Shifting a grid over a point set

for simple and fast approximation algorithms

Let $\Delta > 0$ and $b \in [0, \Delta]$ uniformly distributed. We shift the grid G_{Δ} by b

Let $\Delta > 0$ and $b \in [0, \Delta]$ uniformly distributed. We shift the grid G_{Δ} by b

Let $\Delta > 0$ and $b \in [0, \Delta]$ uniformly distributed. We shift the grid G_{Δ} by b

Remark: If $|b - b'| = i\Delta$ for some $i \ge 0$, then b and b' induce the same partition. (Later we will use this to choose $b \in [y + i\Delta, y + j\Delta]$ for i < j.)

Let $\Delta > 0$ and $b \in [0, \Delta]$ uniformly distributed. We shift the grid G_{Δ} by b

Remark: If $|b - b'| = i\Delta$ for some $i \ge 0$, then b and b' induce the same partition. (Later we will use this to choose $b \in [y + i\Delta, y + j\Delta]$ for i < j.)

Lemma: For
$$x, y \in \mathbb{R}$$
 holds $\mathbb{P}[h_{b,\Delta}(x) \neq h_{b,\Delta}(y)] = min\left(\frac{|x-y|}{\Delta}, 1\right)$

Let $\Delta > 0$ and $b \in [0, \Delta]$ uniformly distributed. We shift the grid G_{Δ} by b

Remark: If $|b - b'| = i\Delta$ for some $i \ge 0$, then b and b' induce the same partition. (Later we will use this to choose $b \in [y + i\Delta, y + j\Delta]$ for i < j.)

Lemma: For $x, y \in \mathbb{R}$ holds $\mathbb{P}[h_{b,\Delta}(x) \neq h_{b,\Delta}(y)] = min\left(\frac{|x-y|}{\Delta}, 1\right)$

Proof: Wlog x < y. Claim holds trivially if $|x - y| > \Delta$. Otherwise assume $b \in [x, x + \Delta]$. Then $h_{b,\Delta}(x) \neq h_{b,\Delta}(y) \Leftrightarrow b \in [x, y]$.

Now let *P* be a point set in \mathbb{R}^d and $b = (b_1, ..., b_d)$ uniformly randomly choosen from the hypercube $[0, \Delta]^d$. Consider the (shifted) grid $G^d(b, \Delta)$ with origin in *b* and sidelength Δ .

Now let *P* be a point set in \mathbb{R}^d and $b = (b_1, ..., b_d)$ uniformly randomly choosen from the hypercube $[0, \Delta]^d$. Consider the (shifted) grid $G^d(b, \Delta)$ with origin in *b* and sidelength Δ .

Now let *P* be a point set in \mathbb{R}^d and $b = (b_1, ..., b_d)$ uniformly randomly choosen from the hypercube $[0, \Delta]^d$. Consider the (shifted) grid $G^d(b, \Delta)$ with origin in *b* and sidelength Δ .

Now let *P* be a point set in \mathbb{R}^d and $b = (b_1, ..., b_d)$ uniformly randomly choosen from the hypercube $[0, \Delta]^d$. Consider the (shifted) grid $G^d(b, \Delta)$ with origin in *b* and sidelength Δ .

Lemma: Let *B* be a ball in \mathbb{R}^d with Radius *r* (or an axis-parallel hypercube with sidelength 2*r*). The probability that *B* is not in a single cell of $G^d(b, \Delta)$ is at most min $\left(\frac{2dr}{\Delta}, 1\right)$.

Now let *P* be a point set in \mathbb{R}^d and $b = (b_1, ..., b_d)$ uniformly randomly choosen from the hypercube $[0, \Delta]^d$. Consider the (shifted) grid $G^d(b, \Delta)$ with origin in *b* and sidelength Δ .

Lemma: Let *B* be a ball in \mathbb{R}^d with Radius *r* (or an axis-parallel hypercube with sidelength 2*r*). The probability that *B* is not in a single cell of $G^d(b, \Delta)$ is at most min $\left(\frac{2dr}{\Delta}, 1\right)$.

Proof: Project *B* onto the *i*th coordinate, giving an interval B_i of length 2r and the shifted 1-dim grid $G^1(b_i, \Delta)$.

Obviously, *B* lies in a single if this holds for all coordinates. Let E_i be the event, that this is not the case for coordinate *i*.

Then $\mathbb{P}[\bigcup_{i=1}^{d} E_i] \leq \sum_{i=1}^{d} \mathbb{P}[E_i] \leq 2dr/\Delta$

Goal: We want to find a minimal unit disk cover of a point set *P* of *n* points in the plane

Goal: We want to find a minimal unit disk cover of a point set *P* of *n* points in the plane First we test if a cover of size *k* exists in time $O(kn^{2k+1})$

Goal: We want to find a minimal unit disk cover of a point set *P* of *n* points in the plane First we test if a cover of size *k* exists in time $O(kn^{2k+1})$

Consider a unit disk *D* which covers $Q \subseteq P$

Goal: We want to find a minimal unit disk cover of a point set *P* of *n* points in the plane First we test if a cover of size *k* exists in time $O(kn^{2k+1})$

Goal: We want to find a minimal unit disk cover of a point set *P* of *n* points in the plane First we test if a cover of size *k* exists in time $O(kn^{2k+1})$

Consider a unit disk *D* which covers $Q \subseteq P$ We can move *D* such that two points lie on its boundary or one top

Remark:

• Each pair of points p, q in P defines (at most) two *canonical* unit disks if $||p - q|| \le 2$.

Goal: We want to find a minimal unit disk cover of a point set *P* of *n* points in the plane First we test if a cover of size *k* exists in time $O(kn^{2k+1})$

Consider a unit disk *D* which covers $Q \subseteq P$ We can move *D* such that two points lie on its boundary or one top

Remark:

- Each pair of points p, q in P defines (at most) two *canonical* unit disks if $||p q|| \le 2$.
- The same set Q
 P can be covered by more than one canonical unit disk.

Goal: We want to find a minimal unit disk cover of a point set *P* of *n* points in the plane First we test if a cover of size *k* exists in time $O(kn^{2k+1})$

Consider a unit disk *D* which covers $Q \subseteq P$ We can move *D* such that two points lie on its boundary or one top

Remark:

- Each pair of points p, q in P defines (at most) two *canonical* unit disks if $||p q|| \le 2$.
- The same set Q ⊆ P can be covered by more than one canonical unit disk.

Hence there are at most $2\binom{n}{2} + n \le n^2$ canonical unit disks; wlog we cover only with these.

Goal: We want to find a minimal unit disk cover of a point set *P* of *n* points in the plane First we test if a cover of size *k* exists in time $O(kn^{2k+1})$

Consider a unit disk *D* which covers $Q \subseteq P$ We can move *D* such that two points lie on its boundary or one top

Remark:

- Each pair of points p, q in P defines (at most) two *canonical* unit disks if $||p q|| \le 2$.
- The same set Q ⊆ P can be covered by more than one canonical unit disk.

Hence there are at most $2\binom{n}{2} + n \le n^2$ canonical unit disks; wlog we cover only with these. We try all at most n^{2k} many k – tuples of these; each we test in O(nk) time.

Goal: We want to find a minimal unit disk cover of a point set *P* of *n* points in the plane First we test if a cover of size *k* exists in time $O(kn^{2k+1})$

Consider a unit disk *D* which covers $Q \subseteq P$ We can move *D* such that two points lie on its boundary or one top

Remark:

- Each pair of points p, q in P defines (at most) two *canonical* unit disks if $||p q|| \le 2$.
- The same set Q ⊆ P can be covered by more than one canonical unit disk.

Hence there are at most $2\binom{n}{2} + n \le n^2$ canonical unit disks; wlog we cover only with these. We try all at most n^{2k} many k- tuples of these; each we test in O(nk) time.

Lemma: For *n* points in \mathbb{R}^2 , we can determine in $O(kn^{2k+1})$ time if a *k* unit disk cover exists.

Goal: We want to find a minimal unit disk cover of a point set *P* of *n* points in the plane First we test if a cover of size *k* exists in time $O(kn^{2k+1})$

Consider a unit disk *D* which covers $Q \subseteq P$ We can move *D* such that two points lie on its boundary or one top

Remark:

- Each pair of points p, q in P defines (at most) two *canonical* unit disks if $||p q|| \le 2$.
- The same set Q ⊆ P can be covered by more than one canonical unit disk.

Hence there are at most $2\binom{n}{2} + n \le n^2$ canonical unit disks; wlog we cover only with these. We try all at most n^{2k} many k- tuples of these; each we test in O(nk) time.

Lemma: For *n* points in \mathbb{R}^2 , we can determine in $O(kn^{2k+1})$ time if a *k* unit disk cover exists. but *k* can be linear in *n*

Let $\Delta = 12/\varepsilon$ and consider shifted grid $G^2(b, \Delta)$

Let $\Delta = 12/\varepsilon$ and consider shifted grid $G^2(b, \Delta)$

Algorithm

- compute all grid cells containing points in P
- for each non-empty grid cell

compute minimal # unit disks containing all points in cell

using slow algorithm

using slow algorithm

Let $\Delta = 12/\varepsilon$ and consider shifted grid $G^2(b, \Delta)$

Algorithm

- compute all grid cells containing points in P
- for each non-empty grid cell

compute minimal # unit disks containing all points in cell

Analysis:

the running time is $n^{O(1/\varepsilon^2)}$

using hashing and the fact that each grid cell can be covered by $M := (\Delta + 1)^2 = O(1/\varepsilon^2)$ many unit disks; hence for at most *n* cells we can compute this in $O(Mn^{2M+2}) = n^{O(1/\varepsilon^2)}$ time

Let $\Delta = 12/\varepsilon$ and consider shifted grid $G^2(b, \Delta)$

Algorithm

- compute all grid cells containing points in P
- for each non-empty grid cell

compute minimal # unit disks containing all points in cell

Analysis:

the running time is $n^{O(1/\varepsilon^2)}$

using slow algorithm

 $\Lambda = 12$ let $F = \{D_1, \dots, D_{opt}\}$ be optimal solution; we construct a valid solution G from F that the algorithm finds. For each grid cell C, let F_C be the disks in F that intersect C. Let $G = \bigcup_C F_C$ (a multiset). For each cell *C* the algorithm returns at most $|F_C|$ disks.

For ε < 12 each disk *D* in *F* can intersect at most 4 cells, thus appears at most 4 times in *G*. A disk *D* in *F* appears more than once in $G \Leftrightarrow D$ lies completely in a cell. $\mathbb{E}\left[|G|\right] \leq \mathbb{E}\left[opt + \sum_{i=1}^{opt} 3X_i\right] \leq opt + \sum_{i=1}^{opt} 3\mathbb{E}\left[X_i\right] \leq opt + \sum_{i=1}^{opt} 3\frac{4}{\Lambda} = (1 + \frac{12}{\Lambda})opt = (1 + \varepsilon)opt$

Given point set *P* of *n* points in $\left[\frac{1}{2}, \frac{3}{4}\right]$. Draw $b \in \left[0, \frac{1}{2}\right]$ uniformly at random. Consider 1-dim Quadtree *T* on *P* with root interval b + [0, 1]

Given point set *P* of *n* points in $\left[\frac{1}{2}, \frac{3}{4}\right]$. Draw $b \in \left[0, \frac{1}{2}\right]$ uniformly at random. Consider 1-dim Quadtree *T* on *P* with root interval b + [0, 1]

For $\alpha, \beta \in P$ let $\mathbb{L}_{b}(\alpha, \beta) = 1 - bit_{\Delta}(\alpha - b, \beta - b) = level(lca(\alpha, \beta) in T)$

Given point set *P* of *n* points in $\left[\frac{1}{2}, \frac{3}{4}\right]$. Draw $b \in \left[0, \frac{1}{2}\right]$ uniformly at random. Consider 1-dim Quadtree *T* on *P* with root interval b + [0, 1]

For $\alpha, \beta \in P$ let $\mathbb{L}_b(\alpha, \beta) = 1 - bit_{\Delta}(\alpha - b, \beta - b) = level(lca(\alpha, \beta) \text{ in } T)$

note that $\mathbb{L}_{b}(\alpha, \beta)$ only depends on α, β, b and can be precomputed

Given point set *P* of *n* points in $\left[\frac{1}{2}, \frac{3}{4}\right]$. Draw $b \in \left[0, \frac{1}{2}\right]$ uniformly at random. Consider 1-dim Quadtree *T* on *P* with root interval b + [0, 1]

For $\alpha, \beta \in P$ let $\mathbb{L}_{b}(\alpha, \beta) = 1 - bit_{\Delta}(\alpha - b, \beta - b) = level(lca(\alpha, \beta) \text{ in } T)$

note that $\mathbb{L}_{b}(\alpha, \beta)$ only depends on α, β, b and can be precomputed

Given point set *P* of *n* points in $\left[\frac{1}{2}, \frac{3}{4}\right]$. Draw $b \in \left[0, \frac{1}{2}\right]$ uniformly at random. Consider 1-dim Quadtree *T* on *P* with root interval b + [0, 1]

For $\alpha, \beta \in P$ let $\mathbb{L}_b(\alpha, \beta) = 1 - bit_{\Delta}(\alpha - b, \beta - b) = level(lca(\alpha, \beta) \text{ in } T)$

note that $\mathbb{L}_{b}(\alpha, \beta)$ only depends on α, β, b and can be precomputed

Lemma: Let $\alpha, \beta \in \begin{bmatrix} \frac{1}{2}, \frac{3}{4} \end{bmatrix}$ and $b \in \begin{bmatrix} 0, \frac{1}{2} \end{bmatrix}$. For $t \in \mathbb{N}$ holds $\mathbb{P}\left[\mathbb{L}_{b}(\alpha, \beta) > \log_{2} |\alpha - \beta| + t\right] \leq \frac{4}{2^{t}}$

Proof:

Let $M = \lfloor \log_2 |\alpha - \beta| \rfloor$ and consider shifted partition of real line with side length $\Delta_{M+i} = 2^{M+i}$ and shift *b*. Let $X_{M+i} = \Pi_{\alpha,\beta}$ in different intervals. If $\mathbb{L}_b(\alpha,\beta) = M + i$, then α,β lie in the same interval at level M + i, but not M + i - 1. By previous Lemma $\mathbb{P}[X_{M+i} = 1] \leq \frac{|\alpha - \beta|}{\Delta_{M+i}}$.

Given point set *P* of *n* points in $\left[\frac{1}{2}, \frac{3}{4}\right]$. Draw $b \in \left[0, \frac{1}{2}\right]$ uniformly at random. Consider 1-dim Quadtree *T* on *P* with root interval b + [0, 1]

For $\alpha, \beta \in P$ let $\mathbb{L}_{b}(\alpha, \beta) = 1 - bit_{\Delta}(\alpha - b, \beta - b) = level(lca(\alpha, \beta) \text{ in } T)$

note that $\mathbb{L}_{b}(\alpha, \beta)$ only depends on α, β, b and can be precomputed

Given point set *P* of *n* points in $\left[\frac{1}{2}, \frac{3}{4}\right]$. Draw $b \in \left[0, \frac{1}{2}\right]$ uniformly at random. Consider 1-dim Quadtree *T* on *P* with root interval b + [0, 1]

For $\alpha, \beta \in P$ let $\mathbb{L}_b(\alpha, \beta) = 1 - bit_{\Delta}(\alpha - b, \beta - b) = level(lca(\alpha, \beta) \text{ in } T)$

note that $\mathbb{L}_{b}(\alpha, \beta)$ only depends on α, β, b and can be precomputed

Shifting Quadtrees in higher dimensions

Now let *P* be a set of *n* points in $\left[\frac{1}{2}, \frac{3}{4}\right]^d$ and *b* in $\left[0, \frac{1}{2}\right]^d$.

Consider the shifted compressed quadtree T of P with $b + [0, 1]^d$ as root cell.

Shifting Quadtrees in higher dimensions

Now let *P* be a set of *n* points in $\left[\frac{1}{2}, \frac{3}{4}\right]^d$ and *b* in $\left[0, \frac{1}{2}\right]^d$.

Consider the shifted compressed quadtree T of P with $b + [0, 1]^d$ as root cell.

As before, for $p, q \in P$ consider *lca*(p, q) in *T*.

Note that *T* is the combination of 1dim Quadtrees $T_1, ..., T_d$ in each coordinate.

Hence $\mathbb{L}_b(p, q) = \max_{i=1}^d \mathbb{L}_{b_i}(p_i, q_i)$ and is again independent of all other points in *P*.

Shifting Quadtrees in higher dimensions

Now let *P* be a set of *n* points in $\left[\frac{1}{2}, \frac{3}{4}\right]^d$ and *b* in $\left[0, \frac{1}{2}\right]^d$.

Consider the shifted compressed quadtree T of P with $b + [0, 1]^d$ as root cell.

As before, for $p, q \in P$ consider *lca*(p, q) in *T*.

Note that T is the combination of 1 dim Quadtrees $T_1, ..., T_d$ in each coordinate.

Hence $\mathbb{L}_{b}(p,q) = \max_{i=1}^{d} \mathbb{L}_{b_{i}}(p_{i},q_{i})$ and is again independent of all other points in *P*.

We consider $\mathbb{L}_b(p, q)$ as random variable and use

Lemma

```
For t > 0 holds \mathbb{P}\left[\mathbb{L}_{b}(p,q) > \log_{2} ||p-q|| + t\right] \leq \frac{4d}{2^{t}}.

\mathbb{E}\left[\mathbb{L}_{b}(p,q)\right] \leq \log_{2} ||p-q|| + \log_{2} d + 6.

\mathbb{L}_{b}(p,q) \geq \log_{2} ||p-q|| - \log_{2} d - 3.

(exercise in book)
```

Now we want to use shifted quadtrees to quickly answer ANN-queries in \mathbb{R}^d . That is, we want to preprocess a set *P* of *n* points in \mathbb{R}^d , so that for query point *q* we can quickly find $p \in P$, s.t. $||q - p|| \le (1 + \varepsilon) d(q, P)$ where $d(q, P) = \min_{p \in P} ||q - p||$.

Now we want to use shifted quadtrees to quickly answer ANN-queries in \mathbb{R}^d . That is, we want to preprocess a set *P* of *n* points in \mathbb{R}^d , so that for query point *q* we can quickly find $p \in P$, s.t. $||q - p|| \le (1 + \varepsilon) d(q, P)$ where $d(q, P) = \min_{p \in P} ||q - p||$.

Data structure: The shifted quadtree *T* of *P*, i.e., for *P* a set of *n* points in $\left[\frac{1}{2}, \frac{3}{4}\right]^d$ and *b* in $\left[0, \frac{1}{2}\right]^d$, we use the shifted compressed quadtree *T* of *P* with *b* + $[0, 1]^d$ as root cell.

Now we want to use shifted quadtrees to quickly answer ANN-queries in \mathbb{R}^d .

That is, we want to preprocess a set *P* of *n* points in \mathbb{R}^d , so that for query point *q* we can quickly find $p \in P$, s.t. $||q - p|| \leq (1 + \varepsilon) d(q, P)$ where $d(q, P) = \min_{p \in P} ||q - p||$.

Data structure: The shifted quadtree *T* of *P*, i.e., for *P* a set of *n* points in $\left[\frac{1}{2}, \frac{3}{4}\right]^d$ and *b* in $\left[0, \frac{1}{2}\right]^d$, we use the shifted compressed quadtree *T* of *P* with *b* + $[0, 1]^d$ as root cell. For each node *v* of *T* choose a representative point *rep_v* in *P_v*.

Now we want to use shifted quadtrees to quickly answer ANN-queries in \mathbb{R}^d .

That is, we want to preprocess a set *P* of *n* points in \mathbb{R}^d , so that for query point *q* we can quickly find $p \in P$, s.t. $||q - p|| \le (1 + \varepsilon) d(q, P)$ where $d(q, P) = \min_{p \in P} ||q - p||$.

Data structure: The shifted quadtree *T* of *P*, i.e., for *P* a set of *n* points in $\left[\frac{1}{2}, \frac{3}{4}\right]^d$ and *b* in $\left[0, \frac{1}{2}\right]^d$, we use the shifted compressed quadtree *T* of *P* with *b* + $[0, 1]^d$ as root cell. For each node *v* of *T* choose a representative point *rep_v* in *P_v*.

Query: For $q \in \left[\frac{1}{2}, \frac{3}{4}\right]^d$ let v be the lowest node in T s.t. q in the region of v. If rep_v is defined (i.e. $P_v \neq \emptyset$), return it; otherwise return $rep_{par(v)}$.

Now we want to use shifted quadtrees to quickly answer ANN-queries in \mathbb{R}^d .

That is, we want to preprocess a set *P* of *n* points in \mathbb{R}^d , so that for query point *q* we can quickly find $p \in P$, s.t. $||q - p|| \le (1 + \varepsilon) d(q, P)$ where $d(q, P) = \min_{p \in P} ||q - p||$.

Data structure: The shifted quadtree *T* of *P*, i.e., for *P* a set of *n* points in $\left[\frac{1}{2}, \frac{3}{4}\right]^d$ and *b* in $\left[0, \frac{1}{2}\right]^d$, we use the shifted compressed quadtree *T* of *P* with *b* + $[0, 1]^d$ as root cell. For each node *v* of *T* choose a representative point rep_v in P_v .

Query: For $q \in \left[\frac{1}{2}, \frac{3}{4}\right]^d$ let v be the lowest node in T s.t. q in the region of v. If rep_v is defined (i.e. $P_v \neq \emptyset$), return it; otherwise return $rep_{par(v)}$.

Analysis:

- 1. If *v* is a non-empty leaf, then rep_v is returned
- 2. If *v* is an empty leaf, then $rep_{par(v)}$ is returned
- 3. If v is a compressed node, i.e. its region an annulus, we return rep_v

Now we want to use shifted quadtrees to quickly answer ANN-queries in \mathbb{R}^d .

That is, we want to preprocess a set *P* of *n* points in \mathbb{R}^d , so that for query point *q* we can quickly find $p \in P$, s.t. $||q - p|| \le (1 + \varepsilon) d(q, P)$ where $d(q, P) = \min_{p \in P} ||q - p||$.

Data structure: The shifted quadtree *T* of *P*, i.e., for *P* a set of *n* points in $\left[\frac{1}{2}, \frac{3}{4}\right]^d$ and *b* in $\left[0, \frac{1}{2}\right]^d$, we use the shifted compressed quadtree *T* of *P* with *b* + $[0, 1]^d$ as root cell. For each node *v* of *T* choose a representative point rep_v in P_v .

Query: For $q \in \left[\frac{1}{2}, \frac{3}{4}\right]^d$ let v be the lowest node in T s.t. q in the region of v. If rep_v is defined (i.e. $P_v \neq \emptyset$), return it; otherwise return $rep_{par(v)}$.

Analysis:

- 1. If *v* is a non-empty leaf, then rep_v is returned
- 2. If *v* is an empty leaf, then $rep_{par(v)}$ is returned
- 3. If v is a compressed node, i.e. its region an annulus, we return rep_v

In 1. and 3. $||q - p|| \le diam(v)$ and in 2. $||q - p|| \le 2diam(v)$

Lemma: For $\tau > 1$ and query point q, a τ -approximate NN is returned with probability at least $(1 - 4d^{3/2})/\tau$.

Lemma: For $\tau > 1$ and query point q, a τ -approximate NN is returned with probability at least $(1 - 4d^{3/2})/\tau$.

Proof:

Let *p* be NN of *q* in *P*; consider ball *B* defined by *p*, *q*.

Let *u* be the lowest node in *T* that fully contains *B*.

The query returns either *u* or one of its successors.

Hence an ANN at distance at most $2diam(v) \le 2diam(u)$ is returned.

Lemma: For $\tau > 1$ and query point q, a τ -approximate NN is returned with probability at least $(1 - 4d^{3/2})/\tau$.

Proof:

Let *p* be NN of *q* in *P*; consider ball *B* defined by *p*, *q*.

Let *u* be the lowest node in *T* that fully contains *B*.

The query returns either *u* or one of its successors.

Hence an ANN at distance at most $2diam(v) \leq 2diam(u)$ is returned.

Now let $\ell = ||p - q||$; by a previous lemma, $\mathbb{P}[B \text{ lies in a cell at level } i] \ge 1 - \frac{d\ell}{2^i}$ (*)

Lemma: For $\tau > 1$ and query point q, a τ -approximate NN is returned with probability at least $(1 - 4d^{3/2})/\tau$.

Proof:

Let *p* be NN of *q* in *P*; consider ball *B* defined by *p*, *q*.

Let *u* be the lowest node in *T* that fully contains *B*.

The query returns either *u* or one of its successors.

Hence an ANN at distance at most $2diam(v) \le 2diam(u)$ is returned.

Now let $\ell = ||p - q||$; by a previous lemma, $\mathbb{P}[B \text{ lies in a cell at level } i] \ge 1 - \frac{d\ell}{2^i}$ (*)

If *B* lies completely in a cell, let \Box be this cell.

The ANN returned has distance $\leq 2 diam(\Box) \leq 2\sqrt{d}2^i$ hence quality $2\sqrt{d}2^i/\ell$

Lemma: For $\tau > 1$ and query point q, a τ -approximate NN is returned with probability at least $(1 - 4d^{3/2})/\tau$.

Proof:

Let *p* be NN of *q* in *P*; consider ball *B* defined by *p*, *q*.

Let *u* be the lowest node in *T* that fully contains *B*.

The query returns either *u* or one of its successors.

Hence an ANN at distance at most $2diam(v) \leq 2diam(u)$ is returned.

Now let $\ell = ||p - q||$; by a previous lemma, $\mathbb{P}[B \text{ lies in a cell at level } i] \ge 1 - \frac{d\ell}{2^i}$ (*)

If *B* lies completely in a cell, let \Box be this cell. The ANN returned has distance $\leq 2 diam(\Box) \leq 2\sqrt{d}2^i$ hence quality $2\sqrt{d}2^i/\ell$

And it holds $2\sqrt{d}2^i \le \tau \iff i \le \log_2 \frac{\ell\tau}{2\sqrt{d}}$

Set $i := \lfloor \log_2(\frac{\ell\tau}{2\sqrt{d}}) \rfloor$ then it follows with (*) that an τ -ANN is returned with probability at least $1 - \frac{d\ell}{2^i} \ge 1 - \frac{4d^{3/2}}{\tau}$