Shifting a grid over a point set

for simple and fast approximation algorithms

Welcome!

Shifted partition of the real line

Let A > 0and b € [0, A] uniformly distributed.
We shift the grid Ga by b

0 A 2A 3A

Shifted partition of the real line

Let A > 0and b € [0, A] uniformly distributed.
We shift the grid Ga by b

i i | i i i i —p
0 I A N A S N A A

Shifted partition of the real line

Let A > 0and b € [0, A] uniformly distributed.
We shift the grid Ga by b

| |
0 b A A28 L on3A 0 s

Shifted partition of the real line

Let A > 0and b € [0, A] uniformly distributed.
We shift the grid Ga by b

| ————— — —> hpa(x) = | 52|
0 b B pina2B pion38 pisp A

Remark: If |b — b’| = iA for some i > 0, then b and b’ induce the same partition.
(Later we will use this to choose b € [y +ilA,y + jA]fori < j.)

Shifted partition of the real line

Let A > 0and b € [0, A] uniformly distributed.
We shift the grid Ga by b

X y X—b
| - et S — > hoa(x) = [%52]
0 b A A28 L on3A 0 s

Remark: If |b — b’| = iA for some i > 0, then b and b’ induce the same partition.
(Later we will use this to choose b € [y +ilA,y + jA]fori < j.)

Lemma: Forx,y € R holds P [hb,A(x) #hb,A(y)} = min (%y’ 1)

Shifted partition of the real line

Let A > 0and b € [0, A] uniformly distributed.
We shift the grid Ga by b

| | | |J‘ | X‘+A| | | - h _ | x—b
| I— o S . paX) = | 2
0 bAAX* o 28| LA 38 L on A

Remark: If |b — b’| = iA for some i > 0, then b and b’ induce the same partition.
(Later we will use this to choose b € [y +ilA,y + jA]fori < j.)

Lemma: Forx,y € R holds P [hb,A(x) #hb,A(y)} = min (%y’ 1)

Proof: Wlog x < y. Claim holds trivially if [x — y| > A.
Otherwise assume b € [x, x + A]. Then hy a(X) 7 hp aly) < b € [x, y].

Shifted partition of space

Now let P be a point set in R? and b = (b4, ..., by) uniformly randomly choosen from the
hypercube [0, A]%. Consider the (shifted) grid G“(b, AA) with origin in b and sidelength A.

Shifted partition of space

Now let P be a point set in R? and b = (b4, ..., by) uniformly randomly choosen from the
hypercube [0, A]%. Consider the (shifted) grid G“(b, AA) with origin in b and sidelength A.

-

L

e

Shifted partition of space

Now let P be a point set in R? and b = (b4, ..., by) uniformly randomly choosen from the
hypercube [0, A]%. Consider the (shifted) grid G“(b, AA) with origin in b and sidelength A.

e
| e
A ° -
o |V Lo
1 | - yd
e o /
b.//*' R
| | >

hp,A(X) = (hp, A(X1), M, A(X2), ..., By, A(Xa))

Shifted partition of space

Now let P be a point set in R? and b = (b4, ..., by) uniformly randomly choosen from the
hypercube [0, A]%. Consider the (shifted) grid G“(b, AA) with origin in b and sidelength A.

Lemma: Let B be a ball in R? with Radius r (or
an axis-parallel hypercube with sidelength 2r).
The probability that B is not in a single cell of

d : . (2d
G%(b, A) is at most min (Kr 1).

L

e

hp,A(X) = (hp, A(X1), hp, A(X), ...

, hp,, A(Xg))

Shifted partition of space

Now let P be a point set in R? and b = (b4, ..., by) uniformly randomly choosen from the
hypercube [0, A]%. Consider the (shifted) grid G“(b, AA) with origin in b and sidelength A.

Lemma: Let B be a ball in RY with Radius r (or — //
an axis-parallel hypercube with sidelength 2r). 1 o
The probability that B is not in a single cell of A %/ //
d : . (2dr X&——
GYb, A) is at most min (K' 1). 1 “o | e // //
Proof:
project B onto the i coordinate — interval B; of length 2r] o /
and shifted 1-dim grid G'(b;, A). T S 4
b .// R
| I -

hp,A(X) = (hp, A(X1), M, A(X2), ..., By, A(Xa))

Shifted partition of space

Now let P be a point set in R? and b = (b4, ..., by) uniformly randomly choosen from the
hypercube [0, A]%. Consider the (shifted) grid G“(b, AA) with origin in b and sidelength A.

Lemma: Let B be a ball in RY with Radius r (or — //
an axis-parallel hypercube with sidelength 2r). 1 o
The probability that B is not in a single cell of A %/ //

d : . (2dr X&——
GYb, A) is at most min (K' 1). 1 “o | e // //
Proof:
project B onto the i coordinate — interval B; of length 2r] o /
and shifted 1-dim grid G'(b;, A). T S 4

b .// R

B in a single cell if all B; in a shifted interval.

| | >

hp,A(X) = (hp, A(X1), M, A(X2), ..., By, A(Xa))

Shifted partition of space

Now let P be a point set in R? and b = (b4, ..., by) uniformly randomly choosen from the
hypercube [0, A]%. Consider the (shifted) grid G“(b, AA) with origin in b and sidelength A.

Lemma: Let B be a ball in RY with Radius r (or — //
an axis-parallel hypercube with sidelength 2r). - ¢
The probability that B is not in a single cell of A %/ //

d : . (2dr X&——
GYb, A) is at most min (K' 1). 1 “o | e // //
Proof:
project B onto the i coordinate — interval B; of length 2r] o /
and shifted 1-dim grid G'(b;, A). T S 4

b .// R

B in a single cell if all B; in a shifted interval.

event E;: B; not in a shifted interval.

| | >

hp,A(X) = (hp, A(X1), M, A(X2), ..., By, A(Xa))

Shifted partition of space

Now let P be a point set in R? and b = (b4, ..., by) uniformly randomly choosen from the
hypercube [0, A]%. Consider the (shifted) grid G“(b, AA) with origin in b and sidelength A.

Lemma: Let B be a ball in R? with Radius r (or
an axis-parallel hypercube with sidelength 2r).
The probability that B is not in a single cell of
GY(b, A) is at most min (4, 1).

Proof:

project B onto the i coordinate — interval B; of length 2r
and shifted 1-dim grid G'(b;, A).
B in a single cell if all B; in a shifted interval.

event E;: B; not in a shifted interval.

bound: P [UL, | < 37, PIE] < 2dr/A

e

L

>¢
(\\\\

e

1 //’

7

hp,A(X) = (hp, A(X1), hp, A(X2), ...,

hp, A(Xq))

Covering with unit disks

Goal: We want to find a minimal unit disk cover of a point set P of n points in the plane

Covering with unit disks

Goal: We want to find a minimal unit disk cover of a point set P of n points in the plane

First we can test if a cover of size k exists in time O(ank”)

Covering with unit disks

Goal: We want to find a minimal unit disk cover of a point set P of n points in the plane

First we can test if a cover of size k exists in time O(ank”)

Consider a unit disk D which covers Q C P

Covering with unit disks

Goal: We want to find a minimal unit disk cover of a point set P of n points in the plane

First we can test if a cover of size k exists in time O(ank”)

Consider a unit disk D which covers Q C P
We can move D such that two points lie on its boundary or one top

Covering with unit disks

Goal: We want to find a minimal unit disk cover of a point set P of n points in the plane
2k+1
)

First we can test if a cover of size k exists in time O(kn
Consider a unit disk D which covers Q C P
We can move D such that two points lie on its boundary or one top

Remark: D
« Each pair of points p, g in P defines (at most) two

canonical unit disks if |[p — q|| < 2.

Covering with unit disks

Goal: We want to find a minimal unit disk cover of a point set P of n points in the plane

First we can test if a cover of size k exists in time O(ank”)

Consider a unit disk D which covers Q C P
We can move D such that two points lie on its boundary or one top

Remark: D
« Each pair of points p, g in P defines (at most) two

canonical unit disks if |[p — q|| < 2.

* The same set Q C P can be covered by more than one
canonical unit disk.

Covering with unit disks

Goal: We want to find a minimal unit disk cover of a point set P of n points in the plane

First we can test if a cover of size k exists in time O(ank”)

Consider a unit disk D which covers Q C P p
We can move D such that two points lie on its boundary or one top

Remark: D
« Each pair of points p, g in P defines (at most) two
canonical unit disks if ||[p — g|| < 2.

* The same set Q C P can be covered by more than one
canonical unit disk.

Hence there are at most 2(’;) + n < n? canonical unit disks; wlog we cover only with these.

Covering with unit disks

Goal: We want to find a minimal unit disk cover of a point set P of n points in the plane

First we can test if a cover of size k exists in time O(ank”)

Consider a unit disk D which covers Q C P p
We can move D such that two points lie on its boundary or one top

Remark: D
« Each pair of points p, g in P defines (at most) two

canonical unit disks if |[p — q|| < 2.

* The same set Q C P can be covered by more than one
canonical unit disk.

Hence there are at most 2(’;) + n < n? canonical unit disks; wlog we cover only with these.

We try all at most n?* many k— tuples of these; each we test in O(nk) time.

Covering with unit disks

Goal: We want to find a minimal unit disk cover of a point set P of n points in the plane

First we can test if a cover of size k exists in time O(ank”)

Consider a unit disk D which covers Q C P
We can move D such that two points lie on its boundary or one top

Remark: D
« Each pair of points p, g in P defines (at most) two
canonical unit disks if ||[p — g|| < 2.

* The same set Q C P can be covered by more than one
canonical unit disk.

Hence there are at most 2(’;) + n < n? canonical unit disks; wlog we cover only with these.
We try all at most n?* many k— tuples of these; each we test in O(nk) time.

Lemma: For n points in R?, we can determine in O(kn**") time if a k unit disk cover exists.

Covering with unit disks

Goal: We want to find a minimal unit disk cover of a point set P of n points in the plane

First we can test if a cover of size k exists in time O(ank”)

Consider a unit disk D which covers Q C P
We can move D such that two points lie on its boundary or one top

Remark: D
« Each pair of points p, g in P defines (at most) two
canonical unit disks if ||[p — g|| < 2.

* The same set Q C P can be covered by more than one
canonical unit disk.

Hence there are at most 2(’;) + n < n? canonical unit disks; wlog we cover only with these.
We try all at most n?* many k— tuples of these; each we test in O(nk) time.

Lemma: For n points in R?, we can determine in O(kn**") time if a k unit disk cover exists.
but k can be linear in n

Faster approximate covering with unit disks

Let A = 12 /e and consider shifted grid G*(b, A)

Faster approximate covering with unit disks

Let A = 12 /e and consider shifted grid G*(b, A)

Algorithm
» compute all grid cells containing points in P
 for each non-empty grid cell
compute minimal # unit disks containing all points in cell

using slow algorithm

Faster approximate covering with unit disks

Let A = 12 /e and consider shifted grid G*(b, A)

Algorithm
» compute all grid cells containing points in P
 for each non-empty grid cell

compute minimal # unit disks containing all points in cell

Analysis: using slow algorithm

2
. the running time is n®'/€")

Faster approximate covering with unit disks

Let A = 12 /e and consider shifted grid G*(b, A)

Algorithm
» compute all grid cells containing points in P

 for each non-empty grid cell
compute minimal # unit disks containing all points in cell

Analysis: using slow algorithm

2
. the running time is n®'/€")
using hashing and the fact that each grid cell can be covered by
(A + 1) = 0(1 /52) many unit disks; hence for at most n cells we can

compute this in O(Mn?"*2) = n%1/¢" time

Faster approximate covering with unit disks

Let A = 12 /e and consider shifted grid G*(b, A)

Algorithm
» compute all grid cells containing points in P
 for each non-empty grid cell

compute minimal # unit disks containing all points in cell

Analysis: using slow algorithm

+ the running time is n®1/¢"
« at most (1 + €)opt disks are computed in expectation

Faster approximate covering with unit disks

Let A = 12 /e and consider shifted grid G*(b, A)

Algorithm
» compute all grid cells containing points in P
 for each non-empty grid cell

compute minimal # unit disks containing all points in cell

Analysis: using slow algorithm

+ the running time is n®1/¢"
« at most (1 + €)opt disks are computed in expectation

F ={Dj, ..., Dop }: optimal solution
We construct a valid solution G from F that the algorithm finds.

o O

o 0.
y!

H

=4 A =3

Faster approximate covering with unit disks

Let A = 12 /e and consider shifted grid G*(b, A)

Algorithm
» compute all grid cells containing points in P
 for each non-empty grid cell

compute minimal # unit disks containing all points in cell

Analysis: using slow algorithm

+ the running time is n®1/¢"
« at most (1 + €)opt disks are computed in expectation

F ={Dj, ..., Dop }: optimal solution
We construct a valid solution G from F that the algorithm finds.

For each grid cell C: F- the disks in F that intersect C. Let G = UcF¢ (a multiset).

o O

o 0.
e |0

H

=4 A =3

Faster approximate covering with unit disks

Let A = 12 /e and consider shifted grid G*(b, A)

Algorithm
» compute all grid cells containing points in P
 for each non-empty grid cell
compute minimal # unit disks containing all points in cell

Analysis: using slow algorithm

+ the running time is n®1/¢"
« at most (1 + €)opt disks are computed in expectation

F ={Dj, ..., Dop }: optimal solution
We construct a valid solution G from F that the algorithm finds.

For each grid cell C: F- the disks in F that intersect C. Let G = UcF¢ (a multiset).

For each cell C the algorithm returns at most |F¢| disks.

o O

o 0.
e |0

H

=4 A =3

Faster approximate covering with unit disks

Let A = 12 /e and consider shifted grid G*(b, A)

Algorithm
» compute all grid cells containing points in P
 for each non-empty grid cell
compute minimal # unit disks containing all points in cell

Analysis: using slow algorithm

+ the running time is n®1/¢"
« at most (1 + €)opt disks are computed in expectation

F ={Dj, ..., Dop }: optimal solution
We construct a valid solution G from F that the algorithm finds.

For each grid cell C: F- the disks in F that intersect C. Let G = UcF¢ (a multiset).

For each cell C the algorithm returns at most |F¢| disks.

For e < 12 each disk D in F intersects < 4 cells, thus appears at most 4 times in G.

o O

o 0.
e |0

H

=4 A =3

Faster approximate covering with unit disks

Let A = 12 /e and consider shifted grid G*(b, A)
Algorithm

» compute all grid cells containing points in P

 for each non-empty grid cell Q @:
compute minimal # unit disks containing all points in cell
Analysis: using slow algorithm T o
+ the running time is n®1/¢" ° e ®
« at most (1 + €)opt disks are computed in expectation Q>
F ={Dj, ..., Dop }: optimal solution H | |
We construct a valid solution G from F that the algorithm finds. e=4 A=3

For each grid cell C: F- the disks in F that intersect C. Let G = UcF¢ (a multiset).

For each cell C the algorithm returns at most |F¢| disks.
For e < 12 each disk D in F intersects < 4 cells, thus appears at most 4 times in G.

Disk D; in F appears more than once in G < D, not in one cell; (X; := indicator variable of this event)

Faster approximate covering with unit disks

Let A = 12 /e and consider shifted grid G*(b, A)
Algorithm

» compute all grid cells containing points in P

+ for each non-empty grid cell °le
.
compute minimal # unit disks containing all points in cell
- ing slow algorithm
Analysis: using stow aig . o
. . . o(1 /82)
* the running timeisn ° o ®
« at most (1 + €)opt disks are computed in expectation ° o
F ={Dj, ..., Dop }: optimal solution H | |
We construct a valid solution G from F that the algorithm finds. =4 N\ =3

For each grid cell C: F- the disks in F that intersect C. Let G = UcF¢ (a multiset).

For each cell C the algorithm returns at most |F¢| disks.
For e < 12 each disk D in F intersects < 4 cells, thus appears at most 4 times in G.

Disk D; in F appears more than once in G < D, not in one cell; (X; := indicator variable of this event)

E [|GH <E [opt+ Zfﬁt 3X,-] < opt + Zfﬂ 3E X1 < opt + Zfﬁ%% = (1+ %)opt = (1 +)opt

Shifting Quadtrees in 1 dimension

Given point set P of n pointsin |+, 2|. Draw b € |0, 1| uniformly at random.
P P 512 2 y

Consider 1-dim Quadtree T on P with root interval b + [0, 1]

Shifting Quadtrees in 1 dimension

1 3 1

Given point set P of n pointsin |z, >|. Draw b € |0, = | uniformly at random.
P P > y

2" 4
Consider 1-dim Quadtree T on P with root interval b + [0, 1]

Fora, B8 € P let Ly(a, B) =1 — bita(ae — b, B — b) = level(lca(c, B) in T)

b+0

b+ 1

Shifting Quadtrees in 1 dimension

Given point set P of n pointsin |1, 2]. Draw b € |0, 1| uniformly at random.

Consider 1-dim Quadtree T on P with root interval b + [0, 1]
Fora, B8 € P let Ly(a, B) =1 — bita(ae — b, B — b) = level(lca(c, B) in T)
note that IL,(c, 3) only depends on «, 3, b and can be precomputed

Shifting Quadtrees in 1 dimension

Given point set P of n pointsin |1, 2]. Draw b € |0, 1| uniformly at random.

Consider 1-dim Quadtree T on P with root interval b + [0, 1]
Fora, B8 € P let Ly(a, B) =1 — bita(ae — b, B — b) = level(lca(c, B) in T)
note that IL,(c, 3) only depends on «, 3, b and can be precomputed

Lemma: Let, 3 € |3, 2] and b € [0, 1]. . 0

Fort € N holds P [Ly(c 8) > log, [— 8] +t] < 2

Shifting Quadtrees in 1 dimension

Given point set P of n pointsin |1, 2]. Draw b € |0, 1| uniformly at random.

Consider 1-dim Quadtree T on P with root interval b + [0, 1]
Fora, B8 € P let Ly(a, B) =1 — bita(ae — b, B — b) = level(lca(c, B) in T)
note that IL,(c, 3) only depends on «, 3, b and can be precomputed

Lemma: Let, 3 € |3, 2] and b € [0, 1]. | 0
Fort € N holds P [Ly(c, 8) > log, |a — B8] +t| < %
Proof: | | =1

Let M = |log, | — (|| and consider shifted partition of real line
with side length Ay, = 2¥* and shift b. , , L9

Shifting Quadtrees in 1 dimension

Given point set P of n pointsin |1, 2]. Draw b € |0, 1| uniformly at random.

Consider 1-dim Quadtree T on P with root interval b + [0, 1]
Fora, B8 € P let Ly(a, B) =1 — bita(ae — b, B — b) = level(lca(c, B) in T)
note that IL,(c, 3) only depends on «, 3, b and can be precomputed

Lemma: Let, 3 € |3, 2] and b € [0, 1]. | 0
Fort € N holds P [Ly(c, 8) > log, |a — B8] +t| < %

Proof: | | =1
Let M = |log, | — (|| and consider shifted partition of real line

with side length Ay = 2Y* and shift b. , ,)

Let Xu+i = o, B in different intervals-

If Ly(c, B) = M +i, then ¢, (lie in the same interval at level M+,

but not M +i — 1. By previous lemma P [Xy.; = 11 < la=F]

ja—
JAVY b+0 «v 5 Ay b +

1
level

Shifting Quadtrees in 1 dimension

Given point set P of n points in [% ﬂ Draw b € [%} uniformly at random.

Consider 1-dim Quadtree T on P with root interval b + [0, 1]
Fora, B8 € P let Ly(a, B) =1 — bita(ae — b, B — b) = level(lca(c, B) in T)
note that IL,(c, 3) only depends on «, 3, b and can be precomputed

Lemma: Let o, B € [} and b € [O, 2] | | 0
Fort € N holds P [Lb(a, B) > log, |a — Bl +t| < =
Proof: | | =1

Let M = |log, | — (|| and consider shifted partition of real line
with side length Ay = 2M* and shift b.

Let X+ = 11@,6 in different intervals-

If Ly(c, B) = M+i, then ¢, B lie in the same interval at level M+,

B =11 < |a | —
but not M +i — 1. By previous lemma P [Xy.; = 1] Ao b+0 v 5 Ay, b+1 level

Hence P [Ly(cv, B) > log, |a — 8] +t] < 37, P |Ly(a, B) = M+i] <37 P Xy = 1]
<3 ICZMBI < Y1 < g2

Shifting Quadtrees in 1 dimension

Given point set P of n pointsin |1, 2]. Draw b € |0, 1| uniformly at random.

Consider 1-dim Quadtree T on P with root interval b + [0, 1]
Fora, B8 € P let Ly(a, B) =1 — bita(ae — b, B — b) = level(lca(c, B) in T)
note that IL,(c, 3) only depends on «, 3, b and can be precomputed

Lemma: Let, 3 € |3, 2] and b € [0, 1]. | |

Fort € N holds P [Ly(c 8) > log, [— 8] +t] < 2

b+0 « [3 b+
Corollary: Let o, 3 € |1, 2] and b € [0, 3].
For ¢ > 1 holds P |Ly(c, 8) > log, |a — 8| + clogn| < % where |P| = n.

Shifting Quadtrees in higher dimensions

d d
Now let P be a set of n pointsin [1,2] and bin [0, 1] .

Consider the shifted compressed quadtree T of P with b + [0, 119 as root cell.

Shifting Quadtrees in higher dimensions

d d
Now let P be a set of n pointsin [1,2] and bin [0, 1] .

Consider the shifted compressed quadtree T of P with b + [0, 119 as root cell.
As before, for p, g € P consider Ica(p, q) in T.

Note that T is the combination of 1dim Quadtrees T4, ..., Ty in each coordinate.
Hence IL,(p, q) = max,‘-”=1 Ly, (pi, g;) and is again independent of all other points in P.

Shifting Quadtrees in higher dimensions

d d
Now let P be a set of n pointsin [1,2] and bin [0, 1] .

Consider the shifted compressed quadtree T of P with b + [0, 119 as root cell.
As before, for p, g € P consider Ica(p, q) in T.

Note that T is the combination of 1dim Quadtrees T4, ..., Ty in each coordinate.
Hence IL,(p, q) = max,‘-”=1 Ly, (pi, g;) and is again independent of all other points in P.

We consider LL(p, g) as random variable and use
Lemma

For t > 0 holds P |[Ly(p, q) > log, ||p — q|| +t] < 2.

Low quality ANN-Search

Now we want to use shifted quadtrees to quickly answer ANN-queries in R¢.
That is, we want to preprocess a set P of n points in RY, so that for query point g we can

quickly find p € P, s.t. ||g — p|| < 7 d(g, P) where d(q, P) = min,cp||q — p||.

Low quality ANN-Search

Now we want to use shifted quadtrees to quickly answer ANN-queries in R¢.
That is, we want to preprocess a set P of n points in RY, so that for query point g we can
quickly find p € P, s.t. ||g — p|| < 7 d(g, P) where d(q, P) = min,cp||q — p||.

d
Data structure: The shifted quadtree T of P, i.e., for P a set of n points in B %] and

b in [O, %} d, we use the shifted compressed quadtree T of P with b + [0, 119 as root cell.

Low quality ANN-Search

Now we want to use shifted quadtrees to quickly answer ANN-queries in R¢.
That is, we want to preprocess a set P of n points in RY, so that for query point g we can

quickly find p € P, s.t. ||g — p|| < 7 d(g, P) where d(q, P) = min,cp||q — p||.

Data structure: The shifted quadtree T of P, i.e., for P a set of n points in B %] ; and
b in [O, %} d, we use the shifted compressed quadtree T of P with b + [0, 119 as root cell.
For each node v of T choose a representative point rep, in P,.

Low quality ANN-Search

Now we want to use shifted quadtrees to quickly answer ANN-queries in R¢.
That is, we want to preprocess a set P of n points in RY, so that for query point g we can

quickly find p € P, s.t. ||g — p|| < 7 d(g, P) where d(q, P) = min,cp||q — p||.

Data structure: The shifted quadtree T of P, i.e., for P a set of n points in B %] ; and
b in [O, %} d, we use the shifted compressed quadtree T of P with b + [0, 119 as root cell.
For each node v of T choose a representative point rep, in P,.

Query: Forg € |1, 2] “ et v be the lowest node in T s.t. g in the region of v.

If rep, is defined (i.e. P, 7/@), return it; otherwise return reppgr).

Low quality ANN-Search

Now we want to use shifted quadtrees to quickly answer ANN-queries in R¢.
That is, we want to preprocess a set P of n points in RY, so that for query point g we can

quickly find p € P, s.t. ||g — p|| < 7 d(g, P) where d(q, P) = min,cp||q — p||.

Data structure: The shifted quadtree T of P, i.e., for P a set of n points in B %] ; and
b in [O, %} d, we use the shifted compressed quadtree T of P with b + [0, 119 as root cell.
For each node v of T choose a representative point rep, in P,.

d
Query: For g € |1,2]" letv be the lowest node in T s.t. g in the region of v.
If rep, is defined (i.e. P, 7/@), return it; otherwise return reppgr).

Analysis: o
1. If vis a non-empty leaf, then rep, is returned o
2. If vis an empty leaf, then repyqy) is returned

3. If vis a compressed node, i.e. its region an annulus, we return rep,

Ox

Low quality ANN-Search

Now we want to use shifted quadtrees to quickly answer ANN-queries in R¢.
That is, we want to preprocess a set P of n points in RY, so that for query point g we can
quickly find p € P, s.t. ||g — p|| < 7 d(g, P) where d(q, P) = min,cp||q — p||.

: : . : d
Data structure: The shifted quadtree T of P, i.e., for P a set of n points in B %] and

b in [O, %} d, we use the shifted compressed quadtree T of P with b + [0, 119 as root cell.

For each node v of T choose a representative point rep, in P,.

d
Query: For g € |1,2]" letv be the lowest node in T s.t. g in the region of v.
If rep, is defined (i.e. P, 7/@), return it; otherwise return reppgr).

Analysis: o
1. If vis a non-empty leaf, then rep, is returned o
2. If vis an empty leaf, then repyqy) is returned

3. If vis a compressed node, i.e. its region an annulus, we return rep, Kl o

In1.and 3. ||qg — p|| < diam(v)andin 2. ||g — p|| < 2diam(v)

Low quality ANN-Search

Lemma: For 7 > 1 and query point g, a T-approximate NN is returned with probability at
least (1 — 4d°/2) /7.

Low quality ANN-Search

Lemma: For 7 > 1 and query point g, a T-approximate NN is returned with probability at
least (1 — 4d°/2) /7.

Proof: P
Let p be NN of g in P; consider ball B defined by p, q. Q 3

q

Low quality ANN-Search

Lemma: For 7 > 1 and query point g, a T-approximate NN is returned Wlth probability at
least (1 — 4d°/2) /7.

Proof:
Let p be NN of g in P; consider ball B defined by p, q. . _B_ _
Let u be the lowest node in T that fully contains B.
The query returns either u or one of its descendants.
Hence an ANN at distance at most 2diam(v) < 2diam(u) is returned.

Low quality ANN-Search

Lemma: For 7 > 1 and query point g, a T-approximate NN is returned Wlth probability at
least (1 — 4d°/2) /7.

Proof:
Let p be NN of g in P; consider ball B defined by p, q. . _B_ _
Let u be the lowest node in T that fully contains B.
The query returns either u or one of its descendants.
Hence an ANN at distance at most 2diam(v) < 2diam(u) is returned.

Now let ¢ =

Low quality ANN-Search

Lemma: For 7 > 1 and query point g, a T-approximate NN is returned Wlth probability at

least (1 — 4d°/2) /7. ,
Proof: o

Let p be NN of g in P; consider ball B defined by p, q. . _B_ _

Let u be the lowest node in T that fully contains B.

The query returns either u or one of its descendants. 1 :

Hence an ANN at distance at most 2diam(v) < 2diam(u) is returned.

Now let ¢ = d?,e (%)

If B lies completely in a cell, let L be this cell.
The ANN returned has distance < 2diam(CJ) < 2+/d2” hence quality 2v/d2 /¢

Low quality ANN-Search

Lemma: For 7 > 1 and query point g, a T-approximate NN is returned Wlth probability at
least (1 — 4d°/2) /7. .

Proof: P
Let p be NN of g in P; consider ball B defined by p, q. . _B_ _
Let u be the lowest node in T that fully contains B.

The query returns either u or one of its descendants. 1 :

Hence an ANN at distance at most 2diam(v) < 2diam(u) is returned.

&t (%)

Now let £ = 1

If B lies completely in a cell, let L be this cell.
The ANN returned has distance < 2diam(L]) < 2\/c_7'2’ hence quality 2\/52’/2

And it holds 2v/d2'/¢ <7 & i< log, ;-

Setj:= Uogz(e—'r)j then it follows with (%) that an 7-ANN is returned with probability
44372

at least 1 ——21—

Summary

shifting grids — approximate disk cover

shifting quadtrees — approximate nearest neighbor query

Summary

shifting grids — approximate disk cover

The probability that a ball B of radius r is not in a single cell of G%(b, AA) is at most min (%dr, 1).

shifting quadtrees — approximate nearest neighbor query

Summary

shifting grids — approximate disk cover

The probability that a ball B of radius r is not in a single cell of G%(b, AA) is at most min (%dr, 1).

algorithm design: Solve problem per cell; bound error of B not being in one cell using probability

shifting quadtrees — approximate nearest neighbor query

Summary

shifting grids — approximate disk cover

The probability that a ball B of radius r is not in a single cell of G%(b, AA) is at most min (%dr, 1).

algorithm design: Solve problem per cell; bound error of B not being in one cell using probability

shifting quadtrees — approximate nearest neighbor query

Fort > 0 holds P []Lb(p, q) > log, ||p — q|| + t] < ‘;—f’.

Summary

shifting grids — approximate disk cover

The probability that a ball B of radius r is not in a single cell of G%(b, AA) is at most min (%dr, 1).

algorithm design: Solve problem per cell; bound error of B not being in one cell using probability

shifting quadtrees — approximate nearest neighbor query

Fort > 0 holds P []Lb(p, q) > log, ||p — q|| + t] < ‘;—f’.

With high probability p and g in same cell at level log, ||p — q|| + clogn

