Shifting a grid over a point set

for simple and fast approximation algorithms


Welcome!


Shifted partition of the real line

Let A > 0and b € [0, A] uniformly distributed.
We shift the grid Ga by b

0 A 2A 3A



Shifted partition of the real line

Let A > 0and b € [0, A] uniformly distributed.
We shift the grid Ga by b

| —f——— — —> hpalx) = |22 ]
0 b B X pinA2B pion3B 0 pasp A



Shifted partition of the real line

Let A > 0and b € [0, A] uniformly distributed.
We shift the grid Ga by b

| — — —> hoa(¥) = | %52
0 b B X pin2B piopA3B pa3p 2

Remark: If |b — b’| = iA for some i > 0, then b and b’ induce the same partition.
(Later we will use this to choose b € [y +ilA,y + jA]fori < j.)



Shifted partition of the real line

Let A > 0and b € [0, A] uniformly distributed.
We shift the grid Ga by b

| —f——— — —> hpalx) = |22 ]
0 b B X pinA2B pion3B 0 pasp A

Remark: If |b — b’| = iA for some i > 0, then b and b’ induce the same partition.
(Later we will use this to choose b € [y +ilA,y + jA]fori < j.)

Lemma: For x,y € R holds  P[hp a(X) by a(y)] = min (% 1)



Shifted partition of the real line

Let A > 0and b € [0, A] uniformly distributed.
We shift the grid Ga by b
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Remark: If |b — b’| = iA for some i > 0, then b and b’ induce the same partition.
(Later we will use this to choose b € [y +ilA,y + jA]fori < j.)
Lemma: For x,y € R holds  P[hp a(X) by a(y)] = min (% 1)

Proof: Wlog x < y. Claim holds trivially if [x — y| > A.
Otherwise assume b € [x, x + A]. Then hy a(X) 7 hp aly) < b € [x, y].
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Shifted partition of space

Now let P be a point set in R? and b = (b4, ..., by) uniformly randomly choosen from the
hypercube [0, A]%. Consider the (shifted) grid G“(b, AA) with origin in b and sidelength A.

Lemma: Let B be a ball in R? with Radius r (or
an axis-parallel hypercube with sidelength 2r).
The probability that B is not in a single cell of

GY(b, A) is at most min (3, 1).
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Shifted partition of space

Now let P be a point set in R? and b = (b4, ..., by) uniformly randomly choosen from the
hypercube [0, A]%. Consider the (shifted) grid G“(b, AA) with origin in b and sidelength A.

Lemma: Let B be a ball in R? with Radius r (or

an axis-parallel hypercube with sidelength 2r).
The probability that B is not in a single cell of
GY(b, AA) is at most min (£, 1).

Proof: Project B onto the i coordinate, giving an
interval B; of length 2r and the shifted 1-dim grid
G'(b;, A).

Obviously, B lies in a single if this holds for all
coordinates. Let E; be the event, that this is not
the case for coordinate /.

Then PIUL,£]1 < S0 PIE] < 2dr/A
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canonical unit disks if |[p — q|| < 2.
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Covering with unit disks

Goal: We want to find a minimal unit disk cover of a point set P of n points in the plane

First we test if a cover of size k exists in time O(kn***")

Consider a unit disk D which covers Q C P
We can move D such that two points lie on its boundary or one top

Remark: D
« Each pair of points p, g in P defines (at most) two
canonical unit disks if ||[p — g|| < 2.

* The same set Q C P can be covered by more than one
canonical unit disk.

Hence there are at most 2(’;) + n < n? canonical unit disks; wlog we cover only with these.
We try all at most n?* many k— tuples of these; each we test in O(nk) time.

Lemma: For n points in R?, we can determine in O(kn**") time if a k unit disk cover exists.
but k can be linear in n
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Faster approximate covering with unit disks

Let A = 12 /e and consider shifted grid G*(b, A)

Algorithm
» compute all grid cells containing points in P

 for each non-empty grid cell
compute minimal # unit disks containing all points in cell

Analysis: using slow algorithm

2
the running time is n®1/€")
using hashing and the fact that each grid cell can be covered by
M = (A + 1) = O(1 /52) many unit disks; hence for at most n cells we

can compute this in O(Mn*M*2) = n%1/¢" time
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Faster approximate covering with unit disks
Let A = 12 /e and consider shifted grid G*(b, A)
Algorithm

» compute all grid cells containing points in P .

+ for each non-empty grid cell ’. . P

compute minimal # unit disks containing all points in cell .

Analysis: using slow algorithm .

the running time is n®1/€) o o ®

o ©
at most (1 + €)opt disks are computed in expectation gH_ 1 | A = 12’

let F = {D;, ... Opt} be optimal solution; we construct a valid solution G from F that the algorithm finds.
For each grid ceII C, let F- be the disks in F that intersect C. Let G = U-F¢ (a multiset).
For each cell C the algorithm returns at most |F¢| disks.
For e < 12 each disk D in F can intersect at most 4 cells, thus appears at most 4 times in G.
A disk D in F appears more than once in G < D lies completely in a cell.
E[|G]] <E[opt+> 73%] <opt+> 7 3EX] <opt+> 734 =(1+R)opt =(1+¢e)opt
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Given point set P of n pointsin |+, 2|. Draw b € |0, 1| uniformly at random.
P P 512 2 y

Consider 1-dim Quadtree T on P with root interval b + [0, 1]
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Given point set P of n pointsin |z, >|. Draw b € |0, = | uniformly at random.
P P > y

2" 4
Consider 1-dim Quadtree T on P with root interval b + [0, 1]

Fora, B8 € P let Ly(a, B) =1 — bita(ae — b, B — b) = level(lca(c, B) in T)

b+0
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Given point set P of n points in [— —} Draw b € [ —} uniformly at random.
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Consider 1-dim Quadtree T on P with root interval b + [0, 1]

Fora, B8 € P let Ly(a, B) =1 — bita(ae — b, B — b) = level(lca(c, B) in T)
note that IL,(c, 3) only depends on «, 3, b and can be precomputed

Lemma: Let o, B € [ } and b € [O, 2] |
Fort € N holds P [Lb(Oé, B) > log, |a — B + t] <

Proof: | |

Let M = |log, | — (|| and consider shifted partition of real line
with side length Ay = 2M* and shift b.

Let Xy+i = 1104,5 in different intervals

If Ly(c, B) = M+i, then o, B lie in the same interval at level M +,

B _ la=8|
but not M +i — 1. By previous Lemma P [Xj,; = 1] < Aysi b+0 5
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2" 4 2
Consider 1-dim Quadtree T on P with root interval b + [0, 1]

Fora, B8 € P let Ly(a, B) =1 — bita(ae — b, B — b) = level(lca(c, B) in T)
note that IL,(c, 3) only depends on «, 3, b and can be precomputed

Lemma: Let o, B € [ } and b € [O, 2] |
Fort € N holds P [Lb(Oé, B) > log, |a — B + t] <

Proof: | |
Let M = |log, | — (|| and consider shifted partition of real line
with side length Ay = 2M* and shift b.

Let Xy = 1104,5 in different intervals-
If Ly(c, B) = M +i, then o, (3 lie in the same interval at level M+,

B _ la=8|
but not M +i — 1. By previous Lemma P [Xj,; = 1] < Aysi b+0 5

Hence P []Lb(a, B) > log, |a — B| + t} <> [Lb(oz, B)=M+ i] <3P Xy = 1
<3 ICZMBI < Y1 < g2




Shifting Quadtrees in 1 dimension

Given point set P of n pointsin |1, 2]. Draw b € |0, 1| uniformly at random.

Consider 1-dim Quadtree T on P with root interval b + [0, 1]
Fora, B8 € P let Ly(a, B) =1 — bita(ae — b, B — b) = level(lca(c, B) in T)
note that IL,(c, 3) only depends on «, 3, b and can be precomputed

Lemma: Let, 3 € |3, 2] and b € [0, 1]. | |

Fort € N holds P [Ly(c 8) > log, [ — 8] +t] < 2

b+0 « 15 b+
Corollary: Let o, 3 € |1, 2] and b € [0, 3].
For ¢ > 1 holds P |Ly(c, 8) > log, |a — 8| + clogn| < % where |P| = n.



Shifting Quadtrees in higher dimensions
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Now let P be a set of n pointsin [1,2] and bin [0, 1] .

Consider the shifted compressed quadtree T of P with b + [0, 119 as root cell.



Shifting Quadtrees in higher dimensions

d d
Now let P be a set of n pointsin [1,2] and bin [0, 1] .

Consider the shifted compressed quadtree T of P with b + [0, 119 as root cell.
As before, for p, g € P consider Ica(p, q) in T.

Note that T is the combination of 1dim Quadtrees T4, ..., Ty in each coordinate.
Hence IL,(p, q) = max,‘-”=1 Ly, (pi, g;) and is again independent of all other points in P.



Shifting Quadtrees in higher dimensions

1 3 1

Now let P be a set of n points in [5, ﬂd and b in [O, z]d.

Consider the shifted compressed quadtree T of P with b + [0, 119 as root cell.

As before, for p, g € P consider Ica(p, q) in T.
Note that T is the combination of 1dim Quadtrees T4, ..., Ty in each coordinate.
Hence IL,(p, q) = max,‘-”=1 Ly, (pi, g;) and is again independent of all other points in P.

We consider LL(p, g) as random variable and use
Lemma

For t > 0 holds P |[Ly(p, q) > log, ||p — q|| +t] < %2.
E [Ly(p, q)] < log, ||p —q|| +log, d + 6.

Ly(p, q) > log, ||p — q|[ — log, d — 3.

(exercise in book)



Low quality ANN-Search

Now we want to use shifted quadtrees to quickly answer ANN-queries in R¢.
That is, we want to preprocess a set P of n points in RY, so that for query point g we can

quickly find p € P, s.t. ||g — p|| < (1 +¢) d(q, P) where d(q, P) = min,cp||g — p||.
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Low quality ANN-Search

Now we want to use shifted quadtrees to quickly answer ANN-queries in R¢.
That is, we want to preprocess a set P of n points in RY, so that for query point g we can
quickly find p € P, s.t. ||g — p|| < (1 +¢) d(q, P) where d(q, P) = min,cp||g — p||.

: : . : d
Data structure: The shifted quadtree T of P, i.e., for P a set of n points in B %] and

b in [O, %} d, we use the shifted compressed quadtree T of P with b + [0, 119 as root cell.

For each node v of T choose a representative point rep, in P,.

d
Query: For g € |1,2]" letv be the lowest node in T s.t. g in the region of v.
If rep, is defined (i.e. P, 7/@), return it; otherwise return reppgr).

Analysis: o
1. If vis a non-empty leaf, then rep, is returned o
2. If vis an empty leaf, then repyqy) is returned

3. If vis a compressed node, i.e. its region an annulus, we return rep, Kl o

In1.and 3. ||qg — p|| < diam(v)andin 2. ||g — p|| < 2diam(v)
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least (1 — 4d°/2) /7.
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Proof:
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Low quality ANN-Search

Lemma: For 7 > 1 and query point g, a T-approximate NN is returned with probability at
least (1 — 4d°/2) /7.

Proof: P
Let p be NN of g in P; consider ball B defined by p, g. 5
Let u be the lowest node in T that fully contains B.

The query returns either u or one of its successors. q
Hence an ANN at distance at most 2diam(v) < 2diam(u) is returned.
Now let £ = ||p — q||; by a previous lemma, P[B lies in a cell at level i] > 1 — d?,e (%)

If B lies completely in a cell, let L be this cell.
The ANN returned has distance < 2diam(CJ) < 2+/d2” hence quality 2v/d2 /¢

: i . T
And it holds 2v/d2' <7 « i < log, 5 -
Setj:= Uogz(%)j then it follows with (%) that an 7-ANN is returned with probability
4d?/?

at least 1 —‘;—,521—



