemma, $\mathbb{P}[B$ lies in a cell at level $i] \geq 1-\frac{d \ell}{2^{i}}$
If B lies completely in a cell, let \square be this cell.
The ANN returned has distance $\leq 2 \operatorname{diam}(\square) \leq 2 \sqrt{d} 2^{i}$ hence quality $2 \sqrt{d} 2^{i} / \ell$
And it holds $2 \sqrt{d} 2^{i} \leq \tau \Leftrightarrow i \leq \log _{2} \frac{\ell \tau}{2 \sqrt{d}}$
Set $i:=\left\lfloor\log _{2}\left(\frac{\ell \tau}{2 \sqrt{d}}\right)\right\rfloor$ then it follows with (\star) that an τ-ANN is returned with probability
at least $1-\frac{d \ell}{2^{i}} \geq 1-\frac{4 d^{3 / 2}}{\tau}$

