
Shifting a grid over a point set
for simple and fast approximation algorithms

Welcome!
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Let∆ > 0 and b ∈ [0,∆] uniformly distributed.
We shift the grid G∆ by b

0 ∆ 2∆ 3∆b b +∆ b + 2∆ b + 3∆
hb,∆(x) = b x−b∆ c

Remark: If |b− b′| = i∆ for some i ≥ 0, then b and b′ induce the same partition.
(Later we will use this to choose b ∈ [y + i∆, y + j∆] for i < j.)

Lemma: For x, y ∈ R holds P[hb,∆(x) 6= hb,∆(y)] = min
(
|x−y|
∆ , 1

)
Proof: Wlog x < y. Claim holds trivially if |x − y| > ∆.
Otherwise assume b ∈ [x, x +∆]. Then hb,∆(x) 6= hb,∆(y)⇔ b ∈ [x, y].
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hypercube [0,∆]d. Consider the (shifted) grid Gd(b,∆) with origin in b and sidelength∆.

Lemma: Let B be a ball in Rd with Radius r (or
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Shifted partition of space
Now let P be a point set in Rd and b = (b1, ... , bd) uniformly randomly choosen from the
hypercube [0,∆]d. Consider the (shifted) grid Gd(b,∆) with origin in b and sidelength∆.

Lemma: Let B be a ball in Rd with Radius r (or
an axis-parallel hypercube with sidelength 2r).
The probability that B is not in a single cell of
Gd(b,∆) is at mostmin

( 2dr
∆ , 1

)
.

Proof: Project B onto the ith coordinate, giving an
interval Bi of length 2r and the shifted 1-dim grid
G1(bi,∆).
Obviously, B lies in a single if this holds for all
coordinates. Let Ei be the event, that this is not
the case for coordinate i.
Then P[∪di=1Ei] ≤

∑d
i=1 P[Ei] ≤ 2dr/∆
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Covering with unit disks
Goal: We want to find a minimal unit disk cover of a point set P of n points in the plane
First we test if a cover of size k exists in time O(kn2k+1)

Consider a unit disk D which covers Q ⊆ P

D

We can move D such that two points lie on its boundary or one top
P

Remark:
• Each pair of points p, q in P defines (at most) two
canonical unit disks if ||p− q|| ≤ 2.

• The same set Q ⊆ P can be covered by more than one
canonical unit disk.

Hence there are at most 2
(n
2

)
+ n ≤ n2 canonical unit disks; wlog we cover only with these.

Lemma: For n points in R2, we can determine in O(kn2k+1) time if a k unit disk cover exists.
but k can be linear in n

We try all at most n2k many k− tuples of these; each we test in O(nk) time.



Faster approximate covering with unit disks

P

Let∆ = 12/ε and consider shifted grid G2(b,∆)



Faster approximate covering with unit disks

P

Let∆ = 12/ε and consider shifted grid G2(b,∆)

ε = 1 ∆ = 12

• compute all grid cells containing points in P
• for each non-empty grid cell

compute minimal # unit disks containing all points in cell

Algorithm

using slow algorithm



Faster approximate covering with unit disks

P

Let∆ = 12/ε and consider shifted grid G2(b,∆)

ε = 1 ∆ = 12

• compute all grid cells containing points in P
• for each non-empty grid cell

compute minimal # unit disks containing all points in cell

Algorithm

Analysis:
the running time is nO(1/ε

2)

using slow algorithm

using hashing and the fact that each grid cell can be covered by
M := (∆ + 1)2 = O(1/ε2)many unit disks; hence for at most n cells we
can compute this in O(Mn2M+2) = nO(1/ε

2) time



Faster approximate covering with unit disks

P

Let∆ = 12/ε and consider shifted grid G2(b,∆)

ε = 1 ∆ = 12

• compute all grid cells containing points in P
• for each non-empty grid cell

compute minimal # unit disks containing all points in cell

Algorithm

Analysis:
the running time is nO(1/ε

2)

using slow algorithm

at most (1 + ε)opt disks are computed in expectation
let F = {D1, ... ,Dopt} be optimal solution; we construct a valid solution G from F that the algorithm finds.
For each grid cell C, let FC be the disks in F that intersect C. Let G = ∪CFC (a multiset).
For each cell C the algorithm returns at most |FC| disks.
For ε < 12 each disk D in F can intersect at most 4 cells, thus appears at most 4 times in G.
A disk D in F appears more than once in G⇔ D lies completely in a cell.
E
[
|G|
]
≤ E

[
opt +

∑opt
i=1 3Xi

]
≤ opt +

∑opt
i=1 3E [Xi] ≤ opt +

∑opt
i=1 3

4
∆ = (1 + 12

∆ )opt = (1 + ε)opt
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Hence P
[
Lb(α,β) > log2 |α− β| + t

]
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∑∞

i=1+t P
[
Lb(α,β) = M + i
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For α,β ∈ P let Lb(α,β) = 1− bit∆(α− b,β − b) = level(lca(α,β) in T)
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]
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]
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[
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Corollary: Let α,β ∈
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3
4

]
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]
.
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]
≤ 4

nc where |P| = n.
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Shifting Quadtrees in higher dimensions
Now let P be a set of n points in

[ 1
2 ,

3
4

]d and b in [0, 12]d.
Consider the shifted compressed quadtree T of P with b + [0, 1]d as root cell.
As before, for p, q ∈ P consider lca(p, q) in T .
Note that T is the combination of 1dim Quadtrees T1, ... , Td in each coordinate.
Hence Lb(p, q) = maxdi=1 Lbi (pi, qi) and is again independent of all other points in P.

We consider Lb(p, q) as random variable and use
Lemma
For t > 0 holds P

[
Lb(p, q) > log2 ||p− q|| + t

]
≤ 4d

2t .
E
[
Lb(p, q)

]
≤ log2 ||p− q|| + log2 d + 6.

Lb(p, q) ≥ log2 ||p− q|| − log2 d − 3.
(exercise in book)
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]d let v be the lowest node in T s.t. q in the region of v.
If repv is defined (i.e. Pv 6= ∅), return it; otherwise return reppar(v).
Analysis:
1. If v is a non-empty leaf, then repv is returned
2. If v is an empty leaf, then reppar(v) is returned
3. If v is a compressed node, i.e. its region an annulus, we return repv

q

In 1. and 3. ||q− p|| ≤ diam(v) and in 2. ||q− p|| ≤ 2diam(v)
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Proof:
Let p be NN of q in P; consider ball B defined by p, q.
Let u be the lowest node in T that fully contains B.
The query returns either u or one of its successors.
Hence an ANN at distance at most 2diam(v) ≤ 2diam(u) is returned.
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p
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Now let ` = ||p− q||; by a previous lemma, P[B lies in a cell at level i] ≥ 1− d`
2i (?)

If B lies completely in a cell, let� be this cell.
The ANN returned has distance≤ 2diam(�) ≤ 2

√
d2i hence quality 2

√
d2i/`

And it holds 2
√
d2i ≤ τ ⇔ i ≤ log2

`τ
2
√
d

Set i := blog2( `τ2
√
d
)c then it follows with (?) that an τ -ANN is returned with probability

at least 1− d`
2i ≥ 1− 4d3/2

τ


