ε -sampling

range space

VC-dimension

 ε -nets

 ε -samples

Given P, how many points do we need to sample ($S \subset P$), such that

Given P,

how many points do we need to sample

($S \subset P$), such that

1. the smallest enclosing disk contains 90% of the points in P?

 \mathbf{P}

oS

Given P,

how many points do we need to sample $(S \subset P)$, such that

- 1. the smallest enclosing disk contains 90% of the points in P?
- 2. for any query rectangle r we can estimate the number of points of P in r?

Given P,

how many points do we need to sample $(S \subset P)$, such that

- 1. the smallest enclosing disk contains 90% of the points in P?
- 2. for any query rectangle r

$$\left|\frac{|r \cap P|}{|P|} - \frac{|r \cap S|}{|S|}\right| \le 0.25 \, 3$$

$$\frac{8}{15} = 0.5333$$
 $\frac{3}{6} = 0.5$

Given P,

how many points do we need to sample $(S \subset P)$, such that

- 1. the smallest enclosing disk contains 90% of the points in P?
- 2. for any query rectangle r

$$\left|\frac{|r\cap P|}{|P|} - \frac{|r\cap S|}{|S|}\right| \le 0.25?$$

with probability 0.999

$$\left| \frac{|r \cap P|}{|P|} - \frac{|r \cap S|}{|S|} \right| \leq 0.25 \text{ for all ranges } r?$$

• P

0 5

•

•

•

 $\left|\frac{|r\cap P|}{|P|} - \frac{|r\cap S|}{|S|}\right| \le 0.25 \text{ for all ranges } r?$

Can't work for general ranges (unless $S \approx P$)

 $\left|\frac{|r\cap P|}{|P|} - \frac{|r\cap S|}{|S|}\right| \le 0.25 \text{ for all ranges } r$?

Can't work for general ranges (unless $S \approx P$)

Question: Why could this work for (axis-aligned) rectangles?

 $\left|\frac{|r\cap P|}{|P|} - \frac{|r\cap S|}{|S|}\right| \le 0.25 \text{ for all ranges } r?$

Can't work for general ranges (unless $S \approx P$)

Question: Why could this work for (axis-aligned) rectangles?

Ideas:

 for 5 points: range with 4 points will contain inner point

 $\left| \frac{|r \cap P|}{|P|} - \frac{|r \cap S|}{|S|} \right| \le 0.25 \text{ for all ranges } r$?

Can't work for general ranges (unless $S \approx P$)

Question: Why could this work for (axis-aligned) rectangles?

Ideas:

- for 5 points: range with 4 points will contain inner point
- 2^n subsets of P by general ranges but much fewer by rectangles

Quiz

Given point set P of size n and axis-aligned rectangles as ranges, how many sets $P \cap r$ are there?

- $O(n^2)$
- $O(n^3)$
- $O(n^4)$

(we ask for a tight bound)

Quiz

Given point set P of size n and axis-aligned rectangles as ranges, how many sets $P \cap r$ are there?

 $O(n^3)$

$$O(n^4)$$

(we ask for a tight bound)

Quiz

Given point set P of size n and axis-aligned rectangles as ranges, how many sets $P \cap r$ are there?

 $O(n^3)$

$$O(n^4)$$

(we ask for a tight bound)

each minimal rectangle defined by left, top, right, bottom point

range spaces and VC-dimension

range space: pair (X, \mathcal{R})

- *X* is a set
- ${\mathcal R}$ is a subset of power set of X

range space: pair (X, \mathcal{R})

- *X* is a set
- \mathcal{R} is a subset of power set of X

example

- $X = \mathbb{R}^2$
- \mathcal{R} : set of axis-aligned rectangles

range space: pair (X, \mathcal{R})

- *X* is a set
- \mathcal{R} is a subset of power set of X

example

- $X = \mathbb{R}^2$
- \mathcal{R} : set of axis-aligned rectangles

restriction $\mathcal{R}_{|P}$

- $P \subset X$
- $\mathcal{R}_{|P} := \{r \cap P | r \in \mathcal{R}\}$
- $(P,\mathcal{R}_{|P})$ is a range space, e.g.,

range space: pair (X, \mathcal{R})

- X is a set
- \mathcal{R} is a subset of power set of X

example

- $X = \mathbb{R}^2$
- \mathcal{R} : set of axis-aligned rectangles

restriction $\mathcal{R}_{|P}$

- $P \subset X$
- $\mathcal{R}_{|P} := \{r \cap P | r \in \mathcal{R}\}$
- $(P, \mathcal{R}_{|P})$ is a range space, e.g.,

Examples of range spaces

 (\mathbb{R},\mathcal{I}) , with $\mathcal{I}=$ set of closed intervals

 $(\mathbb{R}^2,\mathcal{D})$, with $\mathcal{D}=$ set of disks

 $(\mathbb{R}^2,\mathcal{AR})$, with $\mathcal{AR}=$ set of axis-aligned rectangles

 $(\mathbb{R}^2,\mathcal{GR})$, with $\mathcal{GR}=$ set of arbitrary oriented rectangles

 $(\mathbb{R}^2,\mathcal{C})$, with $\mathcal{C}=$ set of closed convex sets

example: $(\mathbb{R}^2, \mathcal{AR})$, with $\mathcal{AR}=$ set of axis-aligned rectangles

example: $(\mathbb{R}^2, \mathcal{AR})$, with $\mathcal{AR}=$ set of axis-aligned rectangles

want to quantify: range space has "low complexity"

example: $(\mathbb{R}^2, \mathcal{AR})$, with $\mathcal{AR}=$ set of axis-aligned rectangles

want to quantify: range space has "low complexity"

 $\text{recall: } \mathcal{R}_{|Q} := \{r \cap Q | r \in \mathcal{R}\}$

example: $(\mathbb{R}^2, \mathcal{AR})$, with $\mathcal{AR}=$ set of axis-aligned rectangles

want to quantify: range space has "low complexity"

 $\text{recall: } \mathcal{R}_{|Q} := \{r \cap Q | r \in \mathcal{R}\}$

Def: Q is shattered by $\mathcal R$ if $R_{|Q}$ is the power set of Q

example: $(\mathbb{R}^2, \mathcal{AR})$, with $\mathcal{AR}=$ set of axis-aligned rectangles

want to quantify: range space has "low complexity"

 $\text{recall: } \mathcal{R}_{|Q} := \{r \cap Q | r \in \mathcal{R}\}$

Def: Q is shattered by $\mathcal R$ if $R_{|Q}$ is the power set of Q

Question: Can Q be shattered by \mathcal{AR} ?

example: $(\mathbb{R}^2, \mathcal{AR})$, with $\mathcal{AR}=$ set of axis-aligned rectangles

example: $(\mathbb{R}^2, \mathcal{AR})$, with $\mathcal{AR}=$ set of axis-aligned rectangles

want to quantify: range space has "low complexity"

 $\text{recall: } \mathcal{R}_{|Q} := \{r \cap Q | r \in \mathcal{R}\}$

Def: Q is shattered by $\mathcal R$ if $R_{|Q}$ is the power set of Q

Question: Can this Q be shattered by \mathcal{AR} ?

example: $(\mathbb{R}^2, \mathcal{AR})$, with $\mathcal{AR}=$ set of axis-aligned rectangles

want to quantify: range space has "low complexity"

$$\text{recall: } \mathcal{R}_{|Q} := \{r \cap Q | r \in \mathcal{R}\}$$

Def: Q is shattered by $\mathcal R$ if $R_{|Q}$ is the power set of Q

Question: Can this Q be shattered by \mathcal{AR} ?

example: $(\mathbb{R}^2, \mathcal{AR})$, with $\mathcal{AR}=$ set of axis-aligned rectangles

want to quantify: range space has "low complexity"

 $\text{recall: } \mathcal{R}_{|Q} := \{r \cap Q | r \in \mathcal{R}\}$

Def: Q is shattered by $\mathcal R$ if $R_{|Q}$ is the power set of Q

Question: Can this Q be shattered by \mathcal{AR} ?

 $\ensuremath{\text{VC-dimension}}$ of a range space: maximum size of a shattered subset of X

$$A$$

$$P = \{A\} \subseteq \mathbb{R}$$

$$\mathcal{R}_{|P} = \{\varnothing, \{A\}\}$$

$$|\mathcal{R}_{|P}| = 2 = 2^{|P|}$$

$$A$$

$$P = \{A\} \subseteq \mathbb{R}$$

$$\mathcal{R}_{|P} = \{\varnothing, \{A\}\}$$

$$|\mathcal{R}_{|P}| = 2 = 2^{|P|}$$
 shattered!

$$A \qquad \qquad \mathbb{B}$$

$$P = \{A, B\} \subseteq \mathbb{R}$$

$$\varnothing \in \mathcal{R}_{|P}$$

$$A \qquad \qquad B$$

$$P = \{A, B\} \subseteq \mathbb{R}$$

$$\varnothing \in \mathcal{R}_{|P} \quad \{A\} \in \mathcal{R}_{|P} \quad \{B\} \in \mathcal{R}_{|P}$$

$$A \qquad \qquad \mathbb{B}$$

$$P=\{A,B\}\subseteq \mathbb{R}$$

$$\varnothing\in\mathcal{R}_{|P} \quad \{A\}\in\mathcal{R}_{|P} \quad \{B\}\in\mathcal{R}_{|P} \quad \{A,B\}\in\mathcal{R}_{|P}$$

$$P = \{A, B\} \subseteq \mathbb{R}$$

$$\varnothing \in \mathcal{R}_{|P} \quad \{A\} \in \mathcal{R}_{|P} \quad \{B\} \in \mathcal{R}_{|P} \quad \{A, B\} \in \mathcal{R}_{|P}$$

$$|\mathcal{R}_{|P}| = 2^{|P|}$$

$$P=\{A,B\}\subseteq\mathbb{R}$$

$$\varnothing\in\mathcal{R}_{|P}\quad \{A\}\in\mathcal{R}_{|P}\quad \{B\}\in\mathcal{R}_{|P}\quad \{A,B\}\in\mathcal{R}_{|P}$$

$$|\mathcal{R}_{|P}|=2^{|P|}$$
 shattered!

$$P = \{A, B, C\} \subseteq \mathbb{R}$$

$$A \qquad C \qquad B$$

$$P = \{A, B, C\} \subseteq \mathbb{R}$$

$$\{A, B\} \notin \mathcal{R}_{|P}$$

$$A \qquad \mathsf{C} \qquad \mathsf{B}$$

$$P = \{A, B, C\} \subseteq \mathbb{R}$$

$$\{A, B\} \notin \mathcal{R}_{|P}$$

$$|\mathcal{R}_{|P}| < 2^{|P|}$$

$$\frac{A}{P} = \{A,B,C\} \subseteq \mathbb{R}$$

$$\{A,B\} \notin \mathcal{R}_{|P}$$

$$|\mathcal{R}_{|P}| < 2^{|P|}$$
 not shattered !

$$\frac{A}{P} = \{A,B,C\} \subseteq \mathbb{R}$$

$$\{A,B\} \notin \mathcal{R}_{|P}$$

$$|\mathcal{R}_{|P}| < 2^{|P|}$$
 not shattered !

$$P = \{A, B, C\} \subseteq \mathbb{R}$$

$$\{A,B\} \notin \mathcal{R}_{|P}$$

$$|\mathcal{R}_{|P}| < 2^{|P|}$$

not shattered!

No set of 3 or more elements can be shattered.

VC-dimension =2

range space
$$(\mathbb{R}, \mathcal{I}_{\rightarrow})$$
 with $\mathcal{I}_{\rightarrow} = \{[a, \infty) | a \in \mathbb{R}\}$

What is the VC-dimension of this space?

range space
$$(\mathbb{R}, \mathcal{I}_{\rightarrow})$$
 with $\mathcal{I}_{\rightarrow} = \{[a, \infty) | a \in \mathbb{R}\}$

What is the VC-dimension of this space?

range space $(\mathbb{R}^2,\mathcal{D})$, with $\mathcal{D}=$ set of disks

range space $(\mathbb{R}^2,\mathcal{D})$, with $\mathcal{D}=$ set of disks

range space $(\mathbb{R}^2, \mathcal{D})$, with $\mathcal{D} = \mathsf{set}$ of disks

not shatter!

range space $(\mathbb{R}^2, \mathcal{D})$, with $\mathcal{D} = \mathsf{set}$ of disks

not shatter!

not relevant, since VC-dimension = maximum size of shattered subset

range space $(\mathbb{R}^2,\mathcal{D})$, with $\mathcal{D}=$ set of disks

Α.

B

range space $(\mathbb{R}^2, \mathcal{D})$, with $\mathcal{D} = \mathsf{set}$ of disks

range space $(\mathbb{R}^2,\mathcal{D})$, with $\mathcal{D}=$ set of disks

range space $(\mathbb{R}^2,\mathcal{D})$, with $\mathcal{D}=$ set of disks

range space $(\mathbb{R}^2,\mathcal{D})$, with $\mathcal{D}=$ set of disks

Α.

B

range space $(\mathbb{R}^2,\mathcal{D})$, with $\mathcal{D}=$ set of disks

range space $(\mathbb{R}^2,\mathcal{D})$, with $\mathcal{D}=$ set of disks

shatter!

range space $(\mathbb{R}^2,\mathcal{D})$, with $\mathcal{D}=$ set of disks

range space $(\mathbb{R}^2, \mathcal{D})$, with $\mathcal{D} = \mathsf{set}$ of disks

4 points

case 1: $D \in \operatorname{triangle}(ABC)$

range space $(\mathbb{R}^2, \mathcal{D})$, with $\mathcal{D} = \mathsf{set}$ of disks

range space $(\mathbb{R}^2, \mathcal{D})$, with $\mathcal{D} = \mathsf{set}$ of disks

4 points

case 1: $D \in \operatorname{triangle}(ABC)$

case 2: ABCD convex quadrilateral

range space $(\mathbb{R}^2, \mathcal{D})$, with $\mathcal{D} = \mathsf{set}$ of disks

4 points

case 1: $D \in \text{triangle}(ABC)$

case 2: ABCD convex quadrilateral

without proof:

can't get $\{A,D\}$ and $\{B,C\}$

range space $(\mathbb{R}^2, \mathcal{D})$, with $\mathcal{D} = \mathsf{set}$ of disks

range space $(\mathbb{R}^2, \mathcal{D})$, with $\mathcal{D} = \mathsf{set}$ of disks

Example: convex sets as ranges

range space $(\mathbb{R}^2,\mathcal{C})$, with $\mathcal{C}=$ set of closed convex sets

Example: convex sets as ranges

range space $(\mathbb{R}^2,\mathcal{C})$, with $\mathcal{C}=$ set of closed convex sets

Example: convex sets as ranges

range space $(\mathbb{R}^2,\mathcal{C})$, with $\mathcal{C}=$ set of closed convex sets

Example: convex sets as ranges

range space $(\mathbb{R}^2,\mathcal{C})$, with $\mathcal{C}=$ set of closed convex sets

Example: convex sets as ranges

range space $(\mathbb{R}^2,\mathcal{C})$, with $\mathcal{C}=$ set of closed convex sets

 \Rightarrow VC-dimension $= \infty$

Quiz

range space $(\mathbb{R}^2, \mathcal{AR})$, with $\mathcal{AR}=$ set of axis-aligned rectangles What is its VC-dimension?

A 4

B 5

 \subset

Quiz

range space $(\mathbb{R}^2, \mathcal{AR})$, with $\mathcal{AR}=$ set of axis-aligned rectangles What is its VC-dimension?

range space $(\mathbb{R}^2,\mathcal{AR})$, with $\mathcal{AR}=$ set of axis-aligned rectangles

• A

B

D.

C

range space $(\mathbb{R}^2,\mathcal{AR})$, with $\mathcal{AR}=$ set of axis-aligned rectangles

• A • B

range space $(\mathbb{R}^2,\mathcal{AR})$, with $\mathcal{AR}=$ set of axis-aligned rectangles

• A

B

D.

C

range space $(\mathbb{R}^2,\mathcal{AR})$, with $\mathcal{AR}=$ set of axis-aligned rectangles

shattered!

range space $(\mathbb{R}^2,\mathcal{AR})$, with $\mathcal{AR}=$ set of axis-aligned rectangles

 \Rightarrow VC-dimension ≥ 4

shattered!

range space $(\mathbb{R}^2,\mathcal{AR})$, with $\mathcal{AR}=$ set of axis-aligned rectangles

 \Rightarrow VC-dimension ≥ 4

range space $(\mathbb{R}^2,\mathcal{AR})$, with $\mathcal{AR}=$ set of axis-aligned rectangles

 \Rightarrow VC-dimension ≥ 4

case 1: ≥ 1 point inside bounding rectangle

case 2: all points on bounding rectangle

Summary: VC-dimension of geometric range spaces

range space

 (\mathbb{R},\mathcal{I}) , with $\mathcal{I}=$ set of closed intervals

 $(\mathbb{R}^2,\mathcal{D})$, with $\mathcal{D}=$ set of disks

 $(\mathbb{R}^2,\mathcal{AR})$, with $\mathcal{AR}=$ set of axis-aligned rectangles

 $(\mathbb{R}^2,\mathcal{GR})$, with $\mathcal{GR}=$ set of arbitrary oriented rectangles

 $(\mathbb{R}^2,\mathcal{C})$, with $\mathcal{C}=$ set of closed convex sets

VC-dimension

2

3

4

? > 4

ε -samples

Measure: $\mu(r) = \frac{|r \cap P|}{|P|}$

•

•

•

Measure:
$$\mu(r) = \frac{|r \cap P|}{|P|}$$

Estimate:
$$\hat{\mu}(r) = \frac{|r \cap S|}{|S|}$$

Measure:
$$\mu(r) = \frac{|r \cap P|}{|P|}$$

$$\mu(Q) = \frac{9}{15} = 0.6$$

Estimate: $\hat{\mu}(r) = \frac{|r \cap S|}{|S|}$

$$\hat{\mu}(Q) = \frac{3}{6} = 0.5$$

P

oS

Measure:
$$\mu(r) = \frac{|r \cap P|}{|P|}$$

$$\mu(Q) = \frac{9}{15} = 0.6$$

Estimate: $\hat{\mu}(r) = \frac{|r \cap S|}{|S|}$

$$\hat{\mu}(Q) = \frac{3}{6} = 0.5$$

Good Sample *S*:

for all
$$r \in \mathcal{R}$$
, $\hat{\mu}(r) \approx \mu(r)$

P

 $\circ S$

ε -samples

 ε -sample S:

for all $r \in \mathcal{R}$ and any

$$0 \le \varepsilon \le 1$$

$$|\mu(\mathbf{r}) - \hat{\mu}(\mathbf{r})| \le \varepsilon$$

P

 $\circ S$

ε -samples

ε -sample S:

for all $r \in \mathcal{R}$ and any

$$0 \le \varepsilon \le 1$$

$$|\mu(\mathbf{r}) - \hat{\mu}(\mathbf{r})| \le \varepsilon$$

$$|\mu(r) - \hat{\mu}(r)| = |9/15 - 3/6|$$

= 0.1

 \mathcal{P}

oS

Quiz

$$|\mu(\mathbf{r}) - \hat{\mu}(\mathbf{r})| = \dots?$$

- A 0.0
- B 0.1
- C 0.2
- D none of the above

Quiz

$$|\mu(\mathbf{r}) - \hat{\mu}(\mathbf{r})| = \dots?$$

- A 0.0 $\frac{2}{6} = \frac{5}{15}$
- B 0.1
- **C** 0.2
- D none of the above

P

 $\circ S$

ε -sample theorem

Let $\varphi, \varepsilon > 0$ be parameters and (X, \mathcal{R}) be a range space with finite X and VC-dimension δ . A sample of size

$$O\left(\frac{1}{\varepsilon^2}\left(\delta + \log \varphi^{-1}\right)\right)$$

is an ε -sample for (X,\mathcal{R}) with probability $\geq 1-\varphi$

(we skip the proof)

Given P,

how many points do we need to sample $(S \subset P)$, such that

2. for any query rectangle r

$$\left|\frac{|r \cap P|}{|P|} - \frac{|r \cap S|}{|S|}\right| \le 0.25$$

with probability 0.999

Given P,

how many points do we need to sample $(S \subset P)$, such that

P

 $\circ S$

2. for any query rectangle r

$$\left| \frac{|r \cap P|}{|P|} - \frac{|r \cap S|}{|S|} \right| \le 0.25 = \varepsilon$$

with probability 0.999

Given P,

how many points do we need to sample $(S \subset P)$, such that

2. for any query rectangle r

$$\left| \frac{|r \cap P|}{|P|} - \frac{|r \cap S|}{|S|} \right| \le 0.25 = \varepsilon$$

with probability 0.999 $=1-\varphi$

Given P,

how many points do we need to sample $(S \subset P)$, such that

2. for any query rectangle r

$$\left| \frac{|r \cap P|}{|P|} - \frac{|r \cap S|}{|S|} \right| \le 0.25 = \varepsilon$$
?

with probability 0.999 $=1-\varphi$

Given P,

how many points do we need to sample $(S \subset P)$, such that

2. for any query rectangle r

$$\left|\frac{|r\cap P|}{|P|} - \frac{|r\cap S|}{|S|}\right| \le 0.25 = \varepsilon$$
?

with probability 0.999 $=1-\varphi$

answer: $O\left(\frac{1}{\varepsilon^2}\left(4+\log\phi^-1\right)\right)$, in particular O(1) for given ε,φ independent of n

ε -sample S:

for all $r \in \mathcal{R}$ and any

$$0 \le \varepsilon \le 1$$

if $\mu(r) \geq \varepsilon$ and

$$|\mu(\mathbf{r}) - \hat{\mu}(\mathbf{r})| \le \varepsilon \operatorname{then} \hat{\mu}(\mathbf{r}) > 0$$

 \mathbf{P}

 $\circ S$

ε -sample S:

for all $r \in \mathcal{R}$ and any

$$0 \le \varepsilon \le 1$$

if $\mu(r) \geq \varepsilon$ and

$$|\mu(\mathbf{r}) - \hat{\mu}(\mathbf{r})| \le \varepsilon \operatorname{then} \hat{\mu}(\mathbf{r}) > 0$$

weaker notion:

 ε -net S:

for all $r \in \mathcal{R}$ and any

$$0 \le \varepsilon \le 1$$

if $\mu(r) \geq \varepsilon$ then r contains

at least one point of S

 \mathbf{P}

S

ε -sample S:

for all $r \in \mathcal{R}$ and any

$$0 \le \varepsilon \le 1$$

if $\mu(r) \geq \varepsilon$ and

$$|\mu(\mathbf{r}) - \hat{\mu}(\mathbf{r})| \le \varepsilon \operatorname{then} \hat{\mu}(\mathbf{r}) > 0$$

weaker notion:

 ε -net S:

for all $r \in \mathcal{R}$ and any

$$0 \le \varepsilon \le 1$$

if $\mu(r) \geq \varepsilon$ then r contains

at least one point of S

ε -Net Theorem

Let $\varphi, \varepsilon > 0$ be parameters and (X, \mathcal{R}) be a range space with finite X and VC-dimension δ . A sample obtained by m random draws from X with

$$m \ge \max\left(\frac{4}{\varepsilon}\log\frac{4}{\varphi}, \frac{8\delta}{\varepsilon}\log\frac{16}{\varepsilon}\right)$$

is an ε -net for (X,\mathcal{R}) with probability $\geq 1-\varphi$

(we skip the proof, but there is a proof sketch in book)

ε -Net Theorem

Let $\varphi, \varepsilon > 0$ be parameters and (X, \mathcal{R}) be a range space with finite X and VC-dimension δ . A sample obtained by m random draws from X with

$$m \ge \max\left(\frac{4}{\varepsilon}\log\frac{4}{\varphi}, \frac{8\delta}{\varepsilon}\log\frac{16}{\varepsilon}\right)$$

is an ε -net for (X,\mathcal{R}) with probability $\geq 1-\varphi$

(we skip the proof, but there is a proof sketch in book)

in short:
$$\begin{array}{c} \varepsilon\text{-sample} \\ O\left(\frac{\delta}{\varepsilon^2}\right) \end{array} \quad \text{vs} \quad \begin{array}{c} \varepsilon\text{-net} \\ O\left(\frac{\delta}{\varepsilon}\log\frac{1}{\varepsilon}\right) \end{array}$$

Given P, how many points do we need to sample ($S \subset P$), such that the smallest enclosing disk contains 90% of the points in P? with probability 0.999

Given P, how many points do we need to sample ($S \subset P$), such that the smallest enclosing disk contains 90% of the points in P? with probability 0.999 $= 1 - \varphi$

Given P, how many points do we need to sample ($S \subset P$), such that the smallest enclosing disk contains 90% of the points in P? $\varepsilon = 0.1$ with probability 0.999 $= 1 - \varphi$

Given P, how many points do we need to sample ($S \subset P$), such that

the smallest enclosing disk contains 90% of the points in P? $\varepsilon=0.1$ with probability 0.999 $=1-\varphi$

Question: Which range space?

Given P, how many points do we need to sample ($S \subset P$), such that

the smallest enclosing disk contains 90% of the points in P? $\varepsilon=0.1$ with probability 0.999 $=1-\varphi$

Question: Which range space?

If 10% of P outside a circle, then there should be a point of S outside the circle

Given P, how many points do we need to sample ($S \subset P$), such that

the smallest enclosing disk contains 90% of the points in P? $\varepsilon=0.1$ with probability 0.999 $=1-\varphi$

Question: Which range space?

If 10% of P outside a circle, then there should be a point of S outside the circle range space: $(\mathbb{R}^2, \mathcal{D}^c)$, with \mathcal{D}^c the set of complements of disks.

Given P, how many points do we need to sample ($S \subset P$), such that

the smallest enclosing disk contains 90% of the points in P? $\varepsilon=0.1$ with probability 0.999 $=1-\varphi$

Question: Which range space?

If 10% of P outside a circle, then there should be a point of S outside the circle range space: $(\mathbb{R}^2, \mathcal{D}^c)$, with \mathcal{D}^c the set of complements of disks.

range space and its complement have same VC-dimension

Given P, how many points do we need to sample ($S \subset P$), such that

the smallest enclosing disk contains 90% of the points in P? $\varepsilon=0.1$ with probability 0.999 $=1-\varphi$

Question: Which range space?

If 10% of P outside a circle, then there should be a point of S outside the circle range space: $(\mathbb{R}^2, \mathcal{D}^c)$, with \mathcal{D}^c the set of complements of disks.

range space and its complement have same VC-dimension

Given P, how many points do we need to sample ($S \subset P$), such that

the smallest enclosing disk contains 90% of the points in P? $\varepsilon=0.1$ with probability 0.999 $=1-\varphi$

Question: Which range space?

If 10% of P outside a circle, then there should be a point of S outside the circle range space: $(\mathbb{R}^2, \mathcal{D}^c)$, with \mathcal{D}^c the set of complements of disks.

range space and its complement have same VC-dimension

ε -sample theorem, revisited

 ε -sample (and -net) theorem use random sample.

ε -sample theorem, revisited

 ε -sample (and -net) theorem use random sample.

It is also possible to construct an ε -sample of size $O(\frac{\log |\mathcal{R}|}{\varepsilon^2})$ deterministically.

ε -sample theorem, revisited

 ε -sample (and -net) theorem use random sample.

It is also possible to construct an ε -sample of size $O(\frac{\log |\mathcal{R}|}{\varepsilon^2})$ deterministically.

Question: How large is $\log |\mathcal{R}|$?

bounding $|\mathcal{R}|$

Given $0 \le d \le n$, define $\Phi_d(n)$ to be the number of subsets of size at most d over a set of size n.

Given $0 \le d \le n$, define $\Phi_d(n)$ to be the number of subsets of size at most d over a set of size n.

$$\Phi_d(n) = \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{d} = \sum_{i=0}^d \binom{n}{i}$$

Given $0 \le d \le n$, define $\Phi_d(n)$ to be the number of subsets of size at most d over a set of size n.

$$\Phi_d(n) = \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{d} = \sum_{i=0}^d \binom{n}{i} \le n^d$$

Given $0 \le d \le n$, define $\Phi_d(n)$ to be the number of subsets of size at most d over a set of size n.

$$\Phi_d(n) = \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{d} = \sum_{i=0}^d \binom{n}{i} \le n^d$$

This function satisfies the following recurrence

$$\Phi_d(n) = \Phi_d(n-1) + \Phi_{d-1}(n-1)$$

Given $0 \le d \le n$, define $\Phi_d(n)$ to be the number of subsets of size at most d over a set of size n.

$$\Phi_d(n) = \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{d} = \sum_{i=0}^d \binom{n}{i} \le n^d$$

This function satisfies the following recurrence

$$\Phi_d(n) = \Phi_d(n-1) + \Phi_{d-1}(n-1)$$

Intuition: Take element x: subsets don't contain x or do

If (X, \mathcal{R}) is a range space with VC-dimension d and |X| = n, then $|\mathcal{R}| \leq \Phi_d(n)$.

If (X, \mathcal{R}) is a range space with VC-dimension d and |X| = n, then $|\mathcal{R}| \leq \Phi_d(n)$.

proof

Induction on d and n

If (X, \mathcal{R}) is a range space with VC-dimension d and |X| = n, then $|\mathcal{R}| \leq \Phi_d(n)$.

proof

Induction on d and n

Base: d=0 and n=0 trivially true

If (X,\mathcal{R}) is a range space with VC-dimension d and |X|=n, then $|\mathcal{R}|\leq \Phi_d(n)$. proof

Step:

$$\mathcal{R}_x = \{Q \setminus \{x\} : Q \cup \{x\} \in \mathcal{R} \text{ and } Q \setminus \{x\} \in \mathcal{R}\}$$

$$\mathcal{R} \setminus x = \{Q \setminus \{x\} : Q \in \mathcal{R}\}$$

If (X, \mathcal{R}) is a range space with VC-dimension d and |X| = n, then $|\mathcal{R}| \leq \Phi_d(n)$. proof

Step:

$$\mathcal{R}_x = \{Q \setminus \{x\} : Q \cup \{x\} \in \mathcal{R} \text{ and } Q \setminus \{x\} \in \mathcal{R}\}$$

$$\mathcal{R} \setminus x = \{Q \setminus \{x\} : Q \in \mathcal{R}\}$$

claim:
$$|\mathcal{R}| = |\mathcal{R}_x| + |\mathcal{R} \setminus x|$$

If (X, \mathcal{R}) is a range space with VC-dimension d and |X| = n, then $|\mathcal{R}| \leq \Phi_d(n)$.

Step:

$$\mathcal{R}_x = \{Q \setminus \{x\} : Q \cup \{x\} \in \mathcal{R} \text{ and } Q \setminus \{x\} \in \mathcal{R}\}$$

$$\mathcal{R} \setminus x = \{Q \setminus \{x\} : Q \in \mathcal{R}\}$$

claim:
$$|\mathcal{R}| = |\mathcal{R}_x| + |\mathcal{R} \setminus x|$$

Charge each range of \mathcal{R} to corresponding range in $\mathcal{R} \setminus \{x\}$

If (X, \mathcal{R}) is a range space with VC-dimension d and |X| = n, then $|\mathcal{R}| \leq \Phi_d(n)$. proof

Step:

$$\mathcal{R}_x = \{Q \setminus \{x\} : Q \cup \{x\} \in \mathcal{R} \text{ and } Q \setminus \{x\} \in \mathcal{R}\}$$

$$\mathcal{R} \setminus x = \{Q \setminus \{x\} : Q \in \mathcal{R}\}$$

claim:
$$|\mathcal{R}| = |\mathcal{R}_x| + |\mathcal{R} \setminus x|$$

Charge each range of $\mathcal R$ to corresponding range in $\mathcal R\setminus\{x\}$

Range r with $r \cup \{x\} \in \mathcal{R}$ and $r \setminus \{x\} \in \mathcal{R}$ charged twice ?!

If (X,\mathcal{R}) is a range space with VC-dimension d and |X|=n, then $|\mathcal{R}|\leq \Phi_d(n)$. proof

Step:

$$\mathcal{R}_x = \{Q \setminus \{x\} : Q \cup \{x\} \in \mathcal{R} \text{ and } Q \setminus \{x\} \in \mathcal{R}\}$$

$$\mathcal{R} \setminus x = \{Q \setminus \{x\} : Q \in \mathcal{R}\}$$

claim:
$$|\mathcal{R}| = |\mathcal{R}_x| + |\mathcal{R} \setminus x|$$

Charge each range of $\mathcal R$ to corresponding range in $\mathcal R\setminus\{x\}$

Range r with $r \cup \{x\} \in \mathcal{R}$ and $r \setminus \{x\} \in \mathcal{R}$ charged twice ?!

These are exactly elements in \mathcal{R}_x !

If (X, \mathcal{R}) is a range space with VC-dimension d and |X| = n, then $|\mathcal{R}| \leq \Phi_d(n)$. proof

$$\mathcal{R}_x = \{Q \setminus \{x\} : Q \cup \{x\} \in \mathcal{R} \text{ and } Q \setminus \{x\} \in \mathcal{R}\}$$
$$|\mathcal{R}| = |\mathcal{R}_x| + |\mathcal{R} \setminus x|$$

claim: $(X \setminus \{x\}, \mathcal{R}_x)$ has VC-dimension at most d-1

If (X, \mathcal{R}) is a range space with VC-dimension d and |X| = n, then $|\mathcal{R}| \leq \Phi_d(n)$.

```
\mathcal{R}_x = \{Q \setminus \{x\} : Q \cup \{x\} \in \mathcal{R} \text{ and } Q \setminus \{x\} \in \mathcal{R}\} |\mathcal{R}| = |\mathcal{R}_x| + |\mathcal{R} \setminus x| \text{claim: } (X \setminus \{x\}, \mathcal{R}_x) \text{ has VC-dimension at most } d-1 \text{If } B \subset X \setminus \{x\} \text{ is shattered by } \mathcal{R}_x \text{, then } B \cup \{x\} \text{ is shattered in } \mathcal{R}
```

If (X, \mathcal{R}) is a range space with VC-dimension d and |X| = n, then $|\mathcal{R}| \leq \Phi_d(n)$. proof

```
\mathcal{R}_x = \{Q \setminus \{x\} : Q \cup \{x\} \in \mathcal{R} \text{ and } Q \setminus \{x\} \in \mathcal{R}\} |\mathcal{R}| = |\mathcal{R}_x| + |\mathcal{R} \setminus x| \text{claim: } (X \setminus \{x\}, \mathcal{R}_x) \text{ has VC-dimension at most } d-1 If B \subset X \setminus \{x\} \text{ is shattered by } \mathcal{R}_x \text{, then } B \cup \{x\} \text{ is shattered in } \mathcal{R} (X \setminus \{x\}, \mathcal{R}_x) \text{ has smaller VC-dim. than } (X, \mathcal{R})
```

If (X, \mathcal{R}) is a range space with VC-dimension d and |X| = n, then $|\mathcal{R}| \leq \Phi_d(n)$. proof

$$\mathcal{R}_x = \{Q \setminus \{x\} : Q \cup \{x\} \in \mathcal{R} \text{ and } Q \setminus \{x\} \in \mathcal{R}\}$$
$$|\mathcal{R}| = |\mathcal{R}_x| + |\mathcal{R} \setminus x|$$

claim: $(X \setminus \{x\}, \mathcal{R}_x)$ has VC-dimension at most d-1

Thus, by induction hypothesis:

$$|\mathcal{R}| \le \Phi_{d-1}(n-1) + \Phi_d(n-1)$$

If (X, \mathcal{R}) is a range space with VC-dimension d and |X| = n, then $|\mathcal{R}| \leq \Phi_d(n)$.

$$\mathcal{R}_x = \{Q \setminus \{x\} : Q \cup \{x\} \in \mathcal{R} \text{ and } Q \setminus \{x\} \in \mathcal{R}\}$$
$$|\mathcal{R}| = |\mathcal{R}_x| + |\mathcal{R} \setminus x|$$

claim: $(X \setminus \{x\}, \mathcal{R}_x)$ has VC-dimension at most d-1

Thus, by induction hypothesis:

$$|\mathcal{R}| \le \Phi_{d-1}(n-1) + \Phi_d(n-1) = \Phi_d(n)$$

Quiz

Which bound on $O\left(\frac{\log |\mathcal{R}|}{\varepsilon^2}\right)$ does the previous lemma give for (X,\mathcal{R}) with n=|X| and VC-dimension δ ?

$$\mathsf{A} \qquad O\left(\frac{\delta}{\varepsilon^2}\right)$$

B
$$O\left(rac{\delta \log n}{arepsilon^2}
ight)$$
C $O\left(rac{\delta n}{arepsilon^2}
ight)$

$$O\left(\frac{\delta n}{\varepsilon^2}\right)$$

Quiz

Which bound on $O\left(\frac{\log |\mathcal{R}|}{\varepsilon^2}\right)$ does the previous lemma give for (X,\mathcal{R}) with n=|X| and VC-dimension δ ?

$$A \qquad O\left(\frac{\delta}{\varepsilon^2}\right)$$

$$O\left(\frac{\delta \log n}{\varepsilon^2}\right)$$

$$O\left(\frac{\delta n}{\varepsilon^2}\right)$$

$$VC\text{-dim }\delta \quad \Rightarrow \quad |\mathcal{R}| \leq n^{\delta}$$

Quiz

Which bound on $O\left(\frac{\log |\mathcal{R}|}{\varepsilon^2}\right)$ does the previous lemma give for (X,\mathcal{R}) with n=|X| and VC-dimension δ ?

A
$$O\left(\frac{\delta}{\varepsilon^2}\right)$$
B $O\left(\frac{\delta \log r}{\varepsilon^2}\right)$

$$\operatorname{VC-dim} \delta \quad \Rightarrow \quad |\mathcal{R}| \leq n^{\delta}$$

What does $|\mathcal{R}| = O(n^d)$ imply about the VC-dimension?

Shattering dimension

Shattering Dimension

Given a range space $S=(X,\mathcal{R})$, its shatter function $\pi_S(m)$ is the maximum number of sets that might be created by S when restricted to subsets of size m. Formally,

$$\pi_S(m) = \max_{\substack{B \subset X \\ |B| = m}} |R_{|B}|$$

Shattering Dimension

Given a range space $S=(X,\mathcal{R})$, its shatter function $\pi_S(m)$ is the maximum number of sets that might be created by S when restricted to subsets of size m. Formally,

$$\pi_S(m) = \max_{\substack{B \subset X \\ |B| = m}} |R_{|B}|$$

The shattering dimension of S is the smallest d such that $\pi_S(m) = O(m^d)$, for all m

Shattering Dimension

Given a range space $S=(X,\mathcal{R})$, its shatter function $\pi_S(m)$ is the maximum number of sets that might be created by S when restricted to subsets of size m. Formally,

$$\pi_S(m) = \max_{\substack{B \subset X \\ |B| = m}} |R_{|B}|$$

The shattering dimension of S is the smallest d such that $\pi_S(m) = O(m^d)$, for all m

Sauer's lemma: shattering dimension \leq VC-dimension

range space $(\mathbb{R}^2,\mathcal{D})$, with $\mathcal{D}=$ set of disks

•

•

•

range space $(\mathbb{R}^2, \mathcal{D})$, with $\mathcal{D} = \mathsf{set}$ of disks

Question: When restricted to n points, how many ranges are there?

•

•

range space $(\mathbb{R}^2, \mathcal{D})$, with $\mathcal{D} = \mathsf{set}$ of disks

Question: When restricted to n points, how many ranges are there?

range space $(\mathbb{R}^2, \mathcal{D})$, with $\mathcal{D} = \mathsf{set}$ of disks

range space $(\mathbb{R}^2, \mathcal{D})$, with $\mathcal{D} = \mathsf{set}$ of disks

Question: When restricted to n points, how many ranges are there?

canonical disk for points in range:

smallest enclosing disk

uniquely determined by ≤ 3 points

range space $(\mathbb{R}^2, \mathcal{D})$, with $\mathcal{D} = \mathsf{set}$ of disks

Question: When restricted to n points, how many ranges are there?

consider a disk

canonical disk for points in range:

smallest enclosing disk

uniquely determined by ≤ 3 points on boundary

$$|\mathcal{R}_{|P}| \le \Phi_d(n) \le n^3$$

range space $(\mathbb{R}^2, \mathcal{D})$, with $\mathcal{D} = \mathsf{set}$ of disks

Question: When restricted to n points, how many ranges are there?

consider a disk

canonical disk for points in range:

smallest enclosing disk

uniquely determined by ≤ 3 points on boundary

$$|\mathcal{R}_{|P}| \le \Phi_d(n) \le n^3$$

shattering dim ≤ 3

shattering dimension \approx how many points determine a range

shattering dimension \approx how many points determine a range

range space

(\mathbb{R},\mathcal{I}) , with $\mathcal{I}=$ set of closed intervals?

 $(\mathbb{R}^2,\mathcal{D})$, with $\mathcal{D}=$ set of disks

 $(\mathbb{R}^2,\mathcal{AR})$, with $\mathcal{AR}=$ set of axis-aligned rectangles

 $(\mathbb{R}^2,\mathcal{GR})$, with $\mathcal{GR}=$ set of arbitrary oriented rectangles

 $(\mathbb{R}^2,\mathcal{C})$, with $\mathcal{C}=$ set of closed convex sets

shattering dimension

3

shattering dimension \approx how many points determine a range

range space

 (\mathbb{R},\mathcal{I}) , with $\mathcal{I}=$ set of closed intervals

 $(\mathbb{R}^2,\mathcal{D})$, with $\mathcal{D}=$ set of disks

 $(\mathbb{R}^2, \mathcal{AR})$, with $\mathcal{AR} = \text{set of axis-aligned rectangles}$?

 $(\mathbb{R}^2,\mathcal{GR})$, with $\mathcal{GR}=$ set of arbitrary oriented rectangles

 $(\mathbb{R}^2,\mathcal{C})$, with $\mathcal{C}=$ set of closed convex sets

shattering dimension

2

3

shattering dimension \approx how many points determine a range

range space

 (\mathbb{R},\mathcal{I}) , with $\mathcal{I}=$ set of closed intervals

 $(\mathbb{R}^2,\mathcal{D})$, with $\mathcal{D}=$ set of disks

 $(\mathbb{R}^2,\mathcal{AR})$, with $\mathcal{AR}=$ set of axis-aligned rectangles

 $(\mathbb{R}^2,\mathcal{GR})$, with $\mathcal{GR}=$ set of arbitrary oriented rectangles

 $(\mathbb{R}^2,\mathcal{C})$, with $\mathcal{C}=$ set of closed convex sets

shattering dimension

2

3

4

_

shattering dimension \approx how many points determine a range

range space

 (\mathbb{R},\mathcal{I}) , with $\mathcal{I}=$ set of closed intervals

 $(\mathbb{R}^2,\mathcal{D})$, with $\mathcal{D}=$ set of disks

 $(\mathbb{R}^2,\mathcal{AR})$, with $\mathcal{AR}=$ set of axis-aligned rectangles

 $(\mathbb{R}^2,\mathcal{GR})$, with $\mathcal{GR}=$ set of arbitrary oriented rectangles

 $(\mathbb{R}^2,\mathcal{C})$, with $\mathcal{C}=$ set of closed convex sets

shattering dimension

2

3

4

5

_

shattering dimension \approx how many points determine a range

range space

 (\mathbb{R},\mathcal{I}) , with $\mathcal{I}=$ set of closed intervals

 $(\mathbb{R}^2,\mathcal{D})$, with $\mathcal{D}=$ set of disks

 $(\mathbb{R}^2,\mathcal{AR})$, with $\mathcal{AR}=$ set of axis-aligned rectangles

 $(\mathbb{R}^2,\mathcal{GR})$, with $\mathcal{GR}=$ set of arbitrary oriented rectangles

 $(\mathbb{R}^2,\mathcal{C})$, with $\mathcal{C}=$ set of closed convex sets

shattering dimension

2

3

4

5

Can be easier to compute than VC-dimension

VC-dimension δ shattering dimension \boldsymbol{d}

VC-dimension δ shattering dimension \boldsymbol{d}

Sauer's lemma: $d \leq \delta$

VC-dimension δ shattering dimension \boldsymbol{d}

Sauer's lemma: $d \leq \delta$

claim: $\delta \leq O(d \log d)$

VC-dimension δ shattering dimension \boldsymbol{d}

Sauer's lemma: $d \leq \delta$

claim: $\delta \leq O(d \log d)$

VC-dimension δ shattering dimension d

Sauer's lemma: $d \leq \delta$

claim: $\delta \leq O(d \log d)$

$$2^{\delta} = \mathcal{R}_{|N} \le c\delta^d$$

VC-dimension δ shattering dimension \boldsymbol{d}

Sauer's lemma: $d \leq \delta$

claim: $\delta \leq O(d \log d)$

$$2^{\delta} = \mathcal{R}_{|N} \le c\delta^d$$

$$\delta \le \log(c) + d\log \delta$$

VC-dimension δ shattering dimension \boldsymbol{d}

Sauer's lemma: $d \leq \delta$

claim: $\delta \leq O(d \log d)$

$$2^{\delta} = \mathcal{R}_{|N} \le c\delta^d$$

$$\delta \le \log(c) + d\log \delta$$

$$\log \delta \le \log(\log(c) + d\log \delta) = O(\log(d\log \delta)) = O(\log d + \log\log \delta)$$

VC-dimension δ shattering dimension \boldsymbol{d}

Sauer's lemma: $d \leq \delta$

claim: $\delta \leq O(d \log d)$

$$2^{\delta} = \mathcal{R}_{|N} \le c\delta^d$$

$$\delta \le \log(c) + d\log \delta$$

$$\log \delta \le \log(\log(c) + d\log \delta) = O(\log(d\log \delta)) = O(\log d + \log\log \delta)$$

$$\delta \le O(d\log \delta) = O(d\log d)$$

Summary

range space (X, \mathcal{R})

VC-dimension δ examples of geometric range spaces

$$\varepsilon\text{-sample of size }O\left(\frac{\delta + \log \varphi^{-1}}{\varepsilon^{2}}\right) \\ \varepsilon\text{-net of size }O\left(\frac{\delta \log \varepsilon^{-1} + \log \varphi^{-1}}{\varepsilon}\right) \\ \text{applications for geometric approximation}$$

shattering dimension d $d < \delta < d \log d$