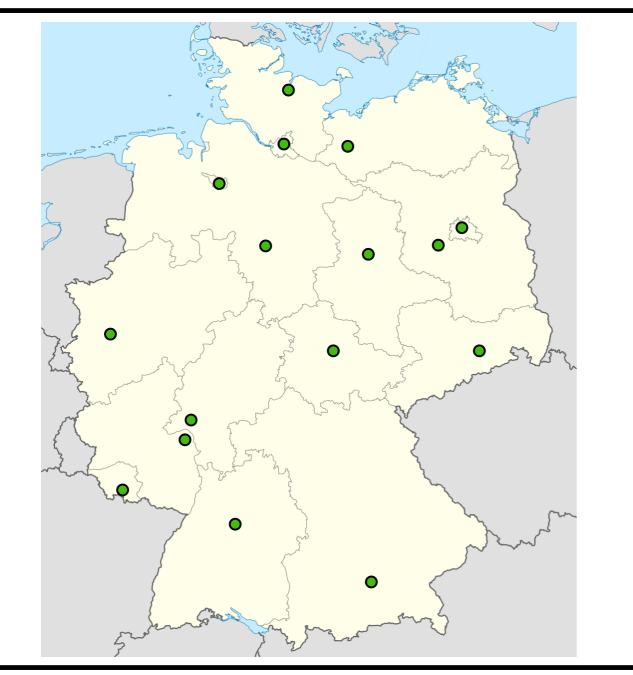
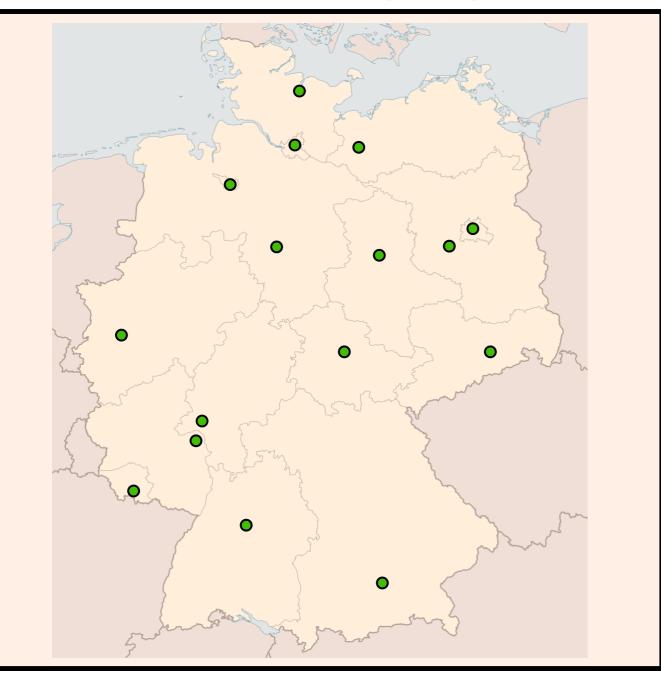
Quadtrees

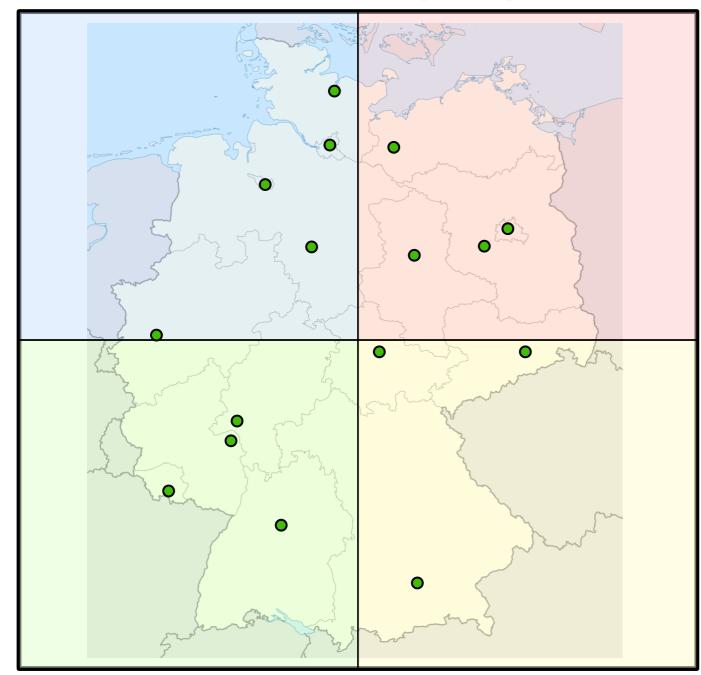
Geometric Approximation Algorithms

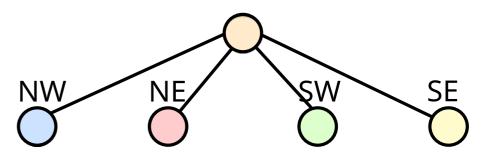


- nodes represent squares
- recursively subdivide squares into 4 until 1 point per square

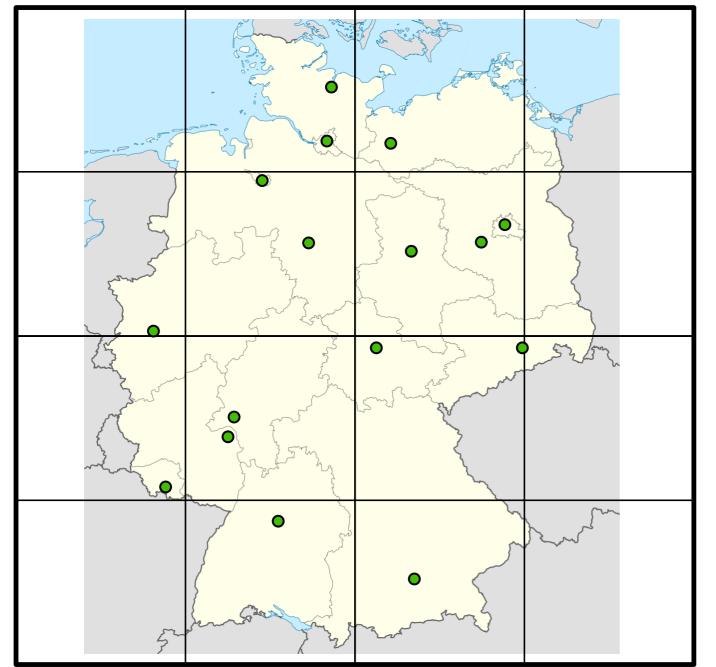


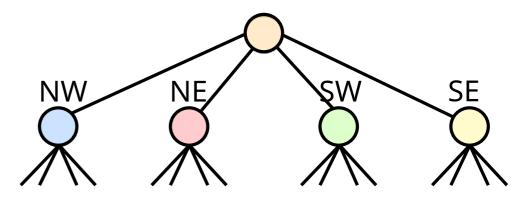
- nodes represent squares
- recursively subdivide squares into 4 until 1 point per square



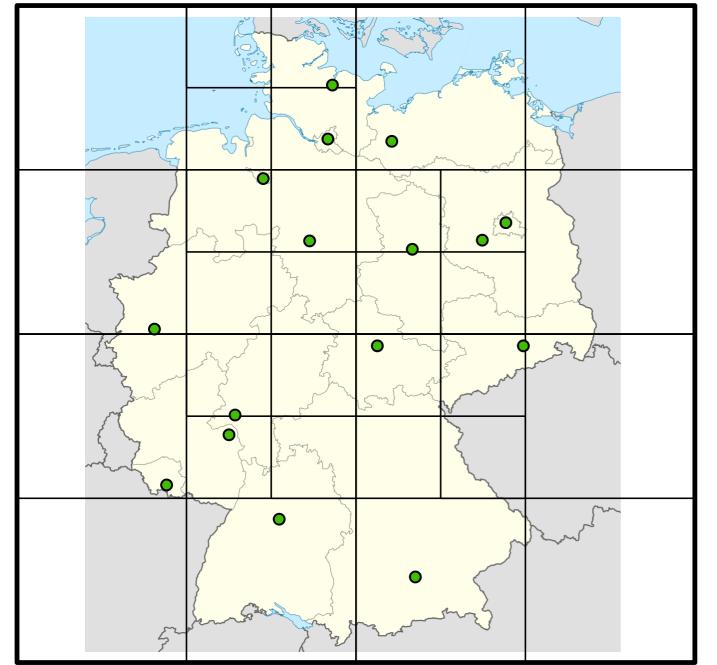


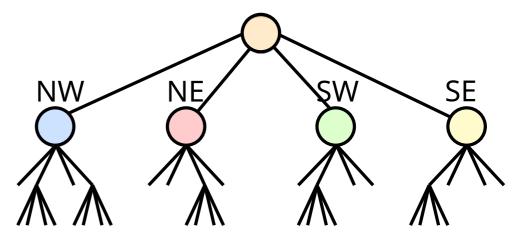
- nodes represent squares
- recursively subdivide squares into 4 until 1 point per square



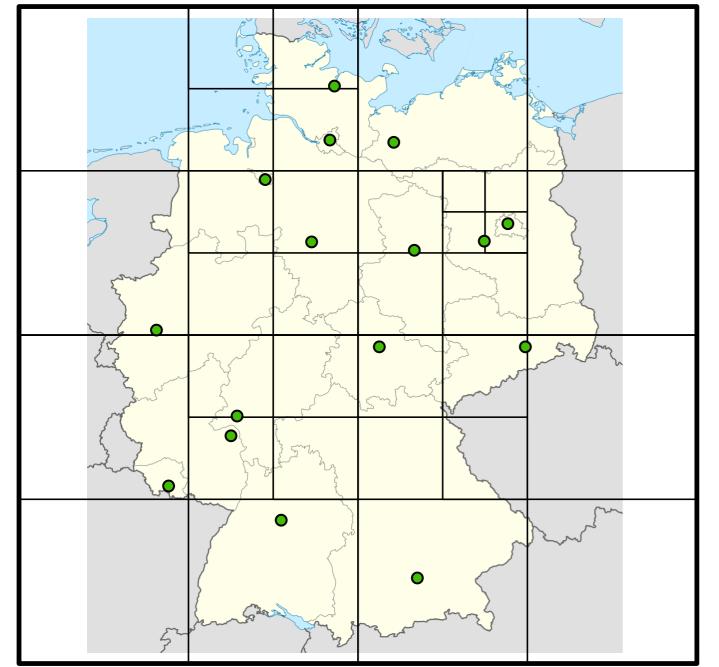


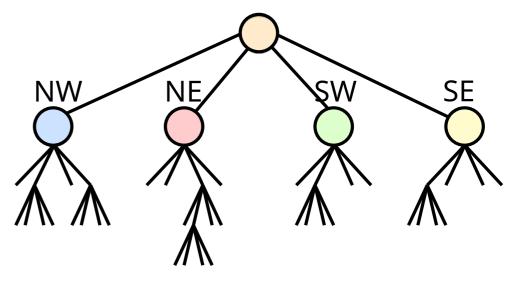
- nodes represent squares
- recursively subdivide squares into 4 until 1 point per square



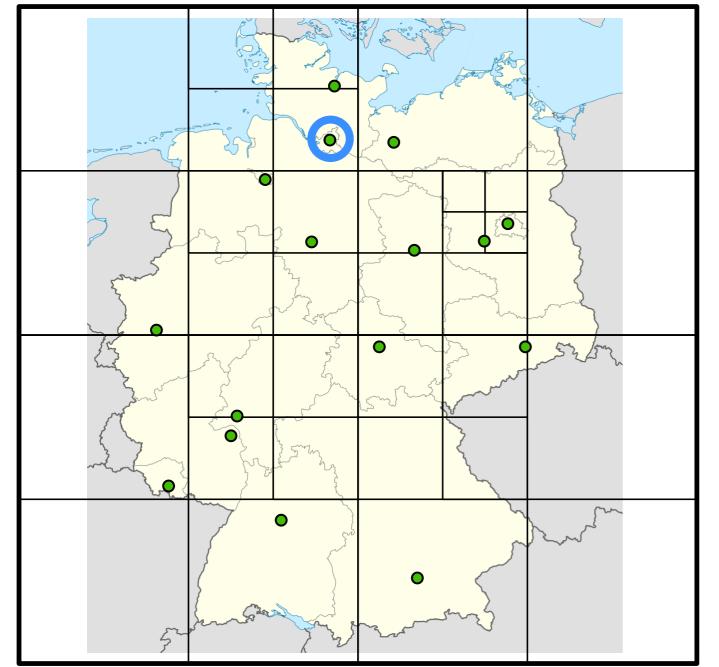


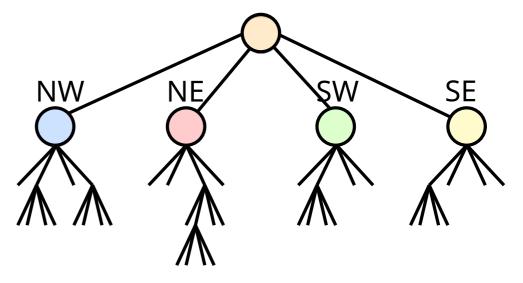
- nodes represent squares
- recursively subdivide squares into 4 until 1 point per square



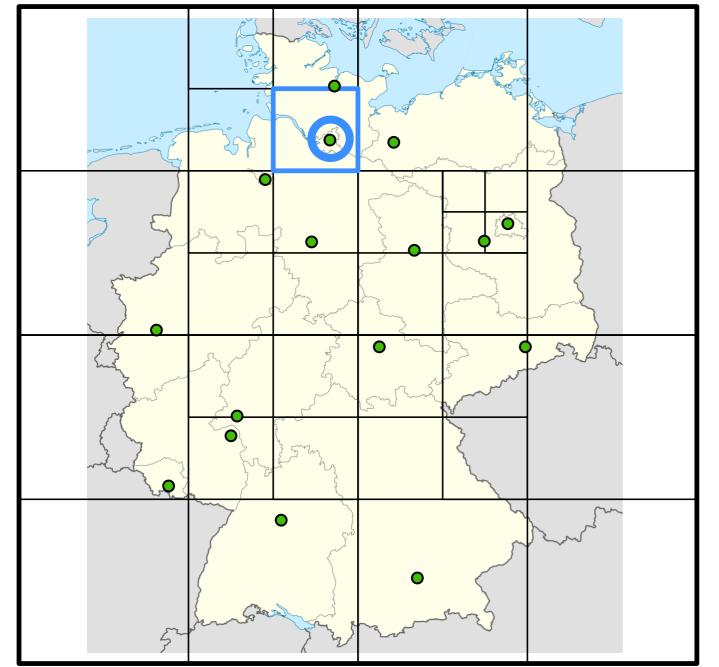


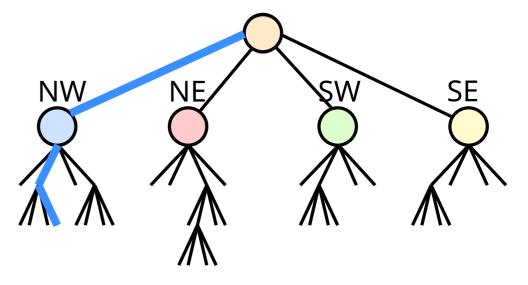
- nodes represent squares
- recursively subdivide squares into 4 until 1 point per square



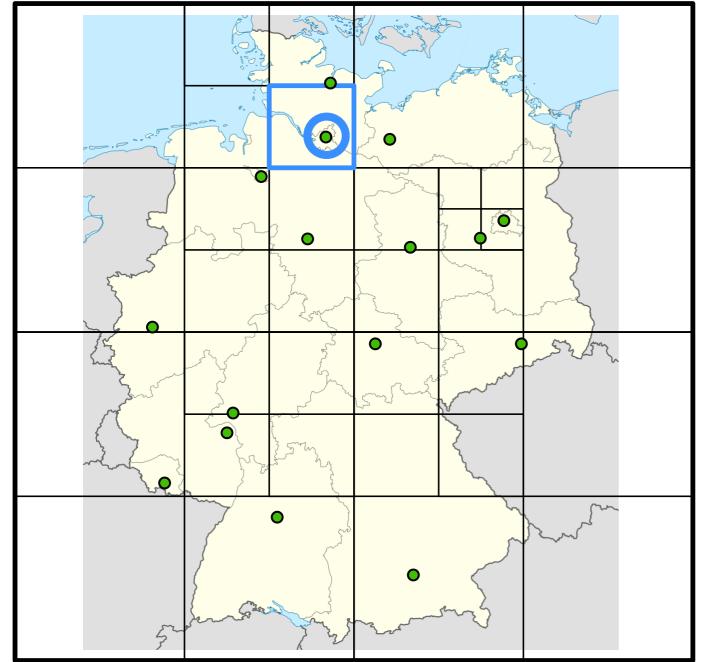


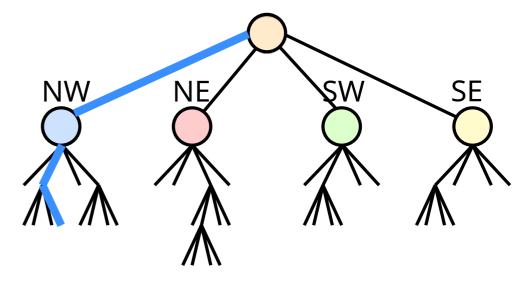
- nodes represent squares
- recursively subdivide squares into 4 until 1 point per square





- nodes represent squares
- recursively subdivide squares into 4 until 1 point per square





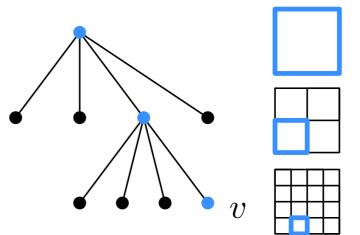
Simple point location: ${\cal O}(d)$ for n points and quadtree of depth d

(+ check regions overlapping with leaf square)

node *v* at depth *i*:

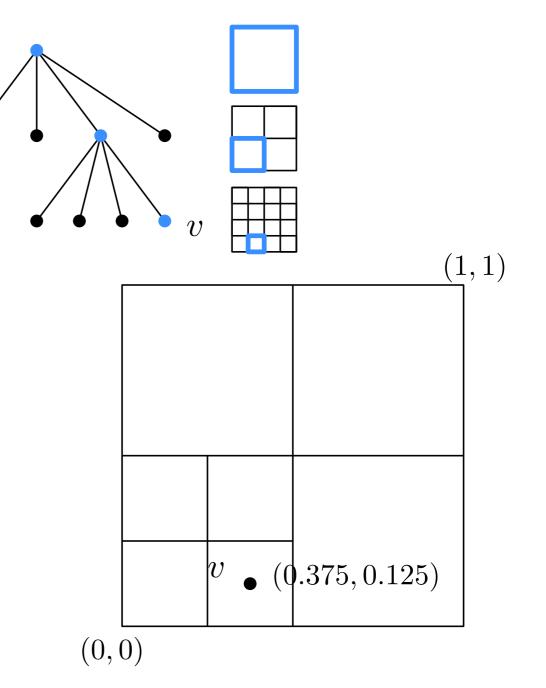
- square $S_v \rightarrow \text{side length} = 2^{-i}$
- in grid $G_{2^{-i}}$

- level $\ell(v) = -i$
- $id(v) = (\ell(v), \lfloor x/2^{\ell(v)} \rfloor, \lfloor y/2^{\ell(v)} \rfloor),$ with (x, y) a point in S_v



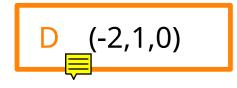
node v at depth i:

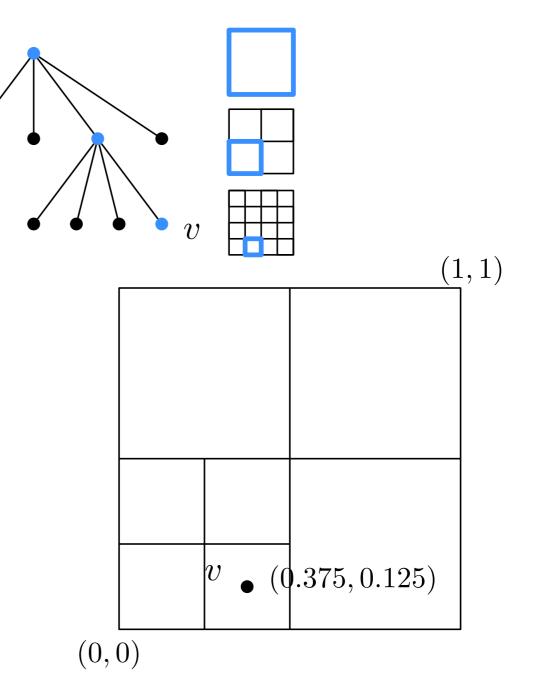
- square $S_v \rightarrow \text{side length} = 2^{-i}$
- in grid $G_{2^{-i}}$
- level $\ell(v) = -i$
- $id(v) = (\ell(v), \lfloor x/2^{\ell(v)} \rfloor, \lfloor y/2^{\ell(v)} \rfloor),$ with (x, y) a point in S_v
- Quiz What is id(v) in this example?
- A (-1,2,1)
- B (-1,3,4)
- **C** (-2,2,2)



node v at depth i:

- square $S_v \rightarrow \text{side length} = 2^{-i}$
- in grid $G_{2^{-i}}$
- level $\ell(v) = -i$
- $id(v) = (\ell(v), \lfloor x/2^{\ell(v)} \rfloor, \lfloor y/2^{\ell(v)} \rfloor),$ with (x, y) a point in S_v
- Quiz What is id(v) in this example?
- A (-1,2,1)
- B (-1,3,4)
- **C** (-2,2,2)





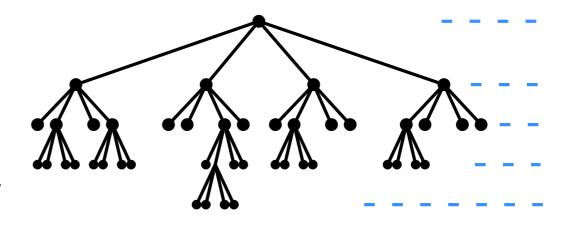
node *v* at depth *i*:

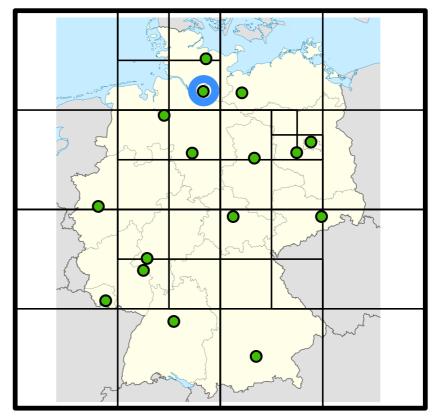
- square $S_v \rightarrow \text{side length} = 2^{-i}$
- in grid $G_{2^{-i}}$
- level $\ell(v) = -i$
- $id(v) = (\ell(v), \lfloor x/2^{\ell(v)} \rfloor, \lfloor y/2^{\ell(v)} \rfloor)$, with (x, y) a point in S_v

Faster point location:

preprocessing: build hash table using id(v)

query: binary search on levels





node v at depth i:

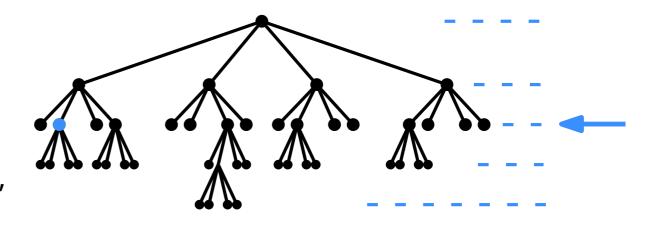
- square $S_v \rightarrow \text{side length} = 2^{-i}$
- in grid $G_{2^{-i}}$
- level $\ell(v) = -i$
- $id(v) = (\ell(v), \lfloor x/2^{\ell(v)} \rfloor, \lfloor y/2^{\ell(v)} \rfloor)$, with (x, y) a point in S_v

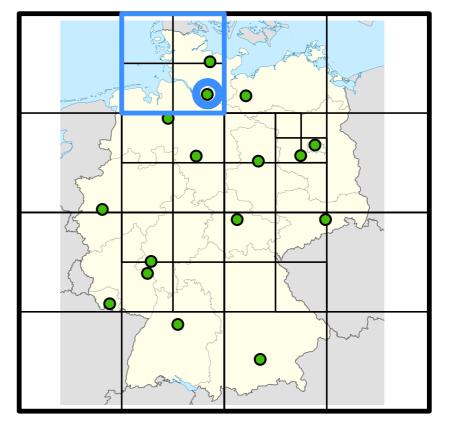
Faster point location:

preprocessing: build hash table using id(v)

query: binary search on levels

• if inner node: recurse in lower half





node *v* at depth *i*:

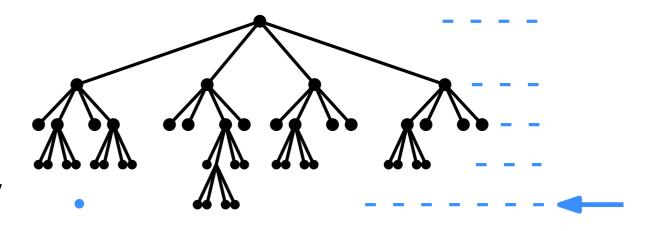
- square $S_v \rightarrow \text{side length} = 2^{-i}$
- in grid $G_{2^{-i}}$
- level $\ell(v) = -i$
- $id(v) = (\ell(v), \lfloor x/2^{\ell(v)} \rfloor, \lfloor y/2^{\ell(v)} \rfloor)$, with (x, y) a point in S_v

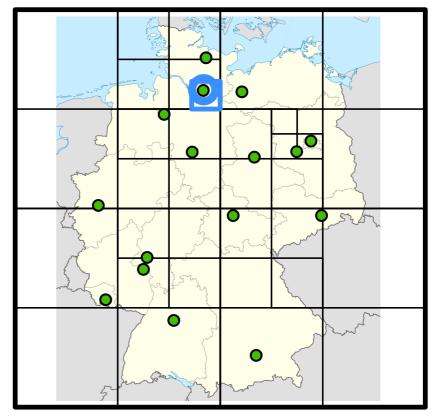
Faster point location:

preprocessing: build hash table using id(v)

query: binary search on levels

- if inner node: recurse in lower half
- if no node: recurse in upper half





node *v* at depth *i*:

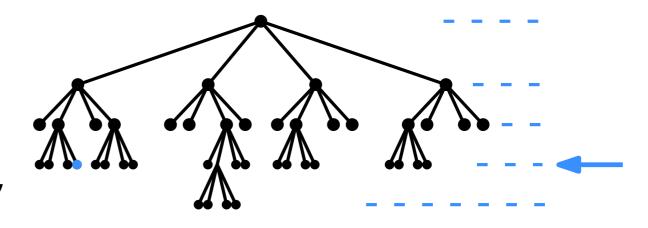
- square $S_v \rightarrow \text{side length} = 2^{-i}$
- in grid $G_{2^{-i}}$
- level $\ell(v) = -i$
- $id(v) = (\ell(v), \lfloor x/2^{\ell(v)} \rfloor, \lfloor y/2^{\ell(v)} \rfloor)$, with (x, y) a point in S_v

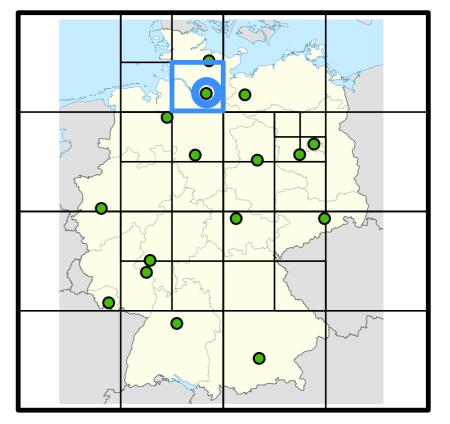
Faster point location:

preprocessing: build hash table using id(v)

query: binary search on levels

- if inner node: recurse in lower half
- if no node: recurse in upper half
- if leaf: 🗸





node *v* at depth *i*:

- square $S_v \rightarrow \text{side length} = 2^{-i}$
- in grid $G_{2^{-i}}$
- level $\ell(v) = -i$
- $id(v) = (\ell(v), \lfloor x/2^{\ell(v)} \rfloor, \lfloor y/2^{\ell(v)} \rfloor),$ with (x, y) a point in S_v

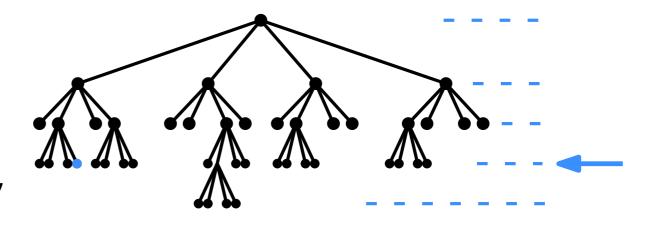
Faster point location:

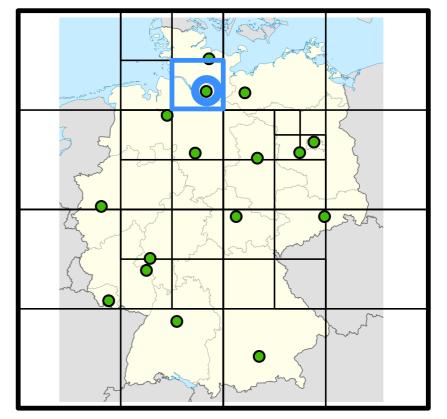
preprocessing: build hash table using id(v)

query: binary search on levels

- if inner node: recurse in lower half
- if no node: recurse in upper half
- if leaf: 🗸

query time: $O(\log d)$





node v at depth i:

- square $S_v \rightarrow \text{side length} = 2^{-i}$
- in grid $G_{2^{-i}}$
- level $\ell(v) = -i$
- $id(v) = (\ell(v), \lfloor x/2^{\ell(v)} \rfloor, \lfloor y/2^{\ell(v)} \rfloor)$, with (x, y) a point in S_v

Faster point location:

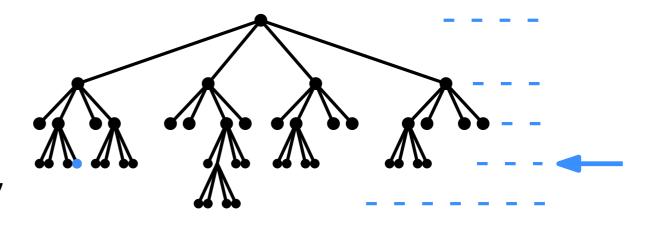
preprocessing: build hash table using id(v)

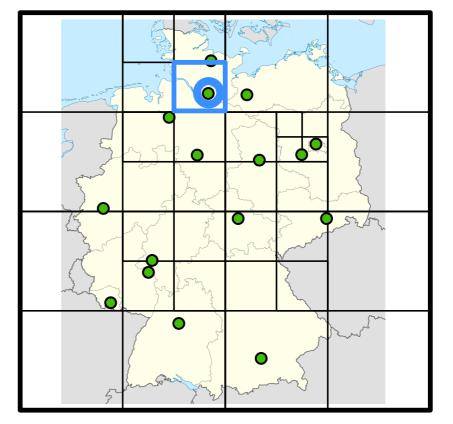
query: binary search on levels

- if inner node: recurse in lower half
- if no node: recurse in upper half
- if leaf: 🗸

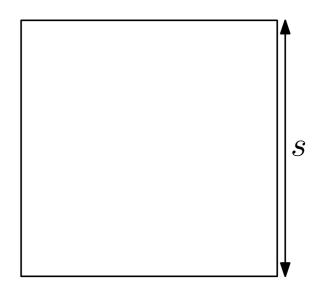
query time: $O(\log d)$

How large is d? How large is the quadtree?





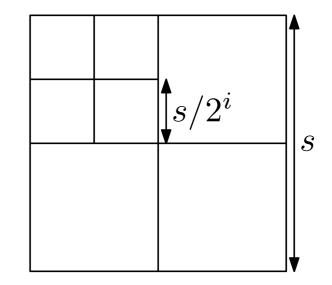
Lemma: Let c be the smallest distance between any two points in a point set P, and let s be the side length of the initial (biggest) square. Then the depth of a quadtree for P is at most $\log(s/c) + 3/2$.



Lemma: Let c be the smallest distance between any two points in a point set P, and let s be the side length of the initial (biggest) square. Then the depth of a quadtree for P is at most $\log(s/c) + 3/2$.

Proof:

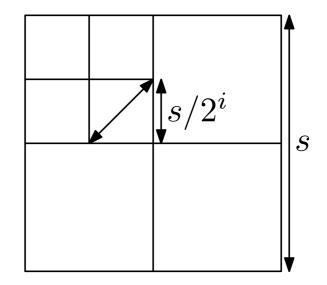
- consider square σ of depth i with side length $s/2^i$



Lemma: Let c be the smallest distance between any two points in a point set P, and let s be the side length of the initial (biggest) square. Then the depth of a quadtree for P is at most $\log(s/c) + 3/2$.

Proof:

- consider square σ of depth i with side length $s/2^i$
- maximum distance between two points in σ : $\sqrt{2}s/2^i$

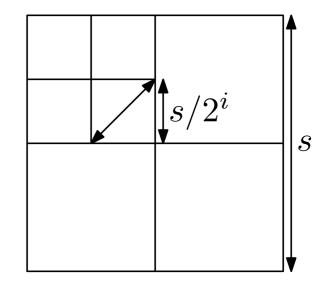


Lemma: Let c be the smallest distance between any two points in a point set P, and let s be the side length of the initial (biggest) square. Then the depth of a quadtree for P is at most $\log(s/c) + 3/2$.

Proof:

- consider square σ of depth i with side length $s/2^i$
- maximum distance between two points in σ : $\sqrt{2}s/2^i$

 \Rightarrow if depth of cell with ≥ 2 points is i, $\sqrt{2}s/2^i \geq c$

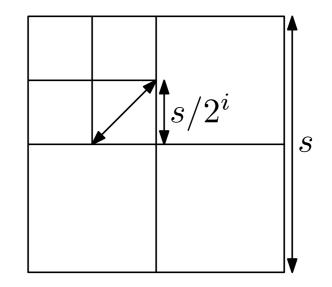


Lemma: Let c be the smallest distance between any two points in a point set P, and let s be the side length of the initial (biggest) square. Then the depth of a quadtree for P is at most $\log(s/c) + 3/2$.

Proof:

- consider square σ of depth i with side length $s/2^i$
- maximum distance between two points in σ : $\sqrt{2}s/2^i$
- \Rightarrow if depth of cell with ≥ 2 points is i, $\sqrt{2}s/2^i \geq c$

$$\Rightarrow i \leq \log(\sqrt{2s/c}) = \log(s/c) + 1/2$$



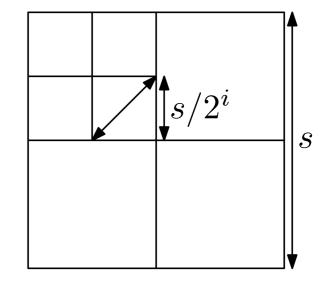
Lemma: Let c be the smallest distance between any two points in a point set P, and let s be the side length of the initial (biggest) square. Then the depth of a quadtree for P is at most $\log(s/c) + 3/2$.

Proof:

- consider square σ of depth i with side length $s/2^i$
- maximum distance between two points in σ : $\sqrt{2}s/2^i$
- \Rightarrow if depth of cell with ≥ 2 points is i, $\sqrt{2}s/2^i \geq c$

$$\Rightarrow i \leq \log(\sqrt{2s/c}) = \log(s/c) + 1/2$$

 \Rightarrow depth of quadtree $\leq \log(s/c) + 1/2 + 1$, since nodes with ≤ 1 points have no children



Lemma: Let c be the smallest distance between any two points in a point set P, and let s be the side length of the initial (biggest) square. Then the depth of a quadtree for P is at most $\log(s/c) + 3/2$.

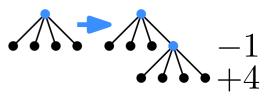
Theorem: A quadtree of depth d storing n points has O((d+1)n) nodes and can be constructed in O((d+1)n) time.

Lemma: Let c be the smallest distance between any two points in a point set P, and let s be the side length of the initial (biggest) square. Then the depth of a quadtree for P is at most $\log(s/c) + 3/2$.

Theorem: A quadtree of depth d storing n points has O((d+1)n) nodes and can be constructed in O((d+1)n) time.

Proof:

• Inner nodes have 4 children \Rightarrow #leaves = 1 + 3·#inner nodes -1



Lemma: Let c be the smallest distance between any two points in a point set P, and let s be the side length of the initial (biggest) square. Then the depth of a quadtree for P is at most $\log(s/c) + 3/2$.

Theorem: A quadtree of depth d storing n points has O((d+1)n) nodes and can be constructed in O((d+1)n) time.

Proof:

- Inner nodes have $4 \text{ children } \Rightarrow \text{ #leaves} = 1 + 3 \cdot \text{#inner nodes}$
- Inner nodes correspond to disjoint squares with ≥ 2 points $n \leq n \leq n$

Lemma: Let c be the smallest distance between any two points in a point set P, and let s be the side length of the initial (biggest) square. Then the depth of a quadtree for P is at most $\log(s/c) + 3/2$.

Theorem: A quadtree of depth d storing n points has O((d+1)n) nodes and can be constructed in O((d+1)n) time.

Proof:

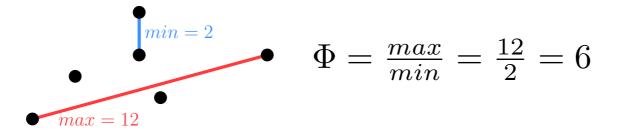
- Inner nodes have $4 \text{ children } \Rightarrow \text{ #leaves} = 1 + 3 \cdot \text{#inner nodes}$
- Inner nodes correspond to disjoint squares with ≥ 2 points $n \leq n \leq n$

 \Rightarrow for depth d overall O((d+1)n) nodes.

Lemma: Let c be the smallest distance between any two points in a point set P, and let s be the side length of the initial (biggest) square. Then the depth of a quadtree for P is at most $\log(s/c) + 3/2$.

Theorem: A quadtree of depth d storing n points has O((d+1)n) nodes and can be constructed in O((d+1)n) time.

Definition: The spread of point set P is $\Phi(P) = \frac{\max_{p,q \in P} ||p-q||}{\min_{p,q \in P} |p-q||}$



Lemma: Let c be the smallest distance between any two points in a point set P, and let s be the side length of the initial (biggest) square. Then the depth of a quadtree for P is at most $\log(s/c) + 3/2$.

Theorem: A quadtree of depth d storing n points has O((d+1)n) nodes and can be constructed in O((d+1)n) time.

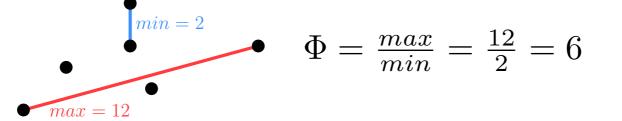
Definition: The spread of point set P is $\Phi(P) = \frac{\max_{p,q \in P} ||p-q||}{\min_{p,q \in P, p \neq q} ||p-q||}$ $\Phi = \frac{\max}{\min} = \frac{12}{2} = 6$

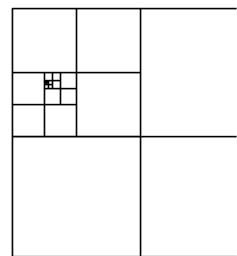
Observation: The depth of a quadtree is in $O(\log(\Phi(P)))$ and the size in $O(n\log\Phi(P))$.

Lemma: Let c be the smallest distance between any two points in a point set P, and let s be the side length of the initial (biggest) square. Then the depth of a quadtree for P is at most $\log(s/c) + 3/2$.

Theorem: A quadtree of depth d storing n points has O((d+1)n) nodes and can be constructed in O((d+1)n) time.

Definition: The spread of point set P is $\Phi(P) = \frac{\max_{p,q \in P} ||p-q||}{\min_{p,q \in P} n \neq q}$



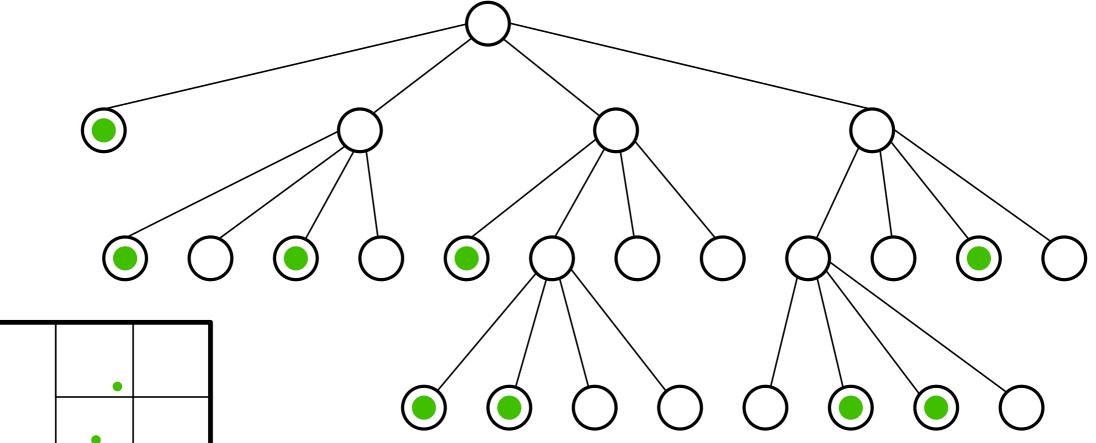


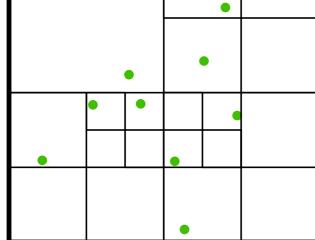
Observation: The depth of a quadtree is in $O(\log(\Phi(P)))$ and the size in $O(n \log \Phi(P))$.

How can we handle the case when $\Phi(P)$ is not bounded by a polynomial in n? Can we get a linear-size data structure?

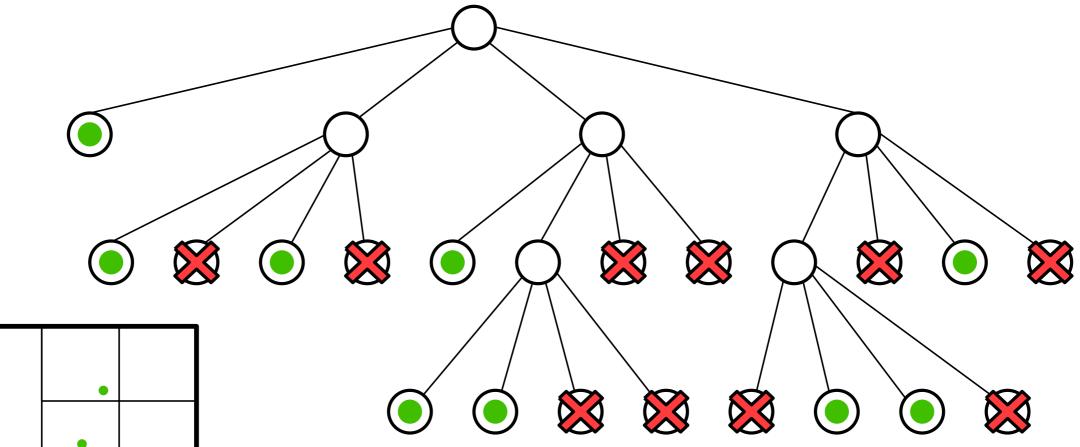
Compressed Quadtrees

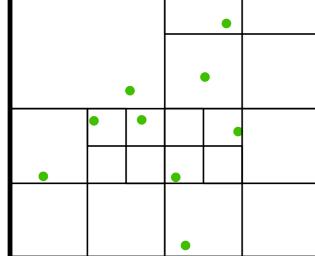
Improving the size, step 0



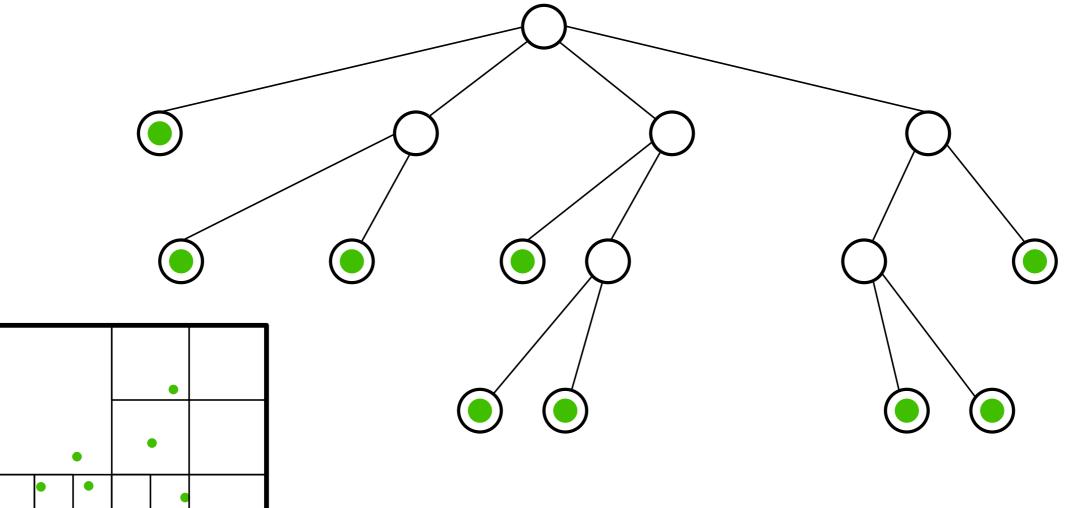


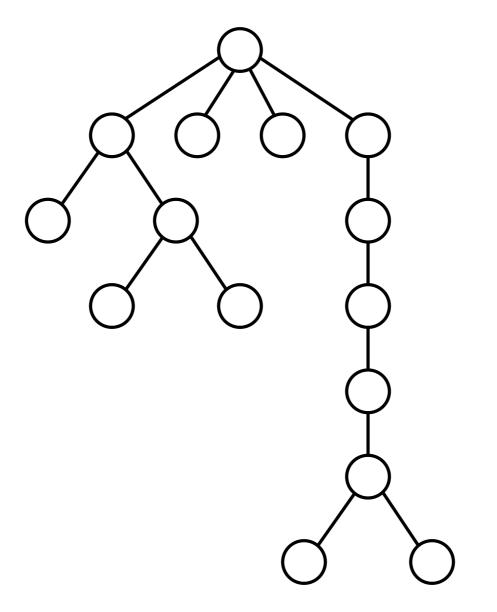
Improving the size, step 0





Improving the size, step 0



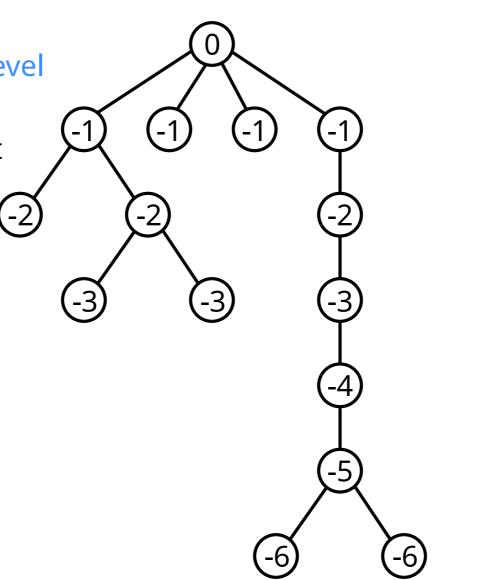


 $\ell(v) = 0$ $\ell(v) = -1$ $\ell(v) = -2$ $\ell(v) = -3$ $\ell(v) = -4$ $\ell(v) = -5$

 $\ell(v) = -6$

Each node gets:

- An integer denoting its level in the original quadtree
- A pointer to the square it represents.



 $\ell(v) = -1$ $\ell(v) = -2$ $\ell(v) = -3$ $\ell(v) = -4$ $\ell(v) = -5$

 $\ell(v) = 0$

 $\ell(v) = -6$

Each node gets:

- An integer denoting its level in the original quadtree
- A pointer to the square it represents. (-2)

Paths consisting of only degree-1 nodes \implies replace by the first parent and the last child on the path.

$$\ell(v) =$$

 $\ell(v) =$
 $\ell(v) =$
 $\ell(v) =$
 $\ell(v) =$

-6)

-1

-3)

-3

 $\ell(v) = -6$

0

-1

-2

-3

-4

-5

Each node gets:

- An integer denoting its level in the original quadtree
- A pointer to the square it represents. (-2)

Paths consisting of only degree-1 nodes \implies replace by the first parent and the last child on the path.

 $\ell(v) = 0$ $\ell(v) = -1$

(-1)

-3)

-1

-3

-1

-5

-6)

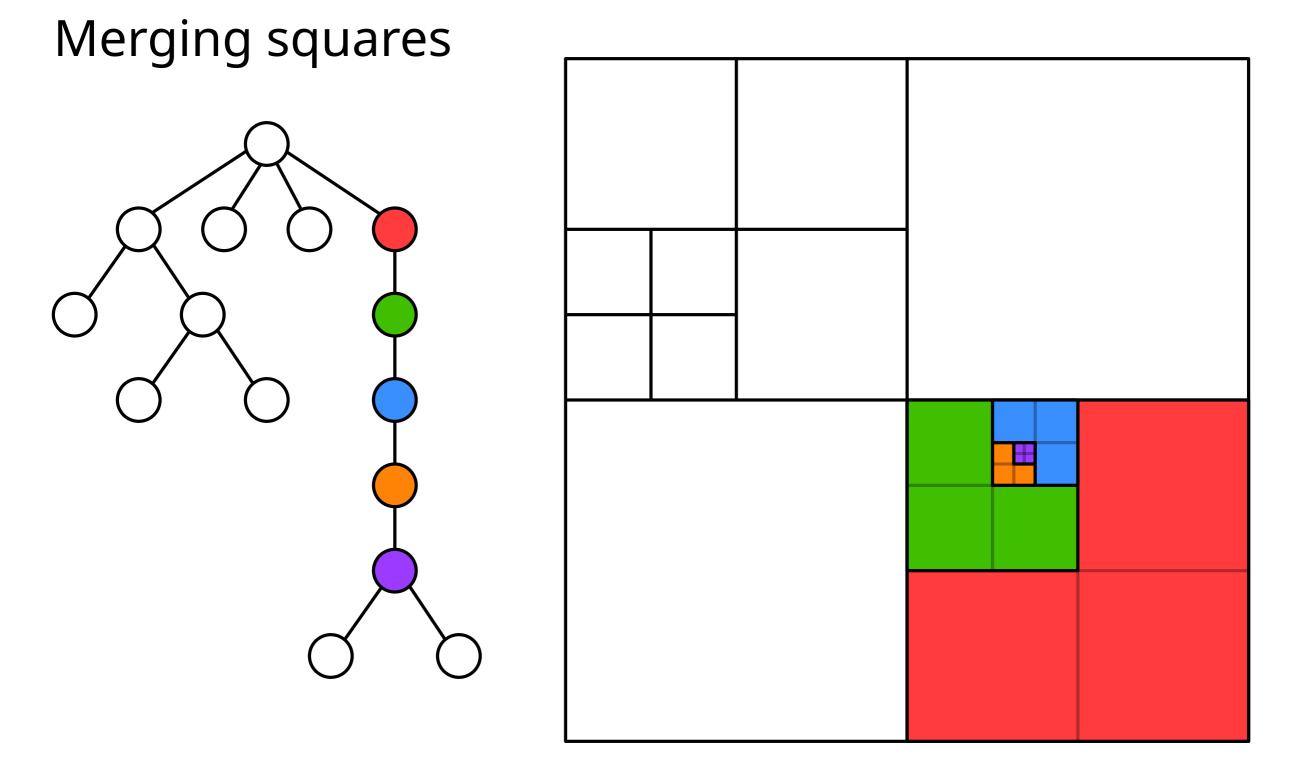
 $\ell(v) = -2$

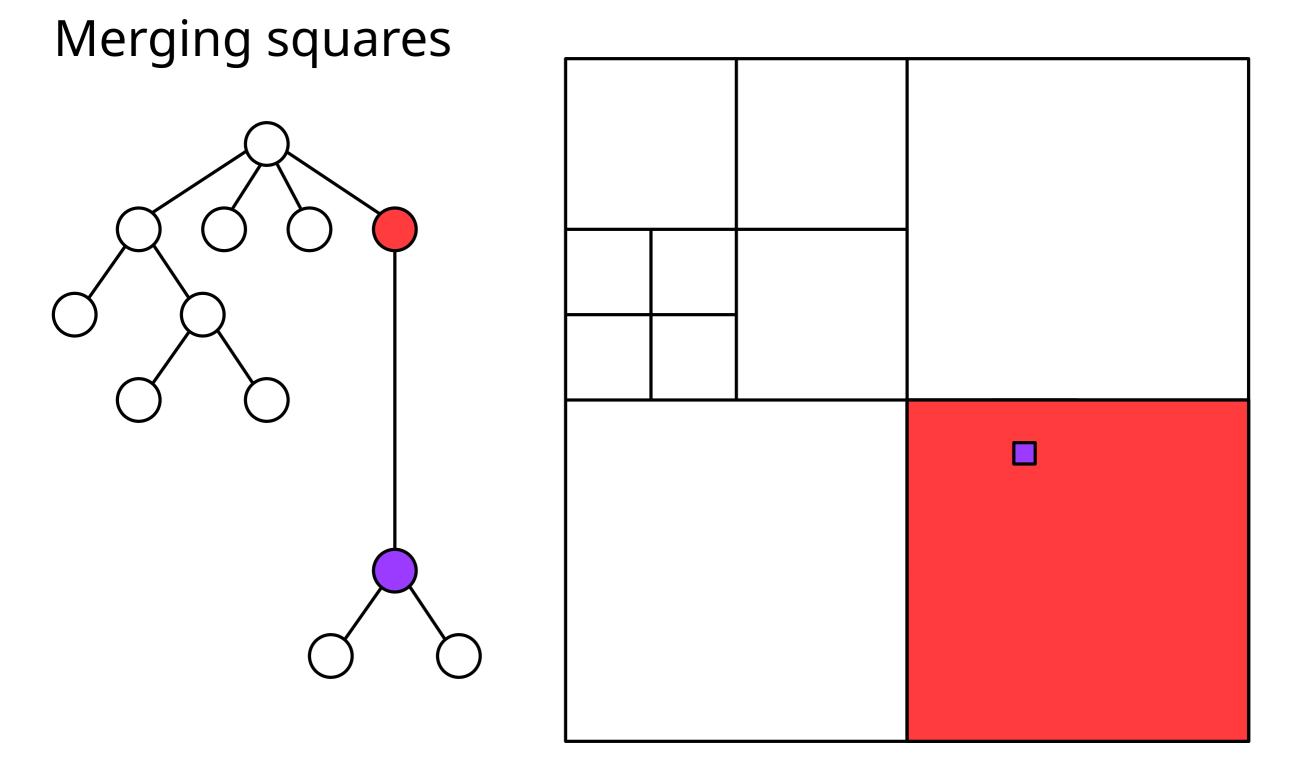
$$\ell(v) = -3$$

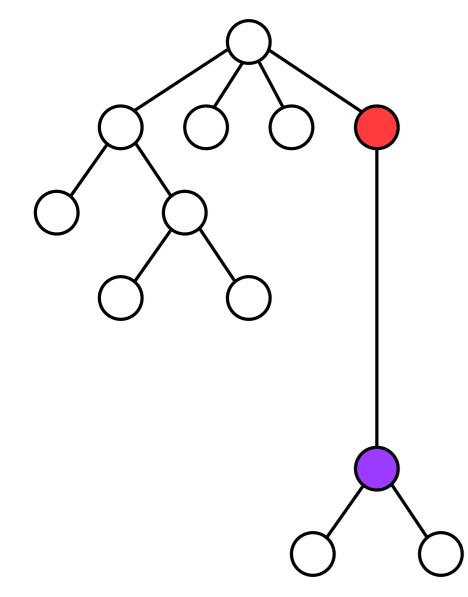
$$\ell(v) = -4$$

 $\ell(v) = -5$

 $\ell(v) = -6$

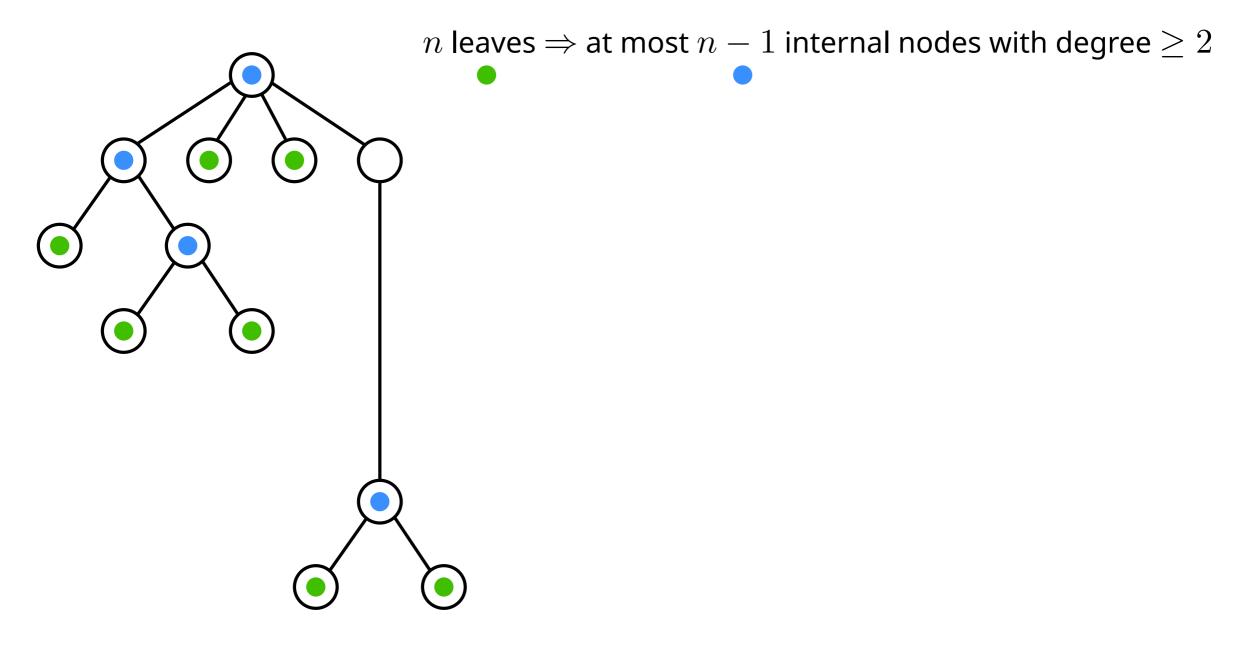




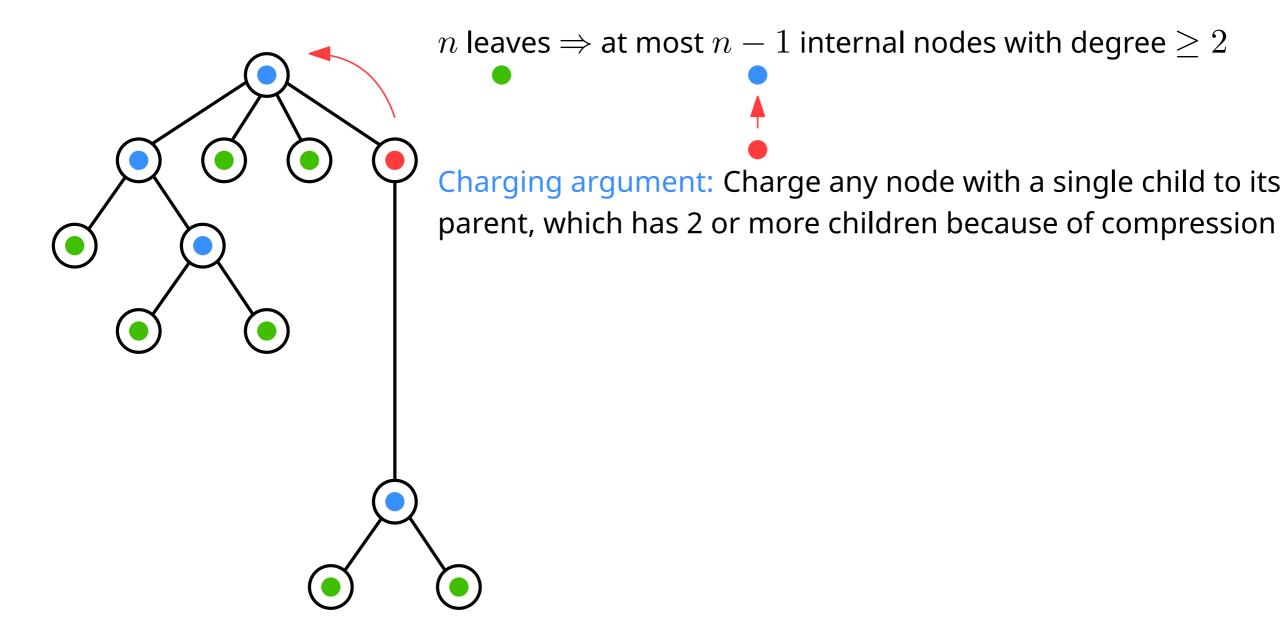


What the size of the compressed quadtree?

Size of compressed quadtree



Size of compressed quadtree



Size of compressed quadtree

Charging argument: Charge any node with a single child to its parent, which has 2 or more children because of compression Compressed quadtrees have linear size!

 $n \text{ leaves} \Rightarrow \text{ at most } n-1 \text{ internal nodes with degree} \geq 2$

Simple recursive construction on compressed quadtrees has unbounded time complexity when the spread of the point set is unbounded.

We can do better with a divide and conquer approach!

Simple recursive construction on compressed quadtrees has unbounded time complexity when the spread of the point set is unbounded.

We can do better with a divide and conquer approach!

Idea: Find a square (in a grid $G_{2^{-i}}$) that contains a constant fraction of the points.

Simple recursive construction on compressed quadtrees has unbounded time complexity when the spread of the point set is unbounded.

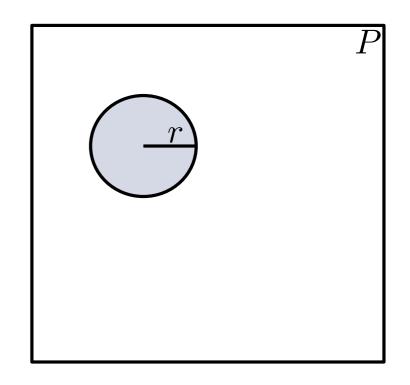
We can do better with a divide and conquer approach!

Idea: Find a square (in a grid $G_{2^{-i}}$) that contains a constant fraction of the points.

Theorem: In linear time we can compute a disk D containing n/10 points with radius $r_D \leq 2r_{OPT}$, where r_{OPT} is the radius of the smallest disk containing n/10 points.

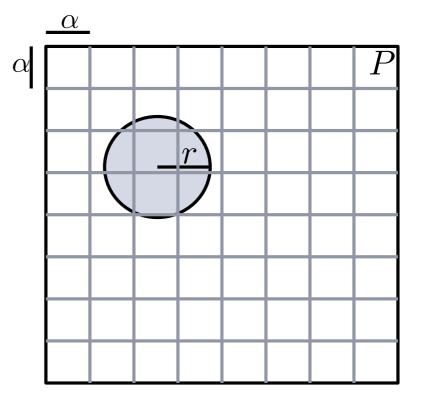
Question: Which algorithm(s) do you know to compute this disk?

Theorem: In linear time we can compute a disk D containing n/10 points with radius $r_D \leq 2r_{OPT}$, where r_{OPT} is the radius of the smallest disk containing n/10 points.



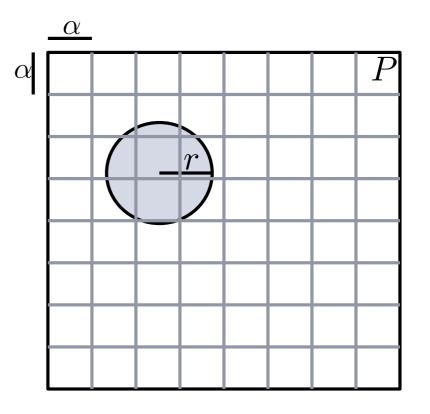
Theorem: In linear time we can compute a disk D containing n/10 points with radius $r_D \leq 2r_{OPT}$, where r_{OPT} is the radius of the smallest disk containing n/10 points.

 $\alpha = 2^{\lfloor \log_2(r) \rfloor}$



Theorem: In linear time we can compute a disk D containing n/10 points with radius $r_D \leq 2r_{OPT}$, where r_{OPT} is the radius of the smallest disk containing n/10 points.

$$\begin{split} \alpha &= 2^{\lfloor \log_2(r) \rfloor} \\ r \geq \alpha \geq r/2 \\ & \Longrightarrow D \text{ is covered by at most 25 grid cells} \end{split}$$



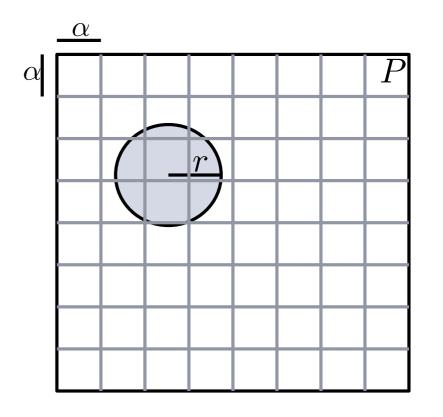
Theorem: In linear time we can compute a disk D containing n/10 points with radius $r_D \leq 2r_{OPT}$, where r_{OPT} is the radius of the smallest disk containing n/10 points.

 $\alpha = 2^{\lfloor \log_2(r) \rfloor}$

 $r \geq \alpha \geq r/2$

 $\implies D$ is covered by at most 25 grid cells

 $\implies \exists a \text{ cell } c \text{ containing at least } \frac{n/10}{25} \text{ points}$



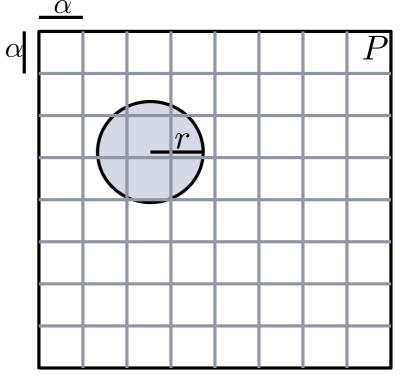
Theorem: In linear time we can compute a disk D containing n/10 points with radius $r_D \leq 2r_{OPT}$, where r_{OPT} is the radius of the smallest disk containing n/10 points.

 $\alpha = 2^{\lfloor \log_2(r) \rfloor}$

 $r \geq \alpha \geq r/2$

- $\implies D$ is covered by at most 25 grid cells
- $\implies \exists a \text{ cell } c \text{ containing at least } \frac{n/10}{25} \text{ points}$

Lemma: No cell contains more than $5 \cdot n/10 = n/2$ points



Theorem: In linear time we can compute a disk D containing n/10 points with radius $r_D \leq 2r_{OPT}$, where r_{OPT} is the radius of the smallest disk containing n/10 points.

 $\alpha = 2^{\lfloor \log_2(r) \rfloor}$

 $r \geq \alpha \geq r/2$

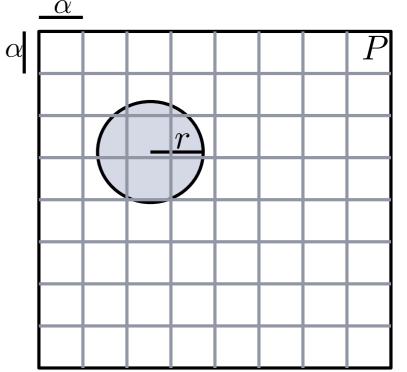
- \implies *D* is covered by at most 25 grid cells
- $\implies \exists a \text{ cell } c \text{ containing at least } \frac{n/10}{25} \text{ points}$

Lemma: No cell contains more than $5 \cdot n/10 = n/2$ points

Let \Box denote the cell containing the largest number of points.

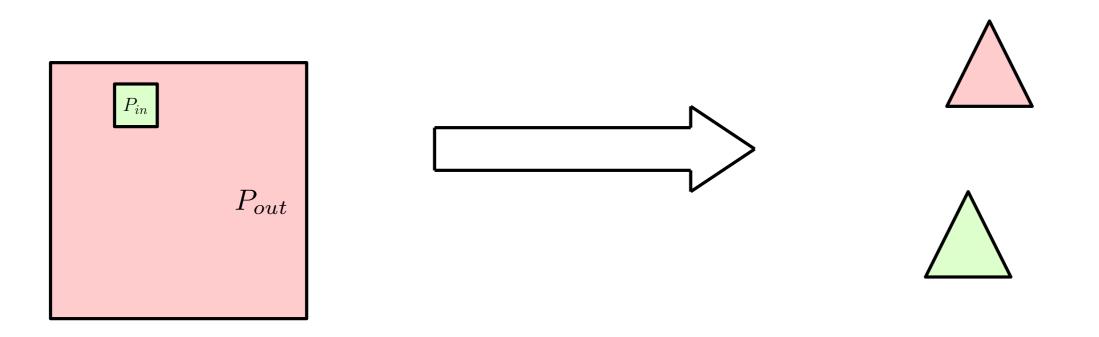
$$P_{in} = P \cap \Box$$
 and $P_{out} = P \setminus P_{in}$

Note that $|P_{in}| \ge n/250$ and $|P_{out}| \ge n/2$



$$P_{in} = P \cap \Box$$
 and $P_{out} = P \setminus P_{in}$

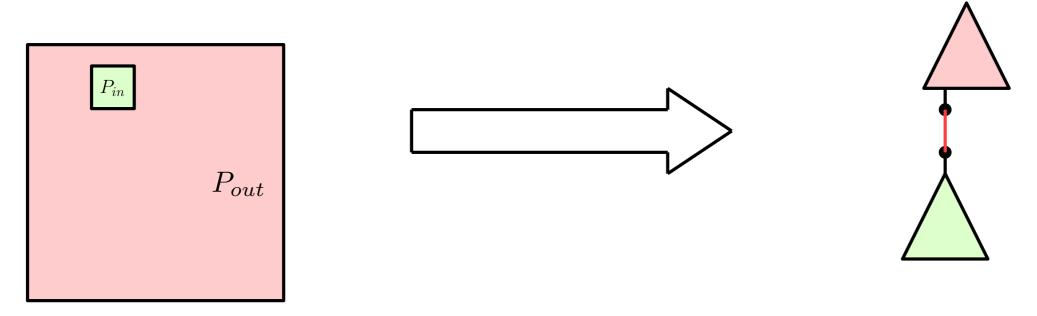
Recursively construct quadtrees for P_{in} and P_{out}



$$P_{in} = P \cap \Box$$
 and $P_{out} = P \setminus P_{in}$

Recursively construct quadtrees for P_{in} and P_{out}

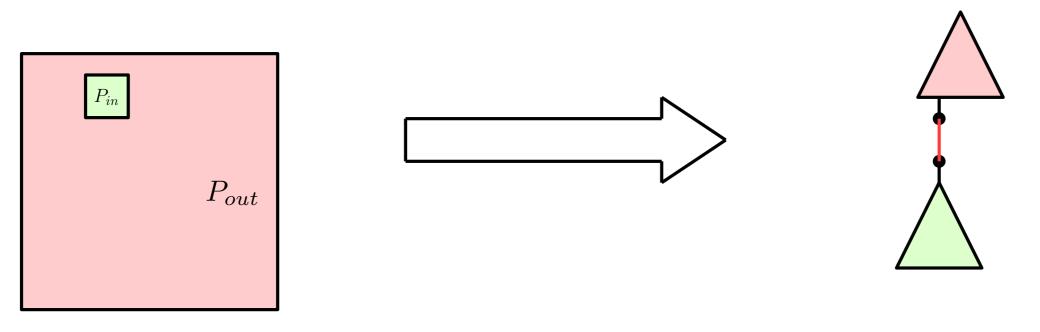
Create a node representing \Box in both quadtrees.



$$P_{in} = P \cap \Box$$
 and $P_{out} = P \setminus P_{in}$

Recursively construct quadtrees for P_{in} and P_{out}

Create a node representing \Box in both quadtrees.



Construction time: $T(n) = O(n) + T(|P_{in}|) + T(|P_{out}|) = O(n \log n)$

Quiz

What is the maximum depth that a quadtree on n points can have?

- A $\Theta(\log n)$
- B $\Theta(\sqrt{n})$
- $\Theta(n)$

Quiz

What is the maximum depth that a quadtree on n points can have?

- A $\Theta(\log n)$
- **B** $\Theta(\sqrt{n})$ **C** $\Theta(n)$

Question: How does such a quadtree look like?

Point-location on compressed quadtrees

Given a compressed quadtree T of size n, find lowest node in the tree containing point q.

Point-location on compressed quadtrees

Given a compressed quadtree T of size n, find lowest node in the tree containing point q.

May take $\Omega(n)$ time!

Point-location on compressed quadtrees

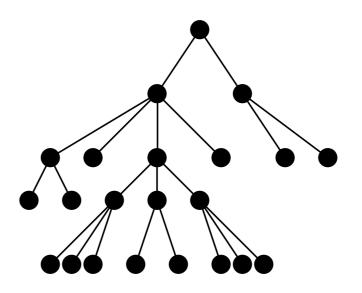
Given a compressed quadtree T of size n, find lowest node in the tree containing point q.

May take $\Omega(n)$ time!

Alternative: preprocess T into a balanced tree T' with cross-pointers to T.

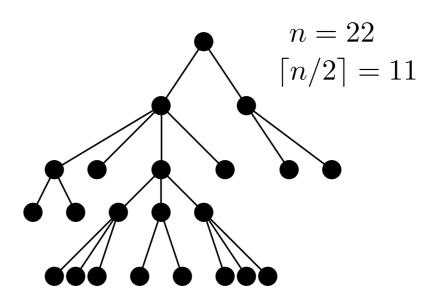
Definition: A separator of a tree T with n nodes is a node $v \in T$ such that removing v results in a forest of which every tree has at most $\lceil n/2 \rceil$ nodes.

Claim: Any tree T always contains a separator.



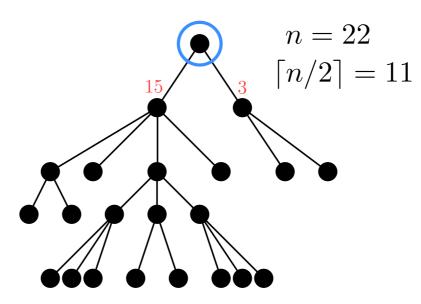
Definition: A separator of a tree T with n nodes is a node $v \in T$ such that removing v results in a forest of which every tree has at most $\lceil n/2 \rceil$ nodes.

Claim: Any tree T always contains a separator.



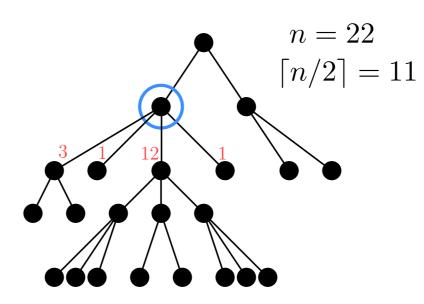
Definition: A separator of a tree T with n nodes is a node $v \in T$ such that removing v results in a forest of which every tree has at most $\lceil n/2 \rceil$ nodes.

Claim: Any tree T always contains a separator.



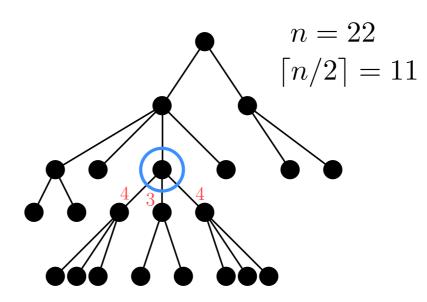
Definition: A separator of a tree T with n nodes is a node $v \in T$ such that removing v results in a forest of which every tree has at most $\lceil n/2 \rceil$ nodes.

Claim: Any tree T always contains a separator.



Definition: A separator of a tree T with n nodes is a node $v \in T$ such that removing v results in a forest of which every tree has at most $\lceil n/2 \rceil$ nodes.

Claim: Any tree T always contains a separator.



Definition: A separator of a tree T with n nodes is a node $v \in T$ such that removing v results in a forest of which every tree has at most $\lceil n/2 \rceil$ nodes.

Claim: Any tree T always contains a separator.

Walk through the tree starting at root, going into the subtree that contains $\geq \lceil n/2 \rceil$ nodes.

 $\lceil n/2 \rceil = 11$

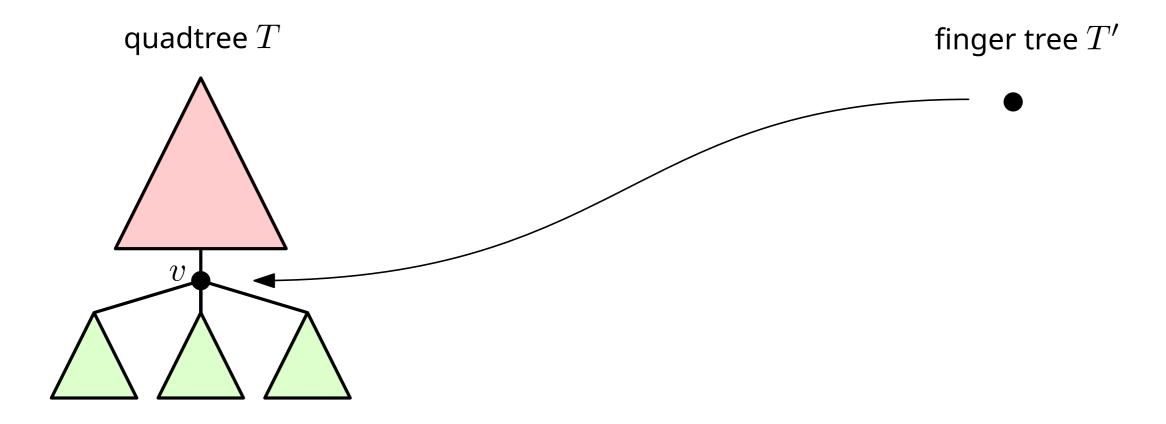
n = 22

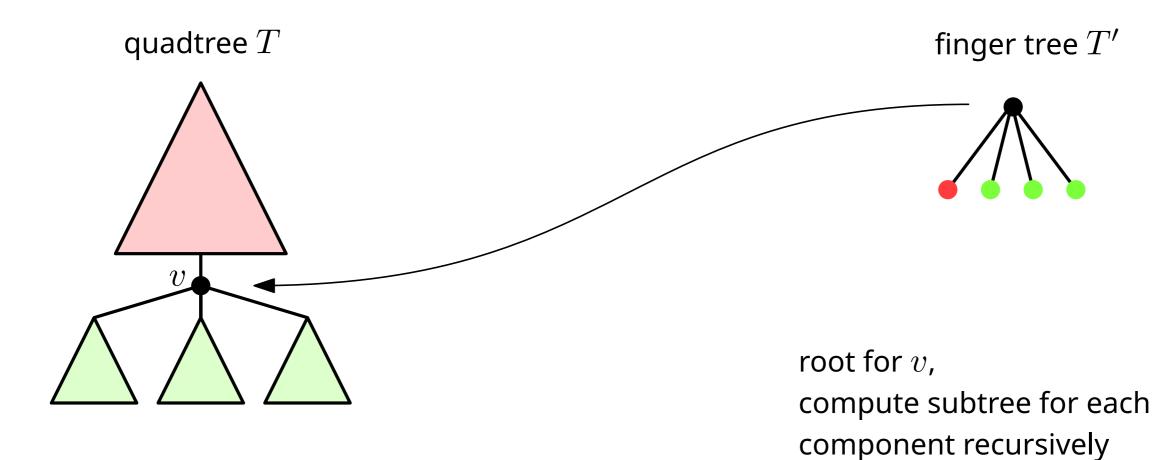
Once we get stuck:

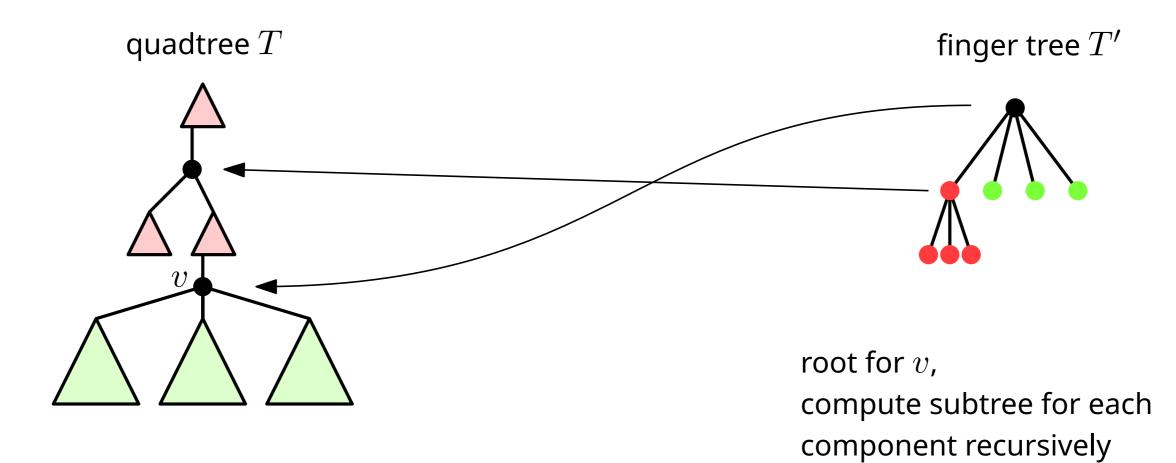
- child subtree sizes $< \lceil n/2 \rceil$
- rooted subtree size $\leq n \lceil n/2\rceil \leq \lfloor n/2\rfloor$

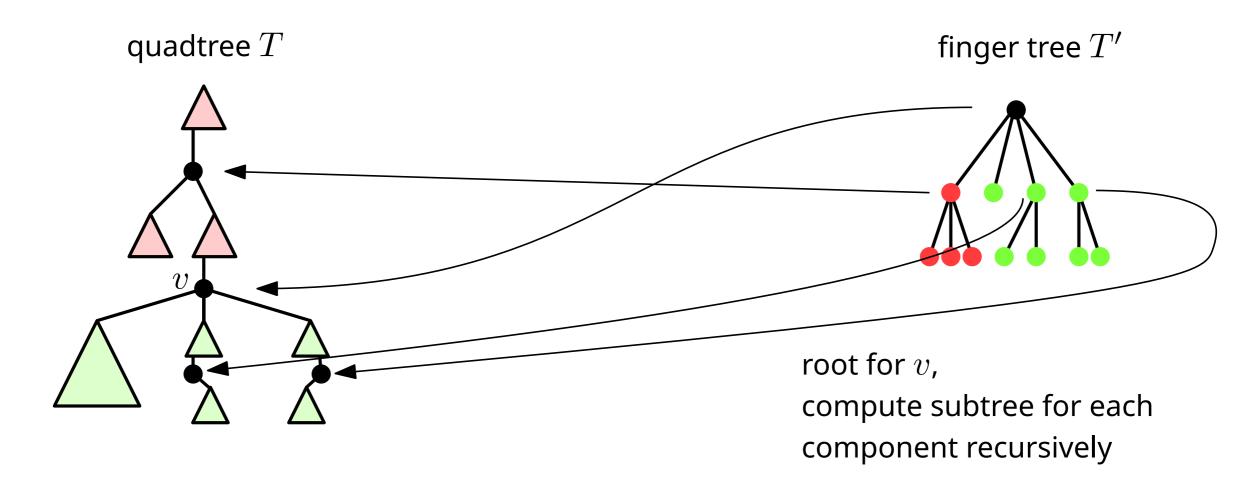
Definition: A separator of a tree T with n nodes is a node $v \in T$ such that removing v results in a forest of which every tree has at most $\lceil n/2 \rceil$ nodes.

quadtree T

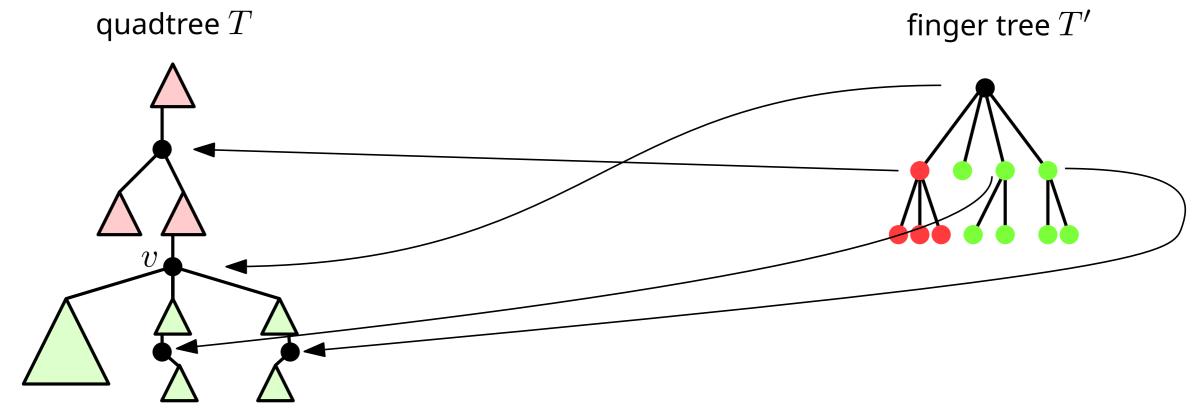








Definition: A separator of a tree T with n nodes is a node $v \in T$ such that removing v results in a forest of which every tree has at most $\lceil n/2 \rceil$ nodes.



To query for point q, recursively, in time O(height of T'):

- go into red subtree if $q \not\in \Box_v$
- search all O(1) green subtrees if $q\in \Box_v$

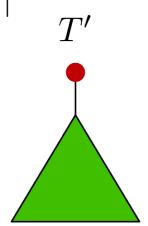
What are the height/query time and the construction time of the finger tree?

Finger trees

Recall that the separator splits T into subtrees of size $\leq \lceil n/2 \rceil$

recurrence for height:

$$\implies H(n) \le 1 + H(\lceil n/2 \rceil) = O(\log n)$$

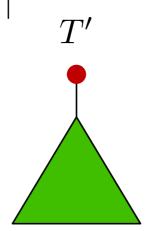


Finger trees

Recall that the separator splits T into subtrees of size $\leq \lceil n/2 \rceil$

recurrence for height:

$$\implies H(n) \leq 1 + H(\lceil n/2 \rceil) = O(\log n)$$

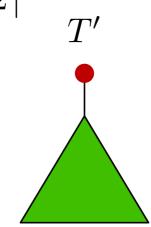


Finger trees

Recall that the separator splits T into subtrees of size $\leq \lceil n/2 \rceil$

recurrence for height:

$$\implies H(n) \leq 1 + H(\lceil n/2 \rceil) = O(\log n)$$

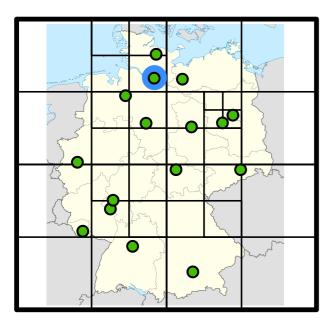


Construction time $T(n) = O(n) + \sum_{i=1}^{t} T(n_i)$ where $n_1...n_t$ are the sizes of the *t* subtrees formed after removing the separator.

Since t = O(1) and $n_i \leq \lceil n/2 \rceil$, we have $T(n) = O(n \log n)$

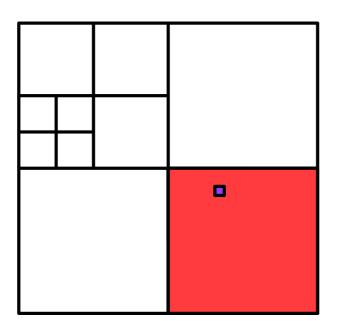
Summary

Normal quadtrees



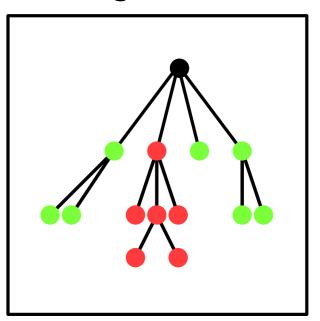
Bounded by spread

Compressed quadtrees



Bounded by number of points

Finger trees



Fast query time

more in book: dynamic quadtrees