
Shifting a grid over a point set
for simple and fast approximation algorithms

Welcome!

Shifted partition of the real line
Let∆ > 0 and b ∈ [0,∆] uniformly distributed.
We shift the grid G∆ by b

0 ∆ 2∆ 3∆

Shifted partition of the real line
Let∆ > 0 and b ∈ [0,∆] uniformly distributed.
We shift the grid G∆ by b

0 ∆ 2∆ 3∆b b +∆ b + 2∆ b + 3∆
hb,∆(x) = b x−b∆ cx

Shifted partition of the real line
Let∆ > 0 and b ∈ [0,∆] uniformly distributed.
We shift the grid G∆ by b

0 ∆ 2∆ 3∆b b +∆ b + 2∆ b + 3∆
hb,∆(x) = b x−b∆ c

Remark: If |b− b′| = i∆ for some i ≥ 0, then b and b′ induce the same partition.
(Later we will use this to choose b ∈ [y + i∆, y + j∆] for i < j.)

x

Shifted partition of the real line
Let∆ > 0 and b ∈ [0,∆] uniformly distributed.
We shift the grid G∆ by b

0 ∆ 2∆ 3∆b b +∆ b + 2∆ b + 3∆
hb,∆(x) = b x−b∆ c

Remark: If |b− b′| = i∆ for some i ≥ 0, then b and b′ induce the same partition.
(Later we will use this to choose b ∈ [y + i∆, y + j∆] for i < j.)

Lemma: For x, y ∈ R holds P[hb,∆(x) 6= hb,∆(y)] = min
(
|x−y|
∆ , 1

)

x

Shifted partition of the real line
Let∆ > 0 and b ∈ [0,∆] uniformly distributed.
We shift the grid G∆ by b

0 ∆ 2∆ 3∆b b +∆ b + 2∆ b + 3∆
hb,∆(x) = b x−b∆ c

Remark: If |b− b′| = i∆ for some i ≥ 0, then b and b′ induce the same partition.
(Later we will use this to choose b ∈ [y + i∆, y + j∆] for i < j.)

Lemma: For x, y ∈ R holds P[hb,∆(x) 6= hb,∆(y)] = min
(
|x−y|
∆ , 1

)
Proof: Wlog x < y. Claim holds trivially if |x − y| > ∆.
Otherwise assume b ∈ [x, x +∆]. Then hb,∆(x) 6= hb,∆(y)⇔ b ∈ [x, y].

x

Shifted partition of space
Now let P be a point set in Rd and b = (b1, ... , bd) uniformly randomly choosen from the
hypercube [0,∆]d. Consider the (shifted) grid Gd(b,∆) with origin in b and sidelength∆.

R

Shifted partition of space
Now let P be a point set in Rd and b = (b1, ... , bd) uniformly randomly choosen from the
hypercube [0,∆]d. Consider the (shifted) grid Gd(b,∆) with origin in b and sidelength∆.

R
b

Shifted partition of space
Now let P be a point set in Rd and b = (b1, ... , bd) uniformly randomly choosen from the
hypercube [0,∆]d. Consider the (shifted) grid Gd(b,∆) with origin in b and sidelength∆.

R
b

hb,∆(x) = (hb1 ,∆(x1), hb2 ,∆(x2), ... , hbd ,∆(xd))

x

Shifted partition of space
Now let P be a point set in Rd and b = (b1, ... , bd) uniformly randomly choosen from the
hypercube [0,∆]d. Consider the (shifted) grid Gd(b,∆) with origin in b and sidelength∆.

Lemma: Let B be a ball in Rd with Radius r (or
an axis-parallel hypercube with sidelength 2r).
The probability that B is not in a single cell of
Gd(b,∆) is at mostmin

(2dr
∆ , 1

)
.

R
b

hb,∆(x) = (hb1 ,∆(x1), hb2 ,∆(x2), ... , hbd ,∆(xd))

x

Shifted partition of space
Now let P be a point set in Rd and b = (b1, ... , bd) uniformly randomly choosen from the
hypercube [0,∆]d. Consider the (shifted) grid Gd(b,∆) with origin in b and sidelength∆.

Lemma: Let B be a ball in Rd with Radius r (or
an axis-parallel hypercube with sidelength 2r).
The probability that B is not in a single cell of
Gd(b,∆) is at mostmin

(2dr
∆ , 1

)
.

Proof: Project B onto the ith coordinate, giving an
interval Bi of length 2r and the shifted 1-dim grid
G1(bi,∆).
Obviously, B lies in a single if this holds for all
coordinates. Let Ei be the event, that this is not
the case for coordinate i.
Then P[∪di=1Ei] ≤

∑d
i=1 P[Ei] ≤ 2dr/∆

R
b

hb,∆(x) = (hb1 ,∆(x1), hb2 ,∆(x2), ... , hbd ,∆(xd))

x

Covering with unit disks
Goal: We want to find a minimal unit disk cover of a point set P of n points in the plane

P

Covering with unit disks
Goal: We want to find a minimal unit disk cover of a point set P of n points in the plane
First we test if a cover of size k exists in time O(kn2k+1)

P

Covering with unit disks
Goal: We want to find a minimal unit disk cover of a point set P of n points in the plane
First we test if a cover of size k exists in time O(kn2k+1)

Consider a unit disk D which covers Q ⊆ P

D

P

Covering with unit disks
Goal: We want to find a minimal unit disk cover of a point set P of n points in the plane
First we test if a cover of size k exists in time O(kn2k+1)

Consider a unit disk D which covers Q ⊆ P

D

We can move D such that two points lie on its boundary or one top
P

Covering with unit disks
Goal: We want to find a minimal unit disk cover of a point set P of n points in the plane
First we test if a cover of size k exists in time O(kn2k+1)

Consider a unit disk D which covers Q ⊆ P

D

We can move D such that two points lie on its boundary or one top
P

Remark:
• Each pair of points p, q in P defines (at most) two
canonical unit disks if ||p− q|| ≤ 2.

Covering with unit disks
Goal: We want to find a minimal unit disk cover of a point set P of n points in the plane
First we test if a cover of size k exists in time O(kn2k+1)

Consider a unit disk D which covers Q ⊆ P

D

We can move D such that two points lie on its boundary or one top
P

Remark:
• Each pair of points p, q in P defines (at most) two
canonical unit disks if ||p− q|| ≤ 2.

• The same set Q ⊆ P can be covered by more than one
canonical unit disk.

Covering with unit disks
Goal: We want to find a minimal unit disk cover of a point set P of n points in the plane
First we test if a cover of size k exists in time O(kn2k+1)

Consider a unit disk D which covers Q ⊆ P

D

We can move D such that two points lie on its boundary or one top
P

Remark:
• Each pair of points p, q in P defines (at most) two
canonical unit disks if ||p− q|| ≤ 2.

• The same set Q ⊆ P can be covered by more than one
canonical unit disk.

Hence there are at most 2
(n
2

)
+ n ≤ n2 canonical unit disks; wlog we cover only with these.

Covering with unit disks
Goal: We want to find a minimal unit disk cover of a point set P of n points in the plane
First we test if a cover of size k exists in time O(kn2k+1)

Consider a unit disk D which covers Q ⊆ P

D

We can move D such that two points lie on its boundary or one top
P

Remark:
• Each pair of points p, q in P defines (at most) two
canonical unit disks if ||p− q|| ≤ 2.

• The same set Q ⊆ P can be covered by more than one
canonical unit disk.

Hence there are at most 2
(n
2

)
+ n ≤ n2 canonical unit disks; wlog we cover only with these.

We try all at most n2k many k− tuples of these; each we test in O(nk) time.

Covering with unit disks
Goal: We want to find a minimal unit disk cover of a point set P of n points in the plane
First we test if a cover of size k exists in time O(kn2k+1)

Consider a unit disk D which covers Q ⊆ P

D

We can move D such that two points lie on its boundary or one top
P

Remark:
• Each pair of points p, q in P defines (at most) two
canonical unit disks if ||p− q|| ≤ 2.

• The same set Q ⊆ P can be covered by more than one
canonical unit disk.

Hence there are at most 2
(n
2

)
+ n ≤ n2 canonical unit disks; wlog we cover only with these.

Lemma: For n points in R2, we can determine in O(kn2k+1) time if a k unit disk cover exists.

We try all at most n2k many k− tuples of these; each we test in O(nk) time.

Covering with unit disks
Goal: We want to find a minimal unit disk cover of a point set P of n points in the plane
First we test if a cover of size k exists in time O(kn2k+1)

Consider a unit disk D which covers Q ⊆ P

D

We can move D such that two points lie on its boundary or one top
P

Remark:
• Each pair of points p, q in P defines (at most) two
canonical unit disks if ||p− q|| ≤ 2.

• The same set Q ⊆ P can be covered by more than one
canonical unit disk.

Hence there are at most 2
(n
2

)
+ n ≤ n2 canonical unit disks; wlog we cover only with these.

Lemma: For n points in R2, we can determine in O(kn2k+1) time if a k unit disk cover exists.
but k can be linear in n

We try all at most n2k many k− tuples of these; each we test in O(nk) time.

Faster approximate covering with unit disks

P

Let∆ = 12/ε and consider shifted grid G2(b,∆)

Faster approximate covering with unit disks

P

Let∆ = 12/ε and consider shifted grid G2(b,∆)

ε = 1 ∆ = 12

• compute all grid cells containing points in P
• for each non-empty grid cell

compute minimal # unit disks containing all points in cell

Algorithm

using slow algorithm

Faster approximate covering with unit disks

P

Let∆ = 12/ε and consider shifted grid G2(b,∆)

ε = 1 ∆ = 12

• compute all grid cells containing points in P
• for each non-empty grid cell

compute minimal # unit disks containing all points in cell

Algorithm

Analysis:
the running time is nO(1/ε

2)

using slow algorithm

using hashing and the fact that each grid cell can be covered by
M := (∆ + 1)2 = O(1/ε2)many unit disks; hence for at most n cells we
can compute this in O(Mn2M+2) = nO(1/ε

2) time

Faster approximate covering with unit disks

P

Let∆ = 12/ε and consider shifted grid G2(b,∆)

ε = 1 ∆ = 12

• compute all grid cells containing points in P
• for each non-empty grid cell

compute minimal # unit disks containing all points in cell

Algorithm

Analysis:
the running time is nO(1/ε

2)

using slow algorithm

at most (1 + ε)opt disks are computed in expectation
let F = {D1, ... ,Dopt} be optimal solution; we construct a valid solution G from F that the algorithm finds.
For each grid cell C, let FC be the disks in F that intersect C. Let G = ∪CFC (a multiset).
For each cell C the algorithm returns at most |FC| disks.
For ε < 12 each disk D in F can intersect at most 4 cells, thus appears at most 4 times in G.
A disk D in F appears more than once in G⇔ D lies completely in a cell.
E
[
|G|
]
≤ E

[
opt +

∑opt
i=1 3Xi

]
≤ opt +

∑opt
i=1 3E [Xi] ≤ opt +

∑opt
i=1 3

4
∆ = (1 + 12

∆)opt = (1 + ε)opt

Shifting Quadtrees in 1 dimension
Given point set P of n points in

[1
2 ,

3
4

]
. Draw b ∈

[
0, 12
]
uniformly at random.

Consider 1-dim Quadtree T on P with root interval b + [0, 1]

b + 0 b + 1

Shifting Quadtrees in 1 dimension
Given point set P of n points in

[1
2 ,

3
4

]
. Draw b ∈

[
0, 12
]
uniformly at random.

Consider 1-dim Quadtree T on P with root interval b + [0, 1]
For α,β ∈ P let Lb(α,β) = 1− bit∆(α− b,β − b) = level(lca(α,β) in T)

b + 0 b + 1

Shifting Quadtrees in 1 dimension
Given point set P of n points in

[1
2 ,

3
4

]
. Draw b ∈

[
0, 12
]
uniformly at random.

Consider 1-dim Quadtree T on P with root interval b + [0, 1]
For α,β ∈ P let Lb(α,β) = 1− bit∆(α− b,β − b) = level(lca(α,β) in T)

note that Lb(α,β) only depends on α,β, b and can be precomputed

b + 0 b + 1

Shifting Quadtrees in 1 dimension
Given point set P of n points in

[1
2 ,

3
4

]
. Draw b ∈

[
0, 12
]
uniformly at random.

Consider 1-dim Quadtree T on P with root interval b + [0, 1]
For α,β ∈ P let Lb(α,β) = 1− bit∆(α− b,β − b) = level(lca(α,β) in T)

note that Lb(α,β) only depends on α,β, b and can be precomputed

Lemma: Let α,β ∈
[1
2 ,

3
4

]
and b ∈

[
0, 12
]
.

For t ∈ N holds P
[
Lb(α,β) > log2 |α− β| + t

]
≤ 4

2t

b + 0 b + 1α β level

0

−1

−2

−3

Lb(α,β) = −1

Shifting Quadtrees in 1 dimension
Given point set P of n points in

[1
2 ,

3
4

]
. Draw b ∈

[
0, 12
]
uniformly at random.

Consider 1-dim Quadtree T on P with root interval b + [0, 1]
For α,β ∈ P let Lb(α,β) = 1− bit∆(α− b,β − b) = level(lca(α,β) in T)

note that Lb(α,β) only depends on α,β, b and can be precomputed

Lemma: Let α,β ∈
[1
2 ,

3
4

]
and b ∈

[
0, 12
]
.

For t ∈ N holds P
[
Lb(α,β) > log2 |α− β| + t

]
≤ 4

2t

Proof:
Let M = blog2 |α− β|c and consider shifted partition of real line
with side length∆M+i = 2M+i and shift b.
Let XM+i = 1Iα,β in different intervals.
If Lb(α,β) = M + i, then α,β lie in the same interval at levelM + i,
but not M + i− 1. By previous Lemma P [XM+i = 1] ≤ |α−β|∆M+i

. b + 0 b + 1α β level

0

−1

−2

−3

Shifting Quadtrees in 1 dimension
Given point set P of n points in

[1
2 ,

3
4

]
. Draw b ∈

[
0, 12
]
uniformly at random.

Consider 1-dim Quadtree T on P with root interval b + [0, 1]
For α,β ∈ P let Lb(α,β) = 1− bit∆(α− b,β − b) = level(lca(α,β) in T)

note that Lb(α,β) only depends on α,β, b and can be precomputed

Lemma: Let α,β ∈
[1
2 ,

3
4

]
and b ∈

[
0, 12
]
.

For t ∈ N holds P
[
Lb(α,β) > log2 |α− β| + t

]
≤ 4

2t

Proof:
Let M = blog2 |α− β|c and consider shifted partition of real line
with side length∆M+i = 2M+i and shift b.
Let XM+i = 1Iα,β in different intervals.
If Lb(α,β) = M + i, then α,β lie in the same interval at levelM + i,
but not M + i− 1. By previous Lemma P [XM+i = 1] ≤ |α−β|∆M+i

.

Hence P
[
Lb(α,β) > log2 |α− β| + t

]
≤
∑∞

i=1+t P
[
Lb(α,β) = M + i

]
≤
∑∞

i=t P [XM+i = 1]
≤
∑∞

i=t
|α−β|
∆M+i

≤
∑∞

i=t 2
1−i ≤ 22−t

b + 0 b + 1α β level

0

−1

−2

−3

Shifting Quadtrees in 1 dimension
Given point set P of n points in

[1
2 ,

3
4

]
. Draw b ∈

[
0, 12
]
uniformly at random.

Consider 1-dim Quadtree T on P with root interval b + [0, 1]
For α,β ∈ P let Lb(α,β) = 1− bit∆(α− b,β − b) = level(lca(α,β) in T)

note that Lb(α,β) only depends on α,β, b and can be precomputed

Lemma: Let α,β ∈
[1
2 ,

3
4

]
and b ∈

[
0, 12
]
.

For t ∈ N holds P
[
Lb(α,β) > log2 |α− β| + t

]
≤ 4

2t

Corollary: Let α,β ∈
[1
2 ,

3
4

]
and b ∈

[
0, 12
]
.

For c > 1 holds P
[
Lb(α,β) > log2 |α− β| + c log n

]
≤ 4

nc where |P| = n.

b + 0 b + 1α β level

0

−1

−2

−3

Shifting Quadtrees in higher dimensions
Now let P be a set of n points in

[1
2 ,

3
4

]d and b in [0, 12]d.
Consider the shifted compressed quadtree T of P with b + [0, 1]d as root cell.

Shifting Quadtrees in higher dimensions
Now let P be a set of n points in

[1
2 ,

3
4

]d and b in [0, 12]d.
Consider the shifted compressed quadtree T of P with b + [0, 1]d as root cell.
As before, for p, q ∈ P consider lca(p, q) in T .
Note that T is the combination of 1dim Quadtrees T1, ... , Td in each coordinate.
Hence Lb(p, q) = maxdi=1 Lbi (pi, qi) and is again independent of all other points in P.

Shifting Quadtrees in higher dimensions
Now let P be a set of n points in

[1
2 ,

3
4

]d and b in [0, 12]d.
Consider the shifted compressed quadtree T of P with b + [0, 1]d as root cell.
As before, for p, q ∈ P consider lca(p, q) in T .
Note that T is the combination of 1dim Quadtrees T1, ... , Td in each coordinate.
Hence Lb(p, q) = maxdi=1 Lbi (pi, qi) and is again independent of all other points in P.

We consider Lb(p, q) as random variable and use
Lemma
For t > 0 holds P

[
Lb(p, q) > log2 ||p− q|| + t

]
≤ 4d

2t .
E
[
Lb(p, q)

]
≤ log2 ||p− q|| + log2 d + 6.

Lb(p, q) ≥ log2 ||p− q|| − log2 d − 3.
(exercise in book)

Low quality ANN-Search
Now we want to use shifted quadtrees to quickly answer ANN-queries in Rd.
That is, we want to preprocess a set P of n points in Rd, so that for query point q we can
quickly find p ∈ P, s.t. ||q− p|| ≤ (1 + ε) d(q, P) where d(q, P) = minp∈P||q− p||.

Low quality ANN-Search
Now we want to use shifted quadtrees to quickly answer ANN-queries in Rd.
That is, we want to preprocess a set P of n points in Rd, so that for query point q we can
quickly find p ∈ P, s.t. ||q− p|| ≤ (1 + ε) d(q, P) where d(q, P) = minp∈P||q− p||.

Data structure: The shifted quadtree T of P, i.e., for P a set of n points in
[1
2 ,

3
4

]d and
b in

[
0, 12
]d, we use the shifted compressed quadtree T of P with b + [0, 1]d as root cell.

Low quality ANN-Search
Now we want to use shifted quadtrees to quickly answer ANN-queries in Rd.
That is, we want to preprocess a set P of n points in Rd, so that for query point q we can
quickly find p ∈ P, s.t. ||q− p|| ≤ (1 + ε) d(q, P) where d(q, P) = minp∈P||q− p||.

Data structure: The shifted quadtree T of P, i.e., for P a set of n points in
[1
2 ,

3
4

]d and
b in

[
0, 12
]d, we use the shifted compressed quadtree T of P with b + [0, 1]d as root cell.

For each node v of T choose a representative point repv in Pv .

Low quality ANN-Search
Now we want to use shifted quadtrees to quickly answer ANN-queries in Rd.
That is, we want to preprocess a set P of n points in Rd, so that for query point q we can
quickly find p ∈ P, s.t. ||q− p|| ≤ (1 + ε) d(q, P) where d(q, P) = minp∈P||q− p||.

Data structure: The shifted quadtree T of P, i.e., for P a set of n points in
[1
2 ,

3
4

]d and
b in

[
0, 12
]d, we use the shifted compressed quadtree T of P with b + [0, 1]d as root cell.

For each node v of T choose a representative point repv in Pv .

Query: For q ∈
[1
2 ,

3
4

]d let v be the lowest node in T s.t. q in the region of v.
If repv is defined (i.e. Pv 6= ∅), return it; otherwise return reppar(v).

Low quality ANN-Search
Now we want to use shifted quadtrees to quickly answer ANN-queries in Rd.
That is, we want to preprocess a set P of n points in Rd, so that for query point q we can
quickly find p ∈ P, s.t. ||q− p|| ≤ (1 + ε) d(q, P) where d(q, P) = minp∈P||q− p||.

Data structure: The shifted quadtree T of P, i.e., for P a set of n points in
[1
2 ,

3
4

]d and
b in

[
0, 12
]d, we use the shifted compressed quadtree T of P with b + [0, 1]d as root cell.

For each node v of T choose a representative point repv in Pv .

Query: For q ∈
[1
2 ,

3
4

]d let v be the lowest node in T s.t. q in the region of v.
If repv is defined (i.e. Pv 6= ∅), return it; otherwise return reppar(v).
Analysis:
1. If v is a non-empty leaf, then repv is returned
2. If v is an empty leaf, then reppar(v) is returned
3. If v is a compressed node, i.e. its region an annulus, we return repv

q

Low quality ANN-Search
Now we want to use shifted quadtrees to quickly answer ANN-queries in Rd.
That is, we want to preprocess a set P of n points in Rd, so that for query point q we can
quickly find p ∈ P, s.t. ||q− p|| ≤ (1 + ε) d(q, P) where d(q, P) = minp∈P||q− p||.

Data structure: The shifted quadtree T of P, i.e., for P a set of n points in
[1
2 ,

3
4

]d and
b in

[
0, 12
]d, we use the shifted compressed quadtree T of P with b + [0, 1]d as root cell.

For each node v of T choose a representative point repv in Pv .

Query: For q ∈
[1
2 ,

3
4

]d let v be the lowest node in T s.t. q in the region of v.
If repv is defined (i.e. Pv 6= ∅), return it; otherwise return reppar(v).
Analysis:
1. If v is a non-empty leaf, then repv is returned
2. If v is an empty leaf, then reppar(v) is returned
3. If v is a compressed node, i.e. its region an annulus, we return repv

q

In 1. and 3. ||q− p|| ≤ diam(v) and in 2. ||q− p|| ≤ 2diam(v)

Low quality ANN-Search
Lemma: For τ > 1 and query point q, a τ -approximate NN is returned with probability at
least (1− 4d3/2)/τ .

Low quality ANN-Search
Lemma: For τ > 1 and query point q, a τ -approximate NN is returned with probability at
least (1− 4d3/2)/τ .
Proof:
Let p be NN of q in P; consider ball B defined by p, q.
Let u be the lowest node in T that fully contains B.
The query returns either u or one of its successors.
Hence an ANN at distance at most 2diam(v) ≤ 2diam(u) is returned.

B

p

q

Low quality ANN-Search
Lemma: For τ > 1 and query point q, a τ -approximate NN is returned with probability at
least (1− 4d3/2)/τ .
Proof:
Let p be NN of q in P; consider ball B defined by p, q.
Let u be the lowest node in T that fully contains B.
The query returns either u or one of its successors.
Hence an ANN at distance at most 2diam(v) ≤ 2diam(u) is returned.

B

p

q

Now let ` = ||p− q||; by a previous lemma, P[B lies in a cell at level i] ≥ 1− d`
2i (?)

Low quality ANN-Search
Lemma: For τ > 1 and query point q, a τ -approximate NN is returned with probability at
least (1− 4d3/2)/τ .
Proof:
Let p be NN of q in P; consider ball B defined by p, q.
Let u be the lowest node in T that fully contains B.
The query returns either u or one of its successors.
Hence an ANN at distance at most 2diam(v) ≤ 2diam(u) is returned.

B

p

q

Now let ` = ||p− q||; by a previous lemma, P[B lies in a cell at level i] ≥ 1− d`
2i (?)

If B lies completely in a cell, let� be this cell.
The ANN returned has distance≤ 2diam(�) ≤ 2

√
d2i hence quality 2

√
d2i/`

Low quality ANN-Search
Lemma: For τ > 1 and query point q, a τ -approximate NN is returned with probability at
least (1− 4d3/2)/τ .
Proof:
Let p be NN of q in P; consider ball B defined by p, q.
Let u be the lowest node in T that fully contains B.
The query returns either u or one of its successors.
Hence an ANN at distance at most 2diam(v) ≤ 2diam(u) is returned.

B

p

q

Now let ` = ||p− q||; by a previous lemma, P[B lies in a cell at level i] ≥ 1− d`
2i (?)

If B lies completely in a cell, let� be this cell.
The ANN returned has distance≤ 2diam(�) ≤ 2

√
d2i hence quality 2

√
d2i/`

And it holds 2
√
d2i ≤ τ ⇔ i ≤ log2

`τ
2
√
d

Set i := blog2(`τ2
√
d
)c then it follows with (?) that an τ -ANN is returned with probability

at least 1− d`
2i ≥ 1− 4d3/2

τ

