
Geometric Approximation Algorithms

Quadtrees

Quadtrees: a simple point-location data structure

Main idea: Use a tree structure to be
able to quickly find location of point
• nodes represent squares
• recursively subdivide squares into 4
until 1 point per square

Quadtrees: a simple point-location data structure

Main idea: Use a tree structure to be
able to quickly find location of point
• nodes represent squares
• recursively subdivide squares into 4
until 1 point per square

Quadtrees: a simple point-location data structure

SENE SWNW

Main idea: Use a tree structure to be
able to quickly find location of point
• nodes represent squares
• recursively subdivide squares into 4
until 1 point per square

Quadtrees: a simple point-location data structure

SENE SWNW

Main idea: Use a tree structure to be
able to quickly find location of point
• nodes represent squares
• recursively subdivide squares into 4
until 1 point per square

Quadtrees: a simple point-location data structure

SENE SWNW

Main idea: Use a tree structure to be
able to quickly find location of point
• nodes represent squares
• recursively subdivide squares into 4
until 1 point per square

Quadtrees: a simple point-location data structure

SENE SWNW

Main idea: Use a tree structure to be
able to quickly find location of point
• nodes represent squares
• recursively subdivide squares into 4
until 1 point per square

Quadtrees: a simple point-location data structure

SENE SWNW

Main idea: Use a tree structure to be
able to quickly find location of point
• nodes represent squares
• recursively subdivide squares into 4
until 1 point per square

Quadtrees: a simple point-location data structure

SENE SWNW

Main idea: Use a tree structure to be
able to quickly find location of point
• nodes represent squares
• recursively subdivide squares into 4
until 1 point per square

Quadtrees: a simple point-location data structure

SENE SWNW

Simple point location: O(d)
for n points and quadtree of depth d

(+ check regions overlapping with leaf
square)

Quadtrees: multi-scale grids
node v at depth i:
• square Sv → side length = 2−i

• in gridG2−i

• level `(v) = −i
• id(v) = (`(v), bx/2`(v)c, by/2`(v)c),
with (x, y) a point in Sv

v

View 1: So, let's take a look into a method of doing fast point-location queries. First, let's decide on the tree's representation and talk about a few concepts. In the next slides, I will consider the root square to be the unit square, so having sides of length 1.

View 2: For a node v at depth i, where the root is of edpth 0, we have the following associated concepts:

- a square Sv, with a side-length of 2 to the -i
- it is situated in the grid of squares with the same side-length
- its level is -i (so, for example v has level l -2)

- We also have an id for a square: the level of the square (or, alternatively, the grid in which it is located), plus the position of the square in its respective grid. We will soon see why this is useful.

View 3: Could someone tell me the id of this point?

Quadtrees: multi-scale grids
node v at depth i:
• square Sv → side length = 2−i

• in gridG2−i

• level `(v) = −i
• id(v) = (`(v), bx/2`(v)c, by/2`(v)c),
with (x, y) a point in Sv

(0.375, 0.125)v

(0, 0)

(1, 1)

Quiz What is id(v) in this example?

A (-1,2,1)

B (-1,3,4)

C (-2,2,2)

D (-2,1,0)

v

View 1: So, let's take a look into a method of doing fast point-location queries. First, let's decide on the tree's representation and talk about a few concepts. In the next slides, I will consider the root square to be the unit square, so having sides of length 1.

View 2: For a node v at depth i, where the root is of edpth 0, we have the following associated concepts:

- a square Sv, with a side-length of 2 to the -i
- it is situated in the grid of squares with the same side-length
- its level is -i (so, for example v has level l -2)

- We also have an id for a square: the level of the square (or, alternatively, the grid in which it is located), plus the position of the square in its respective grid. We will soon see why this is useful.

View 3: Could someone tell me the id of this point?

Quadtrees: multi-scale grids
node v at depth i:
• square Sv → side length = 2−i

• in gridG2−i

• level `(v) = −i
• id(v) = (`(v), bx/2`(v)c, by/2`(v)c),
with (x, y) a point in Sv

(0.375, 0.125)v

(0, 0)

(1, 1)

Quiz What is id(v) in this example?

A (-1,2,1)

B (-1,3,4)

C (-2,2,2)

D (-2,1,0)

v

View 1: So, let's take a look into a method of doing fast point-location queries. First, let's decide on the tree's representation and talk about a few concepts. In the next slides, I will consider the root square to be the unit square, so having sides of length 1.

View 2: For a node v at depth i, where the root is of edpth 0, we have the following associated concepts:

- a square Sv, with a side-length of 2 to the -i
- it is situated in the grid of squares with the same side-length
- its level is -i (so, for example v has level l -2)

- We also have an id for a square: the level of the square (or, alternatively, the grid in which it is located), plus the position of the square in its respective grid. We will soon see why this is useful.

View 3: Could someone tell me the id of this point?

Quadtrees: multi-scale grids
node v at depth i:
• square Sv → side length = 2−i

• in gridG2−i

• level `(v) = −i
• id(v) = (`(v), bx/2`(v)c, by/2`(v)c),
with (x, y) a point in Sv

Faster point location:

query: binary search on levels

preprocessing: build hash table using id(v)

View 1: So, let's take a look into a method of doing fast point-location queries. First, let's decide on the tree's representation and talk about a few concepts. In the next slides, I will consider the root square to be the unit square, so having sides of length 1.

View 2: For a node v at depth i, where the root is of edpth 0, we have the following associated concepts:

- a square Sv, with a side-length of 2 to the -i
- it is situated in the grid of squares with the same side-length
- its level is -i (so, for example v has level l -2)

- We also have an id for a square: the level of the square (or, alternatively, the grid in which it is located), plus the position of the square in its respective grid. We will soon see why this is useful.

View 3: Could someone tell me the id of this point?

Quadtrees: multi-scale grids
node v at depth i:
• square Sv → side length = 2−i

• in gridG2−i

• level `(v) = −i
• id(v) = (`(v), bx/2`(v)c, by/2`(v)c),
with (x, y) a point in Sv

Faster point location:

query: binary search on levels
• if inner node: recurse in lower half

preprocessing: build hash table using id(v)

View 1: So, let's take a look into a method of doing fast point-location queries. First, let's decide on the tree's representation and talk about a few concepts. In the next slides, I will consider the root square to be the unit square, so having sides of length 1.

View 2: For a node v at depth i, where the root is of edpth 0, we have the following associated concepts:

- a square Sv, with a side-length of 2 to the -i
- it is situated in the grid of squares with the same side-length
- its level is -i (so, for example v has level l -2)

- We also have an id for a square: the level of the square (or, alternatively, the grid in which it is located), plus the position of the square in its respective grid. We will soon see why this is useful.

View 3: Could someone tell me the id of this point?

Quadtrees: multi-scale grids
node v at depth i:
• square Sv → side length = 2−i

• in gridG2−i

• level `(v) = −i
• id(v) = (`(v), bx/2`(v)c, by/2`(v)c),
with (x, y) a point in Sv

Faster point location:

query: binary search on levels
• if inner node: recurse in lower half
• if no node: recurse in upper half

preprocessing: build hash table using id(v)

View 1: So, let's take a look into a method of doing fast point-location queries. First, let's decide on the tree's representation and talk about a few concepts. In the next slides, I will consider the root square to be the unit square, so having sides of length 1.

View 2: For a node v at depth i, where the root is of edpth 0, we have the following associated concepts:

- a square Sv, with a side-length of 2 to the -i
- it is situated in the grid of squares with the same side-length
- its level is -i (so, for example v has level l -2)

- We also have an id for a square: the level of the square (or, alternatively, the grid in which it is located), plus the position of the square in its respective grid. We will soon see why this is useful.

View 3: Could someone tell me the id of this point?

Quadtrees: multi-scale grids
node v at depth i:
• square Sv → side length = 2−i

• in gridG2−i

• level `(v) = −i
• id(v) = (`(v), bx/2`(v)c, by/2`(v)c),
with (x, y) a point in Sv

Faster point location:

query: binary search on levels
• if inner node: recurse in lower half
• if no node: recurse in upper half
• if leaf:

preprocessing: build hash table using id(v)

View 1: So, let's take a look into a method of doing fast point-location queries. First, let's decide on the tree's representation and talk about a few concepts. In the next slides, I will consider the root square to be the unit square, so having sides of length 1.

View 2: For a node v at depth i, where the root is of edpth 0, we have the following associated concepts:

- a square Sv, with a side-length of 2 to the -i
- it is situated in the grid of squares with the same side-length
- its level is -i (so, for example v has level l -2)

- We also have an id for a square: the level of the square (or, alternatively, the grid in which it is located), plus the position of the square in its respective grid. We will soon see why this is useful.

View 3: Could someone tell me the id of this point?

Quadtrees: multi-scale grids
node v at depth i:
• square Sv → side length = 2−i

• in gridG2−i

• level `(v) = −i
• id(v) = (`(v), bx/2`(v)c, by/2`(v)c),
with (x, y) a point in Sv

Faster point location:

query: binary search on levels
• if inner node: recurse in lower half
• if no node: recurse in upper half
• if leaf:

preprocessing: build hash table using id(v)

query time: O(log d)

View 1: So, let's take a look into a method of doing fast point-location queries. First, let's decide on the tree's representation and talk about a few concepts. In the next slides, I will consider the root square to be the unit square, so having sides of length 1.

View 2: For a node v at depth i, where the root is of edpth 0, we have the following associated concepts:

- a square Sv, with a side-length of 2 to the -i
- it is situated in the grid of squares with the same side-length
- its level is -i (so, for example v has level l -2)

- We also have an id for a square: the level of the square (or, alternatively, the grid in which it is located), plus the position of the square in its respective grid. We will soon see why this is useful.

View 3: Could someone tell me the id of this point?

Quadtrees: multi-scale grids
node v at depth i:
• square Sv → side length = 2−i

• in gridG2−i

• level `(v) = −i
• id(v) = (`(v), bx/2`(v)c, by/2`(v)c),
with (x, y) a point in Sv

Faster point location:

query: binary search on levels
• if inner node: recurse in lower half
• if no node: recurse in upper half
• if leaf:

preprocessing: build hash table using id(v)

query time: O(log d)

How large is d? How large is the quadtree?

View 1: So, let's take a look into a method of doing fast point-location queries. First, let's decide on the tree's representation and talk about a few concepts. In the next slides, I will consider the root square to be the unit square, so having sides of length 1.

View 2: For a node v at depth i, where the root is of edpth 0, we have the following associated concepts:

- a square Sv, with a side-length of 2 to the -i
- it is situated in the grid of squares with the same side-length
- its level is -i (so, for example v has level l -2)

- We also have an id for a square: the level of the square (or, alternatively, the grid in which it is located), plus the position of the square in its respective grid. We will soon see why this is useful.

View 3: Could someone tell me the id of this point?

Quadtree: depth and size
Lemma: Let c be the smallest distance between any two points in a point set P , and let s
be the side length of the initial (biggest) square. Then the depth of a quadtree for P is at
most log(s/c) + 3/2.

s

Quadtree: depth and size
Lemma: Let c be the smallest distance between any two points in a point set P , and let s
be the side length of the initial (biggest) square. Then the depth of a quadtree for P is at
most log(s/c) + 3/2.

• consider square σ of depth i with side length s/2i
Proof:

s/2i
s

Quadtree: depth and size
Lemma: Let c be the smallest distance between any two points in a point set P , and let s
be the side length of the initial (biggest) square. Then the depth of a quadtree for P is at
most log(s/c) + 3/2.

• consider square σ of depth i with side length s/2i

• maximum distance between two points in σ:
√

2s/2i

Proof:

s/2i
s

Quadtree: depth and size
Lemma: Let c be the smallest distance between any two points in a point set P , and let s
be the side length of the initial (biggest) square. Then the depth of a quadtree for P is at
most log(s/c) + 3/2.

• consider square σ of depth i with side length s/2i

• maximum distance between two points in σ:
√

2s/2i

Proof:

⇒ if depth of cell with≥ 2 points is i,
√

2s/2i ≥ c

s/2i
s

Quadtree: depth and size
Lemma: Let c be the smallest distance between any two points in a point set P , and let s
be the side length of the initial (biggest) square. Then the depth of a quadtree for P is at
most log(s/c) + 3/2.

• consider square σ of depth i with side length s/2i

• maximum distance between two points in σ:
√

2s/2i

Proof:

⇒ if depth of cell with≥ 2 points is i,
√

2s/2i ≥ c
⇒ i ≤ log(

√
2s/c) = log(s/c) + 1/2

s/2i
s

Quadtree: depth and size
Lemma: Let c be the smallest distance between any two points in a point set P , and let s
be the side length of the initial (biggest) square. Then the depth of a quadtree for P is at
most log(s/c) + 3/2.

• consider square σ of depth i with side length s/2i

• maximum distance between two points in σ:
√

2s/2i

Proof:

⇒ if depth of cell with≥ 2 points is i,
√

2s/2i ≥ c
⇒ i ≤ log(

√
2s/c) = log(s/c) + 1/2

s/2i
s

⇒ depth of quadtree≤ log(s/c) + 1/2 + 1, since nodes
with≤ 1 points have no children

Quadtree: depth and size
Lemma: Let c be the smallest distance between any two points in a point set P , and let s
be the side length of the initial (biggest) square. Then the depth of a quadtree for P is at
most log(s/c) + 3/2.

Theorem: A quadtree of depth d storing n points hasO((d+ 1)n) nodes and can be
constructed inO((d+ 1)n) time.

Quadtree: depth and size
Lemma: Let c be the smallest distance between any two points in a point set P , and let s
be the side length of the initial (biggest) square. Then the depth of a quadtree for P is at
most log(s/c) + 3/2.

Theorem: A quadtree of depth d storing n points hasO((d+ 1)n) nodes and can be
constructed inO((d+ 1)n) time.

• Inner nodes have 4 children ⇒ #leaves = 1 + 3·#inner nodes
Proof:

+4
−1

Quadtree: depth and size
Lemma: Let c be the smallest distance between any two points in a point set P , and let s
be the side length of the initial (biggest) square. Then the depth of a quadtree for P is at
most log(s/c) + 3/2.

Theorem: A quadtree of depth d storing n points hasO((d+ 1)n) nodes and can be
constructed inO((d+ 1)n) time.

• Inner nodes have 4 children ⇒ #leaves = 1 + 3·#inner nodes
• Inner nodes correspond to disjoint squares with≥ 2 points
⇒ ≤ n squares per layer corresponding to inner nodes

Proof:

≤ n
≤ n
≤ n

Quadtree: depth and size
Lemma: Let c be the smallest distance between any two points in a point set P , and let s
be the side length of the initial (biggest) square. Then the depth of a quadtree for P is at
most log(s/c) + 3/2.

Theorem: A quadtree of depth d storing n points hasO((d+ 1)n) nodes and can be
constructed inO((d+ 1)n) time.

• Inner nodes have 4 children ⇒ #leaves = 1 + 3·#inner nodes
• Inner nodes correspond to disjoint squares with≥ 2 points
⇒ ≤ n squares per layer corresponding to inner nodes

Proof:

⇒ for depth d overallO((d+ 1)n) nodes.

≤ n
≤ n
≤ n

Quadtree: depth and size
Lemma: Let c be the smallest distance between any two points in a point set P , and let s
be the side length of the initial (biggest) square. Then the depth of a quadtree for P is at
most log(s/c) + 3/2.

Theorem: A quadtree of depth d storing n points hasO((d+ 1)n) nodes and can be
constructed inO((d+ 1)n) time.

Definition: The spread of point set P is Φ(P) =
maxp,q∈P ||p−q||

minp,q∈P,p6=q ||p−q||

min = 2

max = 12

Φ = max
min = 12

2 = 6

Quadtree: depth and size
Lemma: Let c be the smallest distance between any two points in a point set P , and let s
be the side length of the initial (biggest) square. Then the depth of a quadtree for P is at
most log(s/c) + 3/2.

Theorem: A quadtree of depth d storing n points hasO((d+ 1)n) nodes and can be
constructed inO((d+ 1)n) time.

Definition: The spread of point set P is Φ(P) =
maxp,q∈P ||p−q||

minp,q∈P,p6=q ||p−q||

min = 2

max = 12

Φ = max
min = 12

2 = 6

Observation: The depth of a quadtree is inO(log(Φ(P))) and the
size inO(n log Φ(P)).

Quadtree: depth and size
Lemma: Let c be the smallest distance between any two points in a point set P , and let s
be the side length of the initial (biggest) square. Then the depth of a quadtree for P is at
most log(s/c) + 3/2.

Theorem: A quadtree of depth d storing n points hasO((d+ 1)n) nodes and can be
constructed inO((d+ 1)n) time.

Definition: The spread of point set P is Φ(P) =
maxp,q∈P ||p−q||

minp,q∈P,p6=q ||p−q||

min = 2

max = 12

Φ = max
min = 12

2 = 6

Observation: The depth of a quadtree is inO(log(Φ(P))) and the
size inO(n log Φ(P)).

How can we handle the case when Φ(P) is not bounded by a
polynomial in n? Can we get a linear-size data structure?

Compressed Quadtrees
?

Improving the size, step 0

Improving the size, step 0

Improving the size, step 0

Compressed Quadtrees
`(v) = 0

`(v) = −1

`(v) = −2

`(v) = −3

`(v) = −4

`(v) = −5

`(v) = −6

Compressed Quadtrees
`(v) = 0

`(v) = −1

`(v) = −2

`(v) = −3

`(v) = −4

`(v) = −5

`(v) = −6

0

-1 -1 -1 -1

-2 -2

-3 -3

-5

-6 -6

Each node gets:
• An integer denoting its level
in the original quadtree

• A pointer to the square it
represents.

-2

-3

-4

Compressed Quadtrees
`(v) = 0

`(v) = −1

`(v) = −2

`(v) = −3

`(v) = −4

`(v) = −5

`(v) = −6

0

-1 -1 -1 -1

-2 -2

-3 -3

-5

-6 -6

Each node gets:
• An integer denoting its level
in the original quadtree

• A pointer to the square it
represents.

Paths consisting of only degree-1 nodes
=⇒ replace by the first parent and the last
child on the path.

-2

-3

-4

Compressed Quadtrees
`(v) = 0

`(v) = −1

`(v) = −2

`(v) = −3

`(v) = −4

`(v) = −5

`(v) = −6

0

-1 -1 -1 -1

-2 -2

-3 -3

-5

-6 -6

Each node gets:
• An integer denoting its level
in the original quadtree

• A pointer to the square it
represents.

Paths consisting of only degree-1 nodes
=⇒ replace by the first parent and the last
child on the path.

Merging squares

Merging squares

What the size of the compressed quadtree?

Size of compressed quadtree
n leaves⇒ at most n− 1 internal nodes with degree≥ 2

Size of compressed quadtree
n leaves⇒ at most n− 1 internal nodes with degree≥ 2

Charging argument: Charge any node with a single child to its
parent, which has 2 or more children because of compression

Size of compressed quadtree
n leaves⇒ at most n− 1 internal nodes with degree≥ 2

Charging argument: Charge any node with a single child to its
parent, which has 2 or more children because of compression

Compressed quadtrees have linear size!

Efficient construction
Simple recursive construction on compressed quadtrees has unbounded time
complexity when the spread of the point set is unbounded.

We can do better with a divide and conquer approach!

Efficient construction
Simple recursive construction on compressed quadtrees has unbounded time
complexity when the spread of the point set is unbounded.

We can do better with a divide and conquer approach!

Idea: Find a square (in a gridG2−i) that contains a constant fraction of the points.

Efficient construction
Simple recursive construction on compressed quadtrees has unbounded time
complexity when the spread of the point set is unbounded.

Theorem: In linear time we can compute a diskD containing n/10 points with radius
rD ≤ 2rOPT , where rOPT is the radius of the smallest disk containing n/10 points.

We can do better with a divide and conquer approach!

Idea: Find a square (in a gridG2−i) that contains a constant fraction of the points.

Question: Which algorithm(s) do you know to compute this disk?

Efficient construction
Theorem: In linear time we can compute a diskD containing n/10 points with radius
rD ≤ 2rOPT , where rOPT is the radius of the smallest disk containing n/10 points.

r

P

Efficient construction
Theorem: In linear time we can compute a diskD containing n/10 points with radius
rD ≤ 2rOPT , where rOPT is the radius of the smallest disk containing n/10 points.

r

α = 2blog2(r)c

Pα

α

Efficient construction
Theorem: In linear time we can compute a diskD containing n/10 points with radius
rD ≤ 2rOPT , where rOPT is the radius of the smallest disk containing n/10 points.

r

α = 2blog2(r)c

Pα

α

r ≥ α ≥ r/2
=⇒ D is covered by at most 25 grid cells

Efficient construction
Theorem: In linear time we can compute a diskD containing n/10 points with radius
rD ≤ 2rOPT , where rOPT is the radius of the smallest disk containing n/10 points.

r

α = 2blog2(r)c

Pα

α

r ≥ α ≥ r/2
=⇒ D is covered by at most 25 grid cells
=⇒ ∃ a cell c containing at least n/10

25 points

Efficient construction
Theorem: In linear time we can compute a diskD containing n/10 points with radius
rD ≤ 2rOPT , where rOPT is the radius of the smallest disk containing n/10 points.

r

α = 2blog2(r)c

Pα

α

r ≥ α ≥ r/2
=⇒ D is covered by at most 25 grid cells
=⇒ ∃ a cell c containing at least n/10

25 points

Lemma: No cell contains more than 5 · n/10 = n/2 points

Efficient construction
Theorem: In linear time we can compute a diskD containing n/10 points with radius
rD ≤ 2rOPT , where rOPT is the radius of the smallest disk containing n/10 points.

r

α = 2blog2(r)c

Pα

α

r ≥ α ≥ r/2
=⇒ D is covered by at most 25 grid cells
=⇒ ∃ a cell c containing at least n/10

25 points

Lemma: No cell contains more than 5 · n/10 = n/2 points

Let� denote the cell containing the largest number of
points.

Pin = P ∩� and Pout = P \ Pin

Note that |Pin| ≥ n/250 and |Pout| ≥ n/2

Efficient construction
Pin = P ∩� and Pout = P \ Pin

Pin

Pout

Recursively construct quadtrees for Pin and Pout

Efficient construction
Pin = P ∩� and Pout = P \ Pin

Pin

Pout

Create a node representing� in both quadtrees.

Recursively construct quadtrees for Pin and Pout

Efficient construction
Pin = P ∩� and Pout = P \ Pin

Pin

Pout

Create a node representing� in both quadtrees.

Recursively construct quadtrees for Pin and Pout

Construction time: T (n) = O(n) + T (|Pin|) + T (|Pout|) = O(n log n)

Quiz
What is the maximum depth that a quadtree on n points can have?

A Θ(log n)

B Θ(
√
n)

C Θ(n)

Quiz
What is the maximum depth that a quadtree on n points can have?

A Θ(log n)

B Θ(
√
n)

C Θ(n)

Question: How does such a quadtree look like?

Point-location on compressed quadtrees
Given a compressed quadtree T of size n, find lowest node in the tree containing point q.

Point-location on compressed quadtrees
Given a compressed quadtree T of size n, find lowest node in the tree containing point q.

May take Ω(n) time!

Point-location on compressed quadtrees
Given a compressed quadtree T of size n, find lowest node in the tree containing point q.

May take Ω(n) time!

Alternative: preprocess T into a balanced tree T ′ with cross-pointers to T .

Fast point-location - Fingering the quadtree
Definition: A separator of a tree T with n nodes is a node v ∈ T such that
removing v results in a forest of which every tree has at most dn/2e nodes.

Fast point-location - Fingering the quadtree
Definition: A separator of a tree T with n nodes is a node v ∈ T such that
removing v results in a forest of which every tree has at most dn/2e nodes.

Claim: Any tree T always contains a separator.

Fast point-location - Fingering the quadtree
Definition: A separator of a tree T with n nodes is a node v ∈ T such that
removing v results in a forest of which every tree has at most dn/2e nodes.

Claim: Any tree T always contains a separator.

Walk through the tree starting at root,
going into the subtree that contains
≥ dn/2e nodes.

n = 22

dn/2e = 11

Fast point-location - Fingering the quadtree
Definition: A separator of a tree T with n nodes is a node v ∈ T such that
removing v results in a forest of which every tree has at most dn/2e nodes.

Claim: Any tree T always contains a separator.

Walk through the tree starting at root,
going into the subtree that contains
≥ dn/2e nodes.

n = 22

315
dn/2e = 11

Fast point-location - Fingering the quadtree
Definition: A separator of a tree T with n nodes is a node v ∈ T such that
removing v results in a forest of which every tree has at most dn/2e nodes.

Claim: Any tree T always contains a separator.

Walk through the tree starting at root,
going into the subtree that contains
≥ dn/2e nodes.

n = 22

dn/2e = 11

3 12 11

Fast point-location - Fingering the quadtree
Definition: A separator of a tree T with n nodes is a node v ∈ T such that
removing v results in a forest of which every tree has at most dn/2e nodes.

Claim: Any tree T always contains a separator.

Walk through the tree starting at root,
going into the subtree that contains
≥ dn/2e nodes.

n = 22

dn/2e = 11

4 3 4

Fast point-location - Fingering the quadtree
Definition: A separator of a tree T with n nodes is a node v ∈ T such that
removing v results in a forest of which every tree has at most dn/2e nodes.

Claim: Any tree T always contains a separator.

Walk through the tree starting at root,
going into the subtree that contains
≥ dn/2e nodes.

n = 22

Once we get stuck:
• child subtree sizes< dn/2e
• rooted subtree size≤ n− dn/2e ≤ bn/2c

dn/2e = 11

Fast point-location - Fingering the quadtree
Definition: A separator of a tree T with n nodes is a node v ∈ T such that
removing v results in a forest of which every tree has at most dn/2e nodes.

quadtree T

v

Fast point-location - Fingering the quadtree
Definition: A separator of a tree T with n nodes is a node v ∈ T such that
removing v results in a forest of which every tree has at most dn/2e nodes.

quadtree T finger tree T ′

v

Fast point-location - Fingering the quadtree
Definition: A separator of a tree T with n nodes is a node v ∈ T such that
removing v results in a forest of which every tree has at most dn/2e nodes.

quadtree T finger tree T ′

v

root for v,
compute subtree for each
component recursively

Fast point-location - Fingering the quadtree
Definition: A separator of a tree T with n nodes is a node v ∈ T such that
removing v results in a forest of which every tree has at most dn/2e nodes.

quadtree T finger tree T ′

v

root for v,
compute subtree for each
component recursively

Fast point-location - Fingering the quadtree
Definition: A separator of a tree T with n nodes is a node v ∈ T such that
removing v results in a forest of which every tree has at most dn/2e nodes.

quadtree T finger tree T ′

v

root for v,
compute subtree for each
component recursively

Fast point-location - Fingering the quadtree
Definition: A separator of a tree T with n nodes is a node v ∈ T such that
removing v results in a forest of which every tree has at most dn/2e nodes.

quadtree T finger tree T ′

v

To query for point q, recursively, in timeO(height of T ′):
• go into red subtree if q 6∈ �v

• search allO(1) green subtrees if q ∈ �v

What are the height/query time and the construction time of the finger tree?

Finger trees

Recall that the separator splits T into subtrees of size≤ dn/2e

=⇒ H(n) ≤ 1 +H(dn/2e) = O(log n)

T ′

recurrence for height:

Finger trees

Recall that the separator splits T into subtrees of size≤ dn/2e

=⇒ H(n) ≤ 1 +H(dn/2e) = O(log n)

T ′

recurrence for height:

Finger trees

Recall that the separator splits T into subtrees of size≤ dn/2e

=⇒ H(n) ≤ 1 +H(dn/2e) = O(log n)

Construction time T (n) = O(n) +
∑t

i=1 T (ni) where n1...nt are the sizes of
the t subtrees formed after removing the separator.

Since t = O(1) and ni ≤ dn/2e, we have T (n) = O(n log n)

T ′

recurrence for height:

Summary

Normal quadtrees

Bounded by spread

Compressed quadtrees

Bounded by number of points

Finger trees

Fast query time

more in book: dynamic quadtrees

	Quadtree: depth and size

