ε-sampling

range space
VC-dimension
ε-nets
ε-samples

Motivation: sampling for approximation

Given P,

Motivation: sampling for approximation

Given P,
how many points do we need to sample ($S \subset P$), such that

Motivation: sampling for approximation

Given P,
how many points do we need to sample ($S \subset P$), such that

1. the smallest enclosing disk contains 90% of the points in P ?

Motivation: sampling for approximation

$$
\text { Given } P \text {, }
$$

how many points do we need to sample ($S \subset P$), such that

1. the smallest enclosing disk contains 90% of the points in P ?
2. for any query rectangle r
we can estimate the number of points of P in r ?

O
O

Motivation: sampling for approximation

Given P,
how many points do we need to sample ($S \subset P$), such that

1. the smallest enclosing disk contains 90% of the points in P ?
2. for any query rectangle r

$$
\left|\frac{|r \cap P|}{|P|}-\frac{|r \cap S|}{|S|}\right| \leq 0.25 ?
$$

Motivation: sampling for approximation

$$
\text { Given } P \text {, }
$$

how many points do we need to sample ($S \subset P$), such that

1. the smallest enclosing disk contains 90% of the points in P ?
2. for any query rectangle r

$$
\left|\frac{|r \cap P|}{|P|}-\frac{|r \cap S|}{|S|}\right| \leq 0.25 ?
$$

with probability 0.999

Ranges matter

$\left|\frac{|r \cap P|}{|P|}-\frac{|r \cap S|}{|S|}\right| \leq 0.25$ for all ranges $r ?$

O
-

Ranges matter

$\left|\frac{|r \cap P|}{|P|}-\frac{|r \cap S|}{|S|}\right| \leq 0.25$ for all ranges $r ?$
Cant work for general ranges (unless $S \approx P$)

Ranges matter

$\left|\frac{|r \cap P|}{|P|}-\frac{|r \cap S|}{|S|}\right| \leq 0.25$ for all ranges $r ?$
Can't work for general ranges (unless $S \approx P$)

Question: Why could this work for (axis-aligned) rectangles?

Ranges matter

$\left|\frac{|r \cap P|}{|P|}-\frac{|r \cap S|}{|S|}\right| \leq 0.25$ for all ranges $r ?$
Can't work for general ranges (unless $S \approx P$)

Question: Why could this work for (axis-aligned) rectangles?

Ideas:

- for 5 points: range with 4 points will contain inner point

Ranges matter

$\left|\frac{|r \cap P|}{|P|}-\frac{|r \cap S|}{|S|}\right| \leq 0.25$ for all ranges $r ?$
Can't work for general ranges (unless $S \approx P$)

Question: Why could this work for (axis-aligned) rectangles?

Ideas:

- for 5 points: range with 4 points will contain inner point
- 2^{n} subsets of P by general ranges but much fewer by rectangles

Quiz

Given point set P of size n and axis-aligned rectangles as ranges, how many sets $P \cap r$ are there?

A $\quad O\left(n^{2}\right)$
B $\quad O\left(n^{3}\right)$
C $O\left(n^{4}\right)$
(we ask for a tight bound)

Quiz

Given point set P of size n and axis-aligned rectangles as ranges, how many sets $P \cap r$ are there?

A	$O\left(n^{2}\right)$
B	$O\left(n^{3}\right)$
C	$O\left(n^{4}\right)$

(we ask for a tight bound)

Given point set P of size n and axis-aligned rectangles as ranges, how many sets $P \cap r$ are there?

A	$O\left(n^{2}\right)$
B	$O\left(n^{3}\right)$
C	$O\left(n^{4}\right)$

(we ask for a tight bound)

each minimal rectangle defined by left, top, right, bottom point
range spaces and VC-dimension

Range space

range space: pair (X, \mathcal{R})

- X is a set
- \mathcal{R} is a subset of power set of X

Range space

range space: pair (X, \mathcal{R})

- X is a set
- \mathcal{R} is a subset of power set of X

example

- $X=\mathbb{R}^{2}$
- \mathcal{R} : set of axis-aligned rectangles

Range space

range space: pair (X, \mathcal{R})

- X is a set
- \mathcal{R} is a subset of power set of X

example

- $X=\mathbb{R}^{2}$
- \mathcal{R} : set of axis-aligned rectangles
restriction $\mathcal{R}_{\mid P}$

Range space

range space: pair (X, \mathcal{R})

- X is a set
- \mathcal{R} is a subset of power set of X

example

- $X=\mathbb{R}^{2}$
- \mathcal{R} : set of axis-aligned rectangles
restriction $\mathcal{R}_{\mid P}$
- $P \subseteq X$
- $\mathcal{R}_{\mid P}:=\{r \cap P \mid r \in \mathcal{R}\}$
- $\left(P, \mathcal{R}_{\mid P}\right)$ is a range space, e.g.,

(not all shown)

Examples of range spaces

$(\mathbb{R}, \mathcal{I})$, with $\mathcal{I}=$ set of closed intervals
$\left(\mathbb{R}^{2}, \mathcal{D}\right)$, with $\mathcal{D}=$ set of disks
$\left(\mathbb{R}^{2}, \mathcal{A} \mathcal{R}\right)$, with $\mathcal{A R}=$ set of axis-aligned rectangles
$\left(\mathbb{R}^{2}, \mathcal{G} \mathcal{R}\right)$, with $\mathcal{G \mathcal { R }}=$ set of arbitrary oriented rectangles
$\left(\mathbb{R}^{2}, \mathcal{C}\right)$, with $\mathcal{C}=$ set of closed convex sets

VC-dimension

example: $\left(\mathbb{R}^{2}, \mathcal{A} \mathcal{R}\right)$, with $\mathcal{A R}=$ set of axis-aligned rectangles

VC-dimension

example: $\left(\mathbb{R}^{2}, \mathcal{A} \mathcal{R}\right)$, with $\mathcal{A R}=$ set of axis-aligned rectangles
want to quantify: range space has "low complexity"

VC-dimension

example: $\left(\mathbb{R}^{2}, \mathcal{A} \mathcal{R}\right)$, with $\mathcal{A R}=$ set of axis-aligned rectangles
want to quantify: range space has "low complexity"
recall: $\mathcal{R}_{\mid Q}:=\{r \cap Q \mid r \in \mathcal{R}\}$

VC-dimension

example: $\left(\mathbb{R}^{2}, \mathcal{A} \mathcal{R}\right)$, with $\mathcal{A R}=$ set of axis-aligned rectangles
want to quantify: range space has "low complexity"
recall: $\mathcal{R}_{\mid Q}:=\{r \cap Q \mid r \in \mathcal{R}\}$
Def: Q is shattered by \mathcal{R} if $R_{\mid Q}$ is the power set of Q

VC-dimension

example: $\left(\mathbb{R}^{2}, \mathcal{A} \mathcal{R}\right)$, with $\mathcal{A R}=$ set of axis-aligned rectangles
want to quantify: range space has "low complexity"
recall: $\mathcal{R}_{\mid Q}:=\{r \cap Q \mid r \in \mathcal{R}\}$
Def: Q is shattered by \mathcal{R} if $R_{\mid Q}$ is the power set of Q
Question: Can Q be shattered by $\mathcal{A R}$?

VC-dimension

example: $\left(\mathbb{R}^{2}, \mathcal{A R}\right)$, with $\mathcal{A} \mathcal{R}=$ set of axis-aligned rectangles
want to quantify: range space has "low complexity"
recall: $\mathcal{R}_{\mid Q}:=\{r \cap Q \mid r \in \mathcal{R}\}$
Def: Q is shattered by \mathcal{R} if $R_{\mid Q}$ is the power set of Q
Question: Can Q be shattered by $\mathcal{A} \mathcal{R}$?

VC-dimension

example: $\left(\mathbb{R}^{2}, \mathcal{A} \mathcal{R}\right)$, with $\mathcal{A R}=$ set of axis-aligned rectangles
want to quantify: range space has "low complexity"
recall: $\mathcal{R}_{\mid Q}:=\{r \cap Q \mid r \in \mathcal{R}\}$
Def: Q is shattered by \mathcal{R} if $R_{\mid Q}$ is the power set of Q
Question: Can this Q be shattered by $\mathcal{A R}$?

VC-dimension

example: $\left(\mathbb{R}^{2}, \mathcal{A} \mathcal{R}\right)$, with $\mathcal{A R}=$ set of axis-aligned rectangles
want to quantify: range space has "low complexity"
recall: $\mathcal{R}_{\mid Q}:=\{r \cap Q \mid r \in \mathcal{R}\}$
Def: Q is shattered by \mathcal{R} if $R_{\mid Q}$ is the power set of Q
Question: Can this Q be shattered by $\mathcal{A R}$?

VC-dimension

example: $\left(\mathbb{R}^{2}, \mathcal{A} \mathcal{R}\right)$, with $\mathcal{A R}=$ set of axis-aligned rectangles
want to quantify: range space has "low complexity"
recall: $\mathcal{R}_{\mid Q}:=\{r \cap Q \mid r \in \mathcal{R}\}$
Def: Q is shattered by \mathcal{R} if $R_{\mid Q}$ is the power set of Q
Question: Can this Q be shattered by $\mathcal{A R}$?

VC-dimension of a range space: maximum size of a shattered subset of X

Example $(\mathbb{R}, \mathcal{I})$

No set of 3 or more elements can be shattered.

Example $(\mathbb{R}, \mathcal{I})$

No set of 3 or more elements can be shattered.

Example $(\mathbb{R}, \mathcal{I})$

$$
\begin{aligned}
& \qquad=A \\
& P=\{A\} \subseteq \mathbb{R}
\end{aligned}
$$

No set of 3 or more elements can be shattered.

Example $(\mathbb{R}, \mathcal{I})$

No set of 3 or more elements can be shattered.

Example $(\mathbb{R}, \mathcal{I})$

$$
\begin{gathered}
\frac{A}{\bullet} \\
P=\{A\} \subseteq \mathbb{R} \\
\mathcal{R}_{\mid P}=\{\varnothing,\{A\}\} \\
\left|\mathcal{R}_{\mid P}\right|=2=2^{|P|}
\end{gathered}
$$

No set of 3 or more elements can be shattered.

Example $(\mathbb{R}, \mathcal{I})$

$$
\begin{gathered}
\frac{A}{?} \\
P=\{A\} \subseteq \mathbb{R} \\
\mathcal{R}_{\mid P}=\{\varnothing,\{A\}\} \\
\left|\mathcal{R}_{\mid P}\right|=2=2^{|P|} \quad \text { shattered ! }
\end{gathered}
$$

No set of 3 or more elements can be shattered.

Example $(\mathbb{R}, \mathcal{I})$

$$
P=\{A, B\} \subseteq \mathbb{R}
$$

No set of 3 or more elements can be shattered.

Example $(\mathbb{R}, \mathcal{I})$

No set of 3 or more elements can be shattered.

Example $(\mathbb{R}, \mathcal{I})$

$$
\begin{array}{cl}
\cdots & \begin{array}{l}
A \\
P
\end{array}=\{A, B\} \subseteq \mathbb{R} \\
\varnothing \in \mathcal{R}_{\mid P} \quad\{A\} \in \mathcal{R}_{\mid P} & \{B\} \in \mathcal{R}_{\mid P}
\end{array}
$$

No set of 3 or more elements can be shattered.

Example $(\mathbb{R}, \mathcal{I})$

$$
\begin{gathered}
\underset{\sim}{\bullet} \\
P=\{A, B\} \subseteq \mathbb{R} \\
\varnothing \in \mathcal{R}_{\mid P} \quad\{A\} \in \mathcal{R}_{\mid P} \quad\{B\} \in \mathcal{R}_{\mid P} \quad\{A, B\} \in \mathcal{R}_{\mid P}
\end{gathered}
$$

No set of 3 or more elements can be shattered.

Example $(\mathbb{R}, \mathcal{I})$

$$
\begin{aligned}
& \quad \frac{A}{\bullet} \\
& P=\{A, B\} \subseteq \mathbb{R} \\
& \varnothing \in \mathcal{R}_{\mid P} \quad\{A\} \in \mathcal{R}_{\mid P} \quad\{B\} \in \mathcal{R}_{\mid P} \quad\{A, B\} \in \mathcal{R}_{\mid P} \\
& \left|\mathcal{R}_{\mid P}\right|=2^{|P|}
\end{aligned}
$$

No set of 3 or more elements can be shattered.

Example $(\mathbb{R}, \mathcal{I})$

$$
\begin{aligned}
& \stackrel{A}{\bullet} \\
& P=\{A, B\} \subseteq \mathbb{R} \\
& \varnothing \in \mathcal{R}_{\mid P} \quad\{A\} \in \mathcal{R}_{\mid P} \quad\{B\} \in \mathcal{R}_{\mid P} \quad\{A, B\} \in \mathcal{R}_{\mid P} \\
& \left|\mathcal{R}_{\mid P}\right|=2^{|P|}
\end{aligned}
$$

No set of 3 or more elements can be shattered.

Example $(\mathbb{R}, \mathcal{I})$

No set of 3 or more elements can be shattered.

Example $(\mathbb{R}, \mathcal{I})$

No set of 3 or more elements can be shattered.

Example $(\mathbb{R}, \mathcal{I})$

No set of 3 or more elements can be shattered.

Example $(\mathbb{R}, \mathcal{I})$

No set of 3 or more elements can be shattered.

Example $(\mathbb{R}, \mathcal{I})$

No set of 3 or more elements can be shattered.

Example $(\mathbb{R}, \mathcal{I})$

$$
\begin{aligned}
& \stackrel{A}{\bullet} \quad{ }^{\text {C }} \quad \text { B } \\
& P=\{A, B, C\} \subseteq \mathbb{R} \\
& \{A, B\} \notin \mathcal{R}_{\mid P} \\
& \left|\mathcal{R}_{\mid P}\right|<2^{|P|}
\end{aligned}
$$

No set of 3 or more elements can be shattered.

Example $(\mathbb{R}, \mathcal{I})$

$$
\begin{aligned}
& \stackrel{A}{\bullet} \quad{ }^{\text {C }} \quad \text { B } \\
& P=\{A, B, C\} \subseteq \mathbb{R} \\
& \{A, B\} \notin \mathcal{R}_{\mid P} \\
& \left|\mathcal{R}_{\mid P}\right|<2^{|P|}
\end{aligned}
$$

No set of 3 or more elements can be shattered.

Example $(\mathbb{R}, \mathcal{I})$

$$
P=\{A, B, C\} \subseteq \mathbb{R}
$$

$\{A, B\} \notin \mathcal{R}_{\mid P}$
$\left|\mathcal{R}_{\mid P}\right|<2^{|P|} \quad$ not shattered !
No set of 3 or more elements can be shattered.

$$
\text { VC-dimension = } 2
$$

Quiz

range space $\left(\mathbb{R}, \mathcal{I}_{\rightarrow}\right)$ with $\mathcal{I}_{\rightarrow}=\{[a, \infty) \mid a \in \mathbb{R}\}$

What is the VC-dimension of this space?

A 1
B 2
C 3

Quiz

range space $\left(\mathbb{R}, \mathcal{I}_{\rightarrow}\right)$ with $\mathcal{I}_{\rightarrow}=\{[a, \infty) \mid a \in \mathbb{R}\}$

What is the VC-dimension of this space?

B 2
C 3

Example: disks as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{D}\right)$, with $\mathcal{D}=$ set of disks

Example: disks as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{D}\right)$, with $\mathcal{D}=$ set of disks

Example: disks as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{D}\right)$, with $\mathcal{D}=$ set of disks

not shatter !

Example: disks as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{D}\right)$, with $\mathcal{D}=$ set of disks

not relevant, since VC-dimension = maximum size of
shattered subset

Example: disks as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{D}\right)$, with $\mathcal{D}=$ set of disks
A.

- B

Example: disks as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{D}\right)$, with $\mathcal{D}=$ set of disks
A.

. B
C^{\bullet}

Example: disks as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{D}\right)$, with $\mathcal{D}=$ set of disks

Example: disks as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{D}\right)$, with $\mathcal{D}=$ set of disks

Example: disks as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{D}\right)$, with $\mathcal{D}=$ set of disks
A.

- B

Example: disks as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{D}\right)$, with $\mathcal{D}=$ set of disks

Example: disks as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{D}\right)$, with $\mathcal{D}=$ set of disks

shatter!

Example: disks as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{D}\right)$, with $\mathcal{D}=$ set of disks

Example: disks as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{D}\right)$, with $\mathcal{D}=$ set of disks

4 points

case 1: $D \in$ triangle $(A B C)$

Example: disks as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{D}\right)$, with $\mathcal{D}=$ set of disks

4 points
case 1: $D \in$ triangle $(A B C)$

not shatter !

Example: disks as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{D}\right)$, with $\mathcal{D}=$ set of disks

4 points
case 1: $D \in \operatorname{triangle}(A B C)$
case 2: $A B C D$ convex quadrilateral

Example: disks as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{D}\right)$, with $\mathcal{D}=$ set of disks

4 points
case 1: $D \in \operatorname{triangle}(A B C)$ case 2: $A B C D$ convex quadrilateral without proof: can't get $\{A, D\}$ and $\{B, C\}$

Example: disks as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{D}\right)$, with $\mathcal{D}=$ set of disks

4 points
case 1: $D \in \operatorname{triangle}(A B C)$
case 2: $A B C D$ convex quadrilateral without proof:
can't get $\{A, D\}$ and $\{B, C\}$

not shatter!

Example: disks as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{D}\right)$, with $\mathcal{D}=$ set of disks

4 points
case 1: $D \in \operatorname{triangle}(A B C)$
case 2: $A B C D$ convex quadrilateral without proof:
can't get $\{A, D\}$ and $\{B, C\}$
\Rightarrow VC-dimension $=3$

not shatter!

Example: convex sets as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{C}\right)$, with $\mathcal{C}=$ set of closed convex sets

Example: convex sets as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{C}\right)$, with $\mathcal{C}=$ set of closed convex sets

Example: convex sets as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{C}\right)$, with $\mathcal{C}=$ set of closed convex sets

Example: convex sets as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{C}\right)$, with $\mathcal{C}=$ set of closed convex sets

Example: convex sets as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{C}\right)$, with $\mathcal{C}=$ set of closed convex sets

\Rightarrow VC-dimension $=\infty$

Quiz

range space $\left(\mathbb{R}^{2}, \mathcal{A R}\right)$, with $\mathcal{A R}=$ set of axis-aligned rectangles What is its VC-dimension?

Quiz

range space $\left(\mathbb{R}^{2}, \mathcal{A} \mathcal{R}\right)$, with $\mathcal{A} \mathcal{R}=$ set of axis-aligned rectangles What is its VC-dimension?

B 5
C $\quad \infty$

Example: rectangles as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{A} \mathcal{R}\right)$, with $\mathcal{A} \mathcal{R}=$ set of axis-aligned rectangles

Example: rectangles as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{A R}\right)$, with $\mathcal{A} \mathcal{R}=$ set of axis-aligned rectangles

Example: rectangles as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{A R}\right)$, with $\mathcal{A} \mathcal{R}=$ set of axis-aligned rectangles

Example: rectangles as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{A R}\right)$, with $\mathcal{A} \mathcal{R}=$ set of axis-aligned rectangles

> - B

Example: rectangles as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{A R}\right)$, with $\mathcal{A} \mathcal{R}=$ set of axis-aligned rectangles

Example: rectangles as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{A R}\right)$, with $\mathcal{A R}=$ set of axis-aligned rectangles

Example: rectangles as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{A R}\right)$, with $\mathcal{A R}=$ set of axis-aligned rectangles

Example: rectangles as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{A R}\right)$, with $\mathcal{A} \mathcal{R}=$ set of axis-aligned rectangles

Example: rectangles as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{A R}\right)$, with $\mathcal{A} \mathcal{R}=$ set of axis-aligned rectangles

Example: rectangles as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{A R}\right)$, with $\mathcal{A} \mathcal{R}=$ set of axis-aligned rectangles

Example: rectangles as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{A R}\right)$, with $\mathcal{A} \mathcal{R}=$ set of axis-aligned rectangles

Example: rectangles as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{A R}\right)$, with $\mathcal{A} \mathcal{R}=$ set of axis-aligned rectangles

Example: rectangles as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{A R}\right)$, with $\mathcal{A} \mathcal{R}=$ set of axis-aligned rectangles

Example: rectangles as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{A R}\right)$, with $\mathcal{A} \mathcal{R}=$ set of axis-aligned rectangles

Example: rectangles as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{A R}\right)$, with $\mathcal{A} \mathcal{R}=$ set of axis-aligned rectangles

Example: rectangles as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{A R}\right)$, with $\mathcal{A} \mathcal{R}=$ set of axis-aligned rectangles

\Rightarrow VC-dimension ≥ 4

Example: rectangles as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{A R}\right)$, with $\mathcal{A} \mathcal{R}=$ set of axis-aligned rectangles

Example: rectangles as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{A R}\right)$, with $\mathcal{A R}=$ set of axis-aligned rectangles

Example: rectangles as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{A R}\right)$, with $\mathcal{A R}=$ set of axis-aligned rectangles

$$
\Rightarrow \text { VC-dimension } \geq 4
$$

case $1: \geq 1$ point inside bounding rectangle
case 2 : all points on bounding rectangle

Example: rectangles as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{A R}\right)$, with $\mathcal{A R}=$ set of axis-aligned rectangles

$$
\Rightarrow \text { VC-dimension } \geq 4
$$

case $1: \geq 1$ point inside bounding rectangle
case 2 : all points on bounding rectangle

not shatter !

Example: rectangles as ranges

range space $\left(\mathbb{R}^{2}, \mathcal{A R}\right)$, with $\mathcal{A R}=$ set of axis-aligned rectangles

Summary: VC-dimension of geometric range spaces

range space

$(\mathbb{R}, \mathcal{I})$, with $\mathcal{I}=$ set of closed intervals
$\left(\mathbb{R}^{2}, \mathcal{D}\right)$, with $\mathcal{D}=$ set of disks
$\left(\mathbb{R}^{2}, \mathcal{A} \mathcal{R}\right)$, with $\mathcal{A} \mathcal{R}=$ set of axis-aligned rectangles
$\left(\mathbb{R}^{2}, \mathcal{G} \mathcal{R}\right)$, with $\mathcal{G} \mathcal{R}=$ set of arbitrary oriented rectangles
$\left(\mathbb{R}^{2}, \mathcal{C}\right)$, with $\mathcal{C}=$ set of closed convex sets

VC-dimension

2
3
4
$? \geq 4$
∞
ε-samples

Measure and Estimate

Measure: $\mu(r)=\frac{|r \cap P|}{|P|}$

Measure and Estimate

$$
\text { Measure: } \mu(r)=\frac{|r \cap P|}{|P|}
$$

-

O

Estimate: $\hat{\mu}(r)=\frac{|r \cap S|}{|S|}$

Measure and Estimate

Measure: $\mu(r)=\frac{|r \cap P|}{|P|}$
$\mu(Q)=\frac{9}{15}=0.6$

Estimate: $\hat{\mu}(r)=\frac{|r \cap S|}{|S|}$
$\hat{\mu}(Q)=\frac{3}{6}=0.5$

Measure and Estimate

Measure: $\mu(r)=\frac{|r \cap P|}{|P|}$
$\mu(Q)=\frac{9}{15}=0.6$

Estimate: $\hat{\mu}(r)=\frac{|r \cap S|}{|S|}$
$\hat{\mu}(Q)=\frac{3}{6}=0.5$

Good Sample S :
for all $r \in \mathcal{R}, \hat{\mu}(r) \approx \mu(r)$

ε-samples

ε-sample S :
for all $r \in \mathcal{R}$ and any
$0 \leq \varepsilon \leq 1$
$|\mu(r)-\hat{\mu}(r)| \leq \varepsilon$

ε-samples

ε-sample S :
for all $r \in \mathcal{R}$ and any
$0 \leq \varepsilon \leq 1$
$|\mu(r)-\hat{\mu}(r)| \leq \varepsilon$

$$
|\mu(r)-\hat{\mu}(r)|=|9 / 15-3 / 6|
$$

$$
=0.1
$$

Quiz

$$
|\mu(r)-\hat{\mu}(r)|=\ldots ?
$$

A 0.0

B $\quad 0.1$
C 0.2
D none of the above

Quiz

$$
|\mu(r)-\hat{\mu}(r)|=\ldots ?
$$

A $0.0 \quad \frac{2}{6}=\frac{5}{15}$

B $\quad 0.1$
C 0.2
D none of the above

ε-sample theorem

Let $\varphi, \varepsilon>0$ be parameters and (X, \mathcal{R}) be a range space with finite X and VC-dimension δ. A sample of size

$$
O\left(\frac{1}{\varepsilon^{2}}\left(\delta+\log \varphi^{-} 1\right)\right)
$$

is an ε-sample for (X, \mathcal{R}) with probability $\geq 1-\varphi$
(we skip the proof)

Example from motivation

Given P,
how many points do we need to sample ($S \subset P$), such that
2. for any query rectangle r

$$
\left|\frac{|r \cap P|}{|P|}-\frac{|r \cap S|}{|S|}\right| \leq 0.25
$$

with probability 0.999

Example from motivation

Given P,
how many points do we need to sample ($S \subset P$), such that
2. for any query rectangle r

$$
\left|\frac{|r \cap P|}{|P|}-\frac{|r \cap S|}{|S|}\right| \leq 0.25=\varepsilon ?
$$

with probability 0.999

Example from motivation

Given P,
how many points do we need to sample ($S \subset P$), such that
2. for any query rectangle r

$$
\left|\frac{|r \cap P|}{|P|}-\frac{|r \cap S|}{|S|}\right| \leq 0.25=\varepsilon ?
$$

with probability $0.999=1-\varphi$

Example from motivation

Given P,
how many points do we need to sample ($S \subset P$), such that
2. for any query rectangle r

$$
\left|\frac{|r \cap P|}{|P|}-\frac{|r \cap S|}{|S|}\right| \leq 0.25 \equiv \varepsilon ?
$$

with probability $0.999=1-\varphi$

Example from motivation

Given P,
how many points do we need to sample $(S \subset P$), such that
2. for any query rectangle r

$$
\left|\frac{|r \cap P|}{|P|}-\frac{|r \cap S|}{|S|}\right| \leq 0.25 \equiv \varepsilon ?
$$

with probability $0.999=1-\varphi$

answer: $O\left(\frac{1}{\varepsilon^{2}}\left(4+\log \phi^{-} 1\right)\right)$,
in particular $O(1)$ for given ε, φ independent of n
ε-nets

ε-nets

ε-sample S :
for all $r \in \mathcal{R}$ and any
$0 \leq \varepsilon \leq 1$
if $\mu(r) \geq \varepsilon$ and
$|\mu(r)-\hat{\mu}(r)| \leq \varepsilon$ then $\hat{\mu}(r)>0$

ε-nets

ε-sample S :

for all $r \in \mathcal{R}$ and any
$0 \leq \varepsilon \leq 1$
if $\mu(r) \geq \varepsilon$ and
$|\mu(r)-\hat{\mu}(r)| \leq \varepsilon$ then $\hat{\mu}(r)>0$
weaker notion:
ε-net S :
for all $r \in \mathcal{R}$ and any
$0 \leq \varepsilon \leq 1$
if $\mu(r) \geq \varepsilon$ then r contains
at least one point of S

ε-nets

ε-sample S :
for all $r \in \mathcal{R}$ and any
$0 \leq \varepsilon \leq 1$
if $\mu(r) \geq \varepsilon$ and
$|\mu(r)-\hat{\mu}(r)| \leq \varepsilon$ then $\hat{\mu}(r)>0$
weaker notion:
ε-net S :
for all $r \in \mathcal{R}$ and any
$0 \leq \varepsilon \leq 1$
if $\mu(r) \geq \varepsilon$ then r contains
at least one point of S

ε-Net Theorem

Let $\varphi, \varepsilon>0$ be parameters and (X, \mathcal{R}) be a range space with finite X and VC-dimension δ. A sample obtained by m random draws from X with

$$
m \geq \max \left(\frac{4}{\varepsilon} \log \frac{4}{\varphi}, \frac{8 \delta}{\varepsilon} \log \frac{16}{\varepsilon}\right)
$$

is an ε-net for (X, \mathcal{R}) with probability $\geq 1-\varphi$
(we skip the proof, but there is a proof sketch in book)

ε-Net Theorem

Let $\varphi, \varepsilon>0$ be parameters and (X, \mathcal{R}) be a range space with finite X and VC-dimension δ. A sample obtained by m random draws from X with

$$
m \geq \max \left(\frac{4}{\varepsilon} \log \frac{4}{\varphi}, \frac{8 \delta}{\varepsilon} \log \frac{16}{\varepsilon}\right)
$$

is an ε-net for (X, \mathcal{R}) with probability $\geq 1-\varphi$
(we skip the proof, but there is a proof sketch in book)
in short:

$$
\begin{aligned}
& \varepsilon \text {-sample } \\
& O\left(\frac{\delta}{\varepsilon^{2}}\right)
\end{aligned}
$$

vs $\quad \varepsilon$-net
$O\left(\frac{\delta}{\varepsilon} \log \frac{1}{\varepsilon}\right)$

Motivation: sampling for approximation

Given P, how many points do we need to sample ($S \subset P$), such that the smallest enclosing disk contains 90% of the points in P ? with probability 0.999

Motivation: sampling for approximation

Given P, how many points do we need to sample ($S \subset P$), such that the smallest enclosing disk contains 90% of the points in P ? with probability $0.999=1-\varphi$

Motivation: sampling for approximation

Given P, how many points do we need to sample ($S \subset P$), such that the smallest enclosing disk contains 90% of the points in $P ? \varepsilon=0.1$ with probability $0.999=1-\varphi$

Motivation: sampling for approximation

Given P, how many points do we need to sample ($S \subset P$), such that the smallest enclosing disk contains 90% of the points in $P ? \varepsilon=0.1$ with probability $0.999=1-\varphi$

Question: Which range space?

Motivation: sampling for approximation

Given P, how many points do we need to sample ($S \subset P$), such that the smallest enclosing disk contains 90% of the points in $P ? \varepsilon=0.1$ with probability $0.999=1-\varphi$

Question: Which range space?
If 10% of P outside a circle, then there should be a point of S outside the circle

Motivation: sampling for approximation

Given P, how many points do we need to sample ($S \subset P$), such that the smallest enclosing disk contains 90% of the points in $P ? \varepsilon=0.1$ with probability $0.999=1-\varphi$

Question: Which range space?
If 10% of P outside a circle, then there should be a point of S outside the circle range space: $\left(\mathbb{R}^{2}, \mathcal{D}^{c}\right)$, with \mathcal{D}^{c} the set of complements of disks.

Motivation: sampling for approximation

Given P, how many points do we need to sample ($S \subset P$), such that the smallest enclosing disk contains 90% of the points in $P ? \varepsilon=0.1$ with probability $0.999=1-\varphi$

Question: Which range space?
If 10% of P outside a circle, then there should be a point of S outside the circle range space: $\left(\mathbb{R}^{2}, \mathcal{D}^{c}\right)$, with \mathcal{D}^{c} the set of complements of disks.
range space and its complement have same VC-dimension

Motivation: sampling for approximation

Given P, how many points do we need to sample ($S \subset P$), such that the smallest enclosing disk contains 90% of the points in $P ? \varepsilon=0.1$ with probability $0.999=1-\varphi$

Question: Which range space?
If 10% of P outside a circle, then there should be a point of S outside the circle range space: $\left(\mathbb{R}^{2}, \mathcal{D}^{c}\right)$, with \mathcal{D}^{c} the set of complements of disks.
range space and its complement have same VC-dimension

Motivation: sampling for approximation

Given P, how many points do we need to sample ($S \subset P$), such that the smallest enclosing disk contains 90% of the points in $P ? \varepsilon=0.1$ with probability $0.999=1-\varphi$

Question: Which range space?
If 10% of P outside a circle, then there should be a point of S outside the circle range space: $\left(\mathbb{R}^{2}, \mathcal{D}^{c}\right)$, with \mathcal{D}^{c} the set of complements of disks.
range space and its complement have same VC-dimension

ε-sample theorem, revisited

ε-sample (and -net) theorem use random sample.

ε-sample theorem, revisited

ε-sample (and -net) theorem use random sample.

It is also possible to construct an ε-sample of size $O\left(\frac{\log |\mathcal{R}|}{\varepsilon^{2}}\right)$ deterministically.

ε-sample theorem, revisited

ε-sample (and -net) theorem use random sample.

It is also possible to construct an ε-sample of size $O\left(\frac{\log |\mathcal{R}|}{\varepsilon^{2}}\right)$ deterministically.

Question: How large is $\log |\mathcal{R}|$?

Sauer's Lemma

bounding $|\mathcal{R}|$

Number of small subsets

Given $0 \leq d \leq n$, define $\Phi_{d}(n)$ to be the number of subsets of size at most d over a set of size n.

Number of small subsets

Given $0 \leq d \leq n$, define $\Phi_{d}(n)$ to be the number of subsets of size at most d over a set of size n.

$$
\Phi_{d}(n)=\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{d}=\sum_{i=0}^{d}\binom{n}{i}
$$

Number of small subsets

Given $0 \leq d \leq n$, define $\Phi_{d}(n)$ to be the number of subsets of size at most d over a set of size n.

$$
\Phi_{d}(n)=\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{d}=\sum_{i=0}^{d}\binom{n}{i} \leq n^{d}
$$

Number of small subsets

Given $0 \leq d \leq n$, define $\Phi_{d}(n)$ to be the number of subsets of size at most d over a set of size n.

$$
\Phi_{d}(n)=\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{d}=\sum_{i=0}^{d}\binom{n}{i} \leq n^{d}
$$

This function satisfies the following recurrence

$$
\Phi_{d}(n)=\Phi_{d}(n-1)+\Phi_{d-1}(n-1)
$$

Number of small subsets

Given $0 \leq d \leq n$, define $\Phi_{d}(n)$ to be the number of subsets of size at most d over a set of size n.

$$
\Phi_{d}(n)=\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{d}=\sum_{i=0}^{d}\binom{n}{i} \leq n^{d}
$$

This function satisfies the following recurrence

$$
\Phi_{d}(n)=\Phi_{d}(n-1)+\Phi_{d-1}(n-1)
$$

Intuition: Take element x : subsets don't contain x or do

Sauer's Lemma

If (X, \mathcal{R}) is a range space with VC-dimension d and $|X|=n$, then $|\mathcal{R}| \leq \Phi_{d}(n)$.

Sauer's Lemma

If (X, \mathcal{R}) is a range space with VC -dimension d and $|X|=n$, then $|\mathcal{R}| \leq \Phi_{d}(n)$.
proof
Induction on d and n

Sauer's Lemma

If (X, \mathcal{R}) is a range space with VC-dimension d and $|X|=n$, then $|\mathcal{R}| \leq \Phi_{d}(n)$.
proof
Induction on d and n
Base: $d=0$ and $n=0$ trivially true

Sauer's Lemma

If (X, \mathcal{R}) is a range space with VC-dimension d and $|X|=n$, then $|\mathcal{R}| \leq \Phi_{d}(n)$. proof

Step:

$$
\begin{aligned}
& \mathcal{R}_{x}=\{Q \backslash\{x\}: Q \cup\{x\} \in \mathcal{R} \text { and } Q \backslash\{x\} \in \mathcal{R}\} \\
& \mathcal{R} \backslash x=\{Q \backslash\{x\}: Q \in \mathcal{R}\}
\end{aligned}
$$

Sauer's Lemma

If (X, \mathcal{R}) is a range space with VC -dimension d and $|X|=n$, then $|\mathcal{R}| \leq \Phi_{d}(n)$.
proof
Step:
$\mathcal{R}_{x}=\{Q \backslash\{x\}: Q \cup\{x\} \in \mathcal{R}$ and $Q \backslash\{x\} \in \mathcal{R}\}$
$\mathcal{R} \backslash x=\{Q \backslash\{x\}: Q \in \mathcal{R}\}$
claim: $|\mathcal{R}|=\left|\mathcal{R}_{x}\right|+|\mathcal{R} \backslash x|$

Sauer's Lemma

If (X, \mathcal{R}) is a range space with VC -dimension d and $|X|=n$, then $|\mathcal{R}| \leq \Phi_{d}(n)$.
proof
Step:
$\mathcal{R}_{x}=\{Q \backslash\{x\}: Q \cup\{x\} \in \mathcal{R}$ and $Q \backslash\{x\} \in \mathcal{R}\}$
$\mathcal{R} \backslash x=\{Q \backslash\{x\}: Q \in \mathcal{R}\}$
claim: $|\mathcal{R}|=\left|\mathcal{R}_{x}\right|+|\mathcal{R} \backslash x|$
Charge each range of \mathcal{R} to corresponding range in $\mathcal{R} \backslash\{x\}$

Sauer's Lemma

If (X, \mathcal{R}) is a range space with VC-dimension d and $|X|=n$, then $|\mathcal{R}| \leq \Phi_{d}(n)$.
proof
Step:
$\mathcal{R}_{x}=\{Q \backslash\{x\}: Q \cup\{x\} \in \mathcal{R}$ and $Q \backslash\{x\} \in \mathcal{R}\}$
$\mathcal{R} \backslash x=\{Q \backslash\{x\}: Q \in \mathcal{R}\}$
claim: $|\mathcal{R}|=\left|\mathcal{R}_{x}\right|+|\mathcal{R} \backslash x|$
Charge each range of \mathcal{R} to corresponding range in $\mathcal{R} \backslash\{x\}$
Range r with $r \cup\{x\} \in \mathcal{R}$ and $r \backslash\{x\} \in \mathcal{R}$ charged twice ?!

Sauer's Lemma

If (X, \mathcal{R}) is a range space with VC-dimension d and $|X|=n$, then $|\mathcal{R}| \leq \Phi_{d}(n)$. proof

Step:
$\mathcal{R}_{x}=\{Q \backslash\{x\}: Q \cup\{x\} \in \mathcal{R}$ and $Q \backslash\{x\} \in \mathcal{R}\}$
$\mathcal{R} \backslash x=\{Q \backslash\{x\}: Q \in \mathcal{R}\}$
claim: $|\mathcal{R}|=\left|\mathcal{R}_{x}\right|+|\mathcal{R} \backslash x|$
Charge each range of \mathcal{R} to corresponding range in $\mathcal{R} \backslash\{x\}$
Range r with $r \cup\{x\} \in \mathcal{R}$ and $r \backslash\{x\} \in \mathcal{R}$ charged twice ?!
These are exactly elements in \mathcal{R}_{x} !

Sauer's Lemma

If (X, \mathcal{R}) is a range space with VC -dimension d and $|X|=n$, then $|\mathcal{R}| \leq \Phi_{d}(n)$.
proof

$$
\begin{aligned}
& \mathcal{R}_{x}=\{Q \backslash\{x\}: Q \cup\{x\} \in \mathcal{R} \text { and } Q \backslash\{x\} \in \mathcal{R}\} \\
& |\mathcal{R}|=\left|\mathcal{R}_{x}\right|+|\mathcal{R} \backslash x|
\end{aligned}
$$

claim: $\left(X \backslash\{x\}, \mathcal{R}_{x}\right)$ has VC-dimension at most $d-1$

Sauer's Lemma

If (X, \mathcal{R}) is a range space with VC -dimension d and $|X|=n$, then $|\mathcal{R}| \leq \Phi_{d}(n)$.
proof
$\mathcal{R}_{x}=\{Q \backslash\{x\}: Q \cup\{x\} \in \mathcal{R}$ and $Q \backslash\{x\} \in \mathcal{R}\}$
$|\mathcal{R}|=\left|\mathcal{R}_{x}\right|+|\mathcal{R} \backslash x|$
claim: $\left(X \backslash\{x\}, \mathcal{R}_{x}\right)$ has VC-dimension at most $d-1$
If $B \subset X \backslash\{x\}$ is shattered by \mathcal{R}_{x}, then
$B \cup\{x\}$ is shattered in \mathcal{R}

Sauer's Lemma

If (X, \mathcal{R}) is a range space with VC -dimension d and $|X|=n$, then $|\mathcal{R}| \leq \Phi_{d}(n)$.
proof
$\mathcal{R}_{x}=\{Q \backslash\{x\}: Q \cup\{x\} \in \mathcal{R}$ and $Q \backslash\{x\} \in \mathcal{R}\}$
$|\mathcal{R}|=\left|\mathcal{R}_{x}\right|+|\mathcal{R} \backslash x|$
claim: $\left(X \backslash\{x\}, \mathcal{R}_{x}\right)$ has VC-dimension at most $d-1$
If $B \subset X \backslash\{x\}$ is shattered by \mathcal{R}_{x}, then
$B \cup\{x\}$ is shattered in \mathcal{R}
($X \backslash\{x\}, \mathcal{R}_{x}$) has smaller VC-dim. than (X, \mathcal{R})

Sauer's Lemma

If (X, \mathcal{R}) is a range space with VC -dimension d and $|X|=n$, then $|\mathcal{R}| \leq \Phi_{d}(n)$.
proof
$\mathcal{R}_{x}=\{Q \backslash\{x\}: Q \cup\{x\} \in \mathcal{R}$ and $Q \backslash\{x\} \in \mathcal{R}\}$
$|\mathcal{R}|=\left|\mathcal{R}_{x}\right|+|\mathcal{R} \backslash x|$
claim: $\left(X \backslash\{x\}, \mathcal{R}_{x}\right)$ has VC-dimension at most $d-1$
Thus, by induction hypothesis:

$$
|\mathcal{R}| \leq \Phi_{d-1}(n-1)+\Phi_{d}(n-1)
$$

Sauer's Lemma

If (X, \mathcal{R}) is a range space with VC -dimension d and $|X|=n$, then $|\mathcal{R}| \leq \Phi_{d}(n)$.
proof
$\mathcal{R}_{x}=\{Q \backslash\{x\}: Q \cup\{x\} \in \mathcal{R}$ and $Q \backslash\{x\} \in \mathcal{R}\}$
$|\mathcal{R}|=\left|\mathcal{R}_{x}\right|+|\mathcal{R} \backslash x|$
claim: $\left(X \backslash\{x\}, \mathcal{R}_{x}\right)$ has VC-dimension at most $d-1$
Thus, by induction hypothesis:

$$
|\mathcal{R}| \leq \Phi_{d-1}(n-1)+\Phi_{d}(n-1)=\Phi_{d}(n)
$$

Quiz

Which bound on $O\left(\frac{\log |\mathcal{R}|}{\varepsilon^{2}}\right)$ does the previous lemma give for (X, \mathcal{R}) with $n=|X|$ and VC-dimension δ ?

A $O\left(\frac{\delta}{\varepsilon^{2}}\right)$
B $O\left(\frac{\delta \log n}{\varepsilon^{2}}\right)$
C $O\left(\frac{\delta n}{\varepsilon^{2}}\right)$

Quiz

Which bound on $O\left(\frac{\log |\mathcal{R}|}{\varepsilon^{2}}\right)$ does the previous lemma give for (X, \mathcal{R}) with $n=|X|$ and VC-dimension δ ?

A $O\left(\frac{\delta}{\varepsilon^{2}}\right)$
B $\quad O\left(\frac{\delta \log n}{\varepsilon^{2}}\right)$
C $O\left(\frac{\delta n}{\varepsilon^{2}}\right)$
VC-dim $\delta \quad \Rightarrow \quad|\mathcal{R}| \leq n^{\delta}$

Quiz

Which bound on $O\left(\frac{\log |\mathcal{R}|}{\varepsilon^{2}}\right)$ does the previous lemma give for (X, \mathcal{R}) with $n=|X|$ and VC-dimension δ ?

A $O\left(\frac{\delta}{\varepsilon^{2}}\right)$
B $\quad O\left(\frac{\delta \log n}{\varepsilon^{2}}\right)$
C $O\left(\frac{\delta n}{\varepsilon^{2}}\right)$
VC-dim $\delta \Rightarrow|\mathcal{R}| \leq n^{\delta}$
What does $|\mathcal{R}|=O\left(n^{d}\right)$ imply about the VC-dimension?

Shattering dimension

Shattering Dimension

Given a range space $S=(X, \mathcal{R})$, its shatter function $\pi_{S}(m)$ is the maximum number of sets that might be created by S when restricted to subsets of size m. Formally,

$$
\pi_{S}(m)=\max _{\substack{B \subset X \\|B|=m}}\left|R_{\mid B}\right|
$$

Shattering Dimension

Given a range space $S=(X, \mathcal{R})$, its shatter function $\pi_{S}(m)$ is the maximum number of sets that might be created by S when restricted to subsets of size m. Formally,

$$
\pi_{S}(m)=\max _{\substack{B \subset X \\|B|=m}}\left|R_{\mid B}\right|
$$

The shattering dimension of S is the smallest d such that $\pi_{S}(m)=O\left(m^{d}\right)$, for all m

Shattering Dimension

Given a range space $S=(X, \mathcal{R})$, its shatter function $\pi_{S}(m)$ is the maximum number of sets that might be created by S when restricted to subsets of size m. Formally,

$$
\pi_{S}(m)=\max _{\substack{B \subset X \\|B|=m}}\left|R_{\mid B}\right|
$$

The shattering dimension of S is the smallest d such that $\pi_{S}(m)=O\left(m^{d}\right)$, for all m

Sauer's lemma: shattering dimension \leq VC-dimension

Examples of Shattering Dimension

range space $\left(\mathbb{R}^{2}, \mathcal{D}\right)$, with $\mathcal{D}=$ set of disks

Examples of Shattering Dimension

range space $\left(\mathbb{R}^{2}, \mathcal{D}\right)$, with $\mathcal{D}=$ set of disks
Question: When restricted to n points, how - many ranges are there?

Examples of Shattering Dimension

range space $\left(\mathbb{R}^{2}, \mathcal{D}\right)$, with $\mathcal{D}=$ set of disks
Question: When restricted to n points, how

Examples of Shattering Dimension

range space $\left(\mathbb{R}^{2}, \mathcal{D}\right)$, with $\mathcal{D}=$ set of disks
Question: When restricted to n points, how

Examples of Shattering Dimension

range space $\left(\mathbb{R}^{2}, \mathcal{D}\right)$, with $\mathcal{D}=$ set of disks
Question: When restricted to n points, how

Examples of Shattering Dimension

range space $\left(\mathbb{R}^{2}, \mathcal{D}\right)$, with $\mathcal{D}=$ set of disks
Question: When restricted to n points, how

Examples of Shattering Dimension

range space $\left(\mathbb{R}^{2}, \mathcal{D}\right)$, with $\mathcal{D}=$ set of disks
Question: When restricted to n points, how

Shattering dimension of geometric range spaces

shattering dimension \approx how many points determine a range

Shattering dimension of geometric range spaces

shattering dimension \approx how many points determine a range
range space
$(\mathbb{R}, \mathcal{I})$, with $\mathcal{I}=$ set of closed intervals ?
$\left(\mathbb{R}^{2}, \mathcal{D}\right)$, with $\mathcal{D}=$ set of disks
3
$\left(\mathbb{R}^{2}, \mathcal{A} \mathcal{R}\right)$, with $\mathcal{A} \mathcal{R}=$ set of axis-aligned rectangles
$\left(\mathbb{R}^{2}, \mathcal{G} \mathcal{R}\right)$, with $\mathcal{G} \mathcal{R}=$ set of arbitrary oriented rectangles
$\left(\mathbb{R}^{2}, \mathcal{C}\right)$, with $\mathcal{C}=$ set of closed convex sets

Shattering dimension of geometric range spaces

shattering dimension \approx how many points determine a range
range space
$(\mathbb{R}, \mathcal{I})$, with $\mathcal{I}=$ set of closed intervals
$\left(\mathbb{R}^{2}, \mathcal{D}\right)$, with $\mathcal{D}=$ set of disks
$\left(\mathbb{R}^{2}, \mathcal{A} \mathcal{R}\right)$, with $\mathcal{A R}=$ set of axis-aligned rectangles ?
$\left(\mathbb{R}^{2}, \mathcal{G} \mathcal{R}\right)$, with $\mathcal{G} \mathcal{R}=$ set of arbitrary oriented rectangles
$\left(\mathbb{R}^{2}, \mathcal{C}\right)$, with $\mathcal{C}=$ set of closed convex sets

2
3

Shattering dimension of geometric range spaces

shattering dimension \approx how many points determine a range
range space
$(\mathbb{R}, \mathcal{I})$, with $\mathcal{I}=$ set of closed intervals2
$\left(\mathbb{R}^{2}, \mathcal{D}\right)$, with $\mathcal{D}=$ set of disks
$\left(\mathbb{R}^{2}, \mathcal{A R}\right)$, with $\mathcal{A} \mathcal{R}=$ set of axis-aligned rectangles
$\left(\mathbb{R}^{2}, \mathcal{G} \mathcal{R}\right)$, with $\mathcal{G} \mathcal{R}=$ set of arbitrary oriented rectangles
$\left(\mathbb{R}^{2}, \mathcal{C}\right)$, with $\mathcal{C}=$ set of closed convex sets

Shattering dimension of geometric range spaces

shattering dimension \approx how many points determine a range
range space
$(\mathbb{R}, \mathcal{I})$, with $\mathcal{I}=$ set of closed intervals
$\left(\mathbb{R}^{2}, \mathcal{D}\right)$, with $\mathcal{D}=$ set of disks
$\left(\mathbb{R}^{2}, \mathcal{A R}\right)$, with $\mathcal{A} \mathcal{R}=$ set of axis-aligned rectangles2
$\left(\mathbb{R}^{2}, \mathcal{G} \mathcal{R}\right)$, with $\mathcal{G} \mathcal{R}=$ set of arbitrary oriented rectangles
$\left(\mathbb{R}^{2}, \mathcal{C}\right)$, with $\mathcal{C}=$ set of closed convex sets3

Shattering dimension of geometric range spaces

shattering dimension \approx how many points determine a range
range space
$(\mathbb{R}, \mathcal{I})$, with $\mathcal{I}=$ set of closed intervals
$\left(\mathbb{R}^{2}, \mathcal{D}\right)$, with $\mathcal{D}=$ set of disks
$\left(\mathbb{R}^{2}, \mathcal{A R}\right)$, with $\mathcal{A} \mathcal{R}=$ set of axis-aligned rectangles2
$\left(\mathbb{R}^{2}, \mathcal{G} \mathcal{R}\right)$, with $\mathcal{G} \mathcal{R}=$ set of arbitrary oriented rectangles
$\left(\mathbb{R}^{2}, \mathcal{C}\right)$, with $\mathcal{C}=$ set of closed convex sets

Can be easier to compute than VC-dimension

Shattering dimension vs VC-dimension

VC-dimension δ
shattering dimension d

Shattering dimension vs VC-dimension

VC-dimension δ
shattering dimension d
Sauer's lemma: $d \leq \delta$

Shattering dimension vs VC-dimension

VC-dimension δ
shattering dimension d
Sauer's lemma: $d \leq \delta$
claim: $\delta \leq O(d \log d)$

Shattering dimension vs VC-dimension

VC-dimension δ
shattering dimension d
Sauer's lemma: $d \leq \delta$
claim: $\delta \leq O(d \log d)$
Consider largest shattered $N \subset X: \quad \delta=|N|$

Shattering dimension vs VC-dimension

VC-dimension δ
shattering dimension d
Sauer's lemma: $d \leq \delta$
claim: $\delta \leq O(d \log d)$
Consider largest shattered $N \subset X: \quad \delta=|N|$

$$
2^{\delta}=\mathcal{R}_{\mid N} \leq c \delta^{d}
$$

Shattering dimension vs VC-dimension

VC-dimension δ
shattering dimension d
Sauer's lemma: $d \leq \delta$
claim: $\delta \leq O(d \log d)$
Consider largest shattered $N \subset X: \quad \delta=|N|$
$2^{\delta}=\mathcal{R}_{\mid N} \leq c \delta^{d}$
$\delta \leq \log (c)+d \log \delta$

Shattering dimension vs VC-dimension

VC-dimension δ
shattering dimension d
Sauer's lemma: $d \leq \delta$
claim: $\delta \leq O(d \log d)$
Consider largest shattered $N \subset X: \quad \delta=|N|$

$$
2^{\delta}=\mathcal{R}_{\mid N} \leq c \delta^{d}
$$

$\delta \leq \log (c)+d \log \delta$
$\log \delta \leq \log (\log (c)+d \log \delta)=O(\log (d \log \delta))=O(\log d+\log \log \delta)$

Shattering dimension vs VC-dimension

VC-dimension δ
shattering dimension d
Sauer's lemma: $d \leq \delta$
claim: $\delta \leq O(d \log d)$
Consider largest shattered $N \subset X: \quad \delta=|N|$
$2^{\delta}=\mathcal{R}_{\mid N} \leq c \delta^{d}$
$\delta \leq \log (c)+d \log \delta$
$\log \delta \leq \log (\log (c)+d \log \delta)=O(\log (d \log \delta))=O(\log d+\log \log \delta)$
$\delta \leq O(d \log \delta)=O(d \log d)$

Summary

range space (X, \mathcal{R})
VC-dimension δ
examples of geometric range spaces
ε-sample of size $O\left(\frac{\delta+\log \varphi^{-} 1}{\varepsilon^{2}}\right)$
ε-net of size $O\left(\frac{\delta \log \varepsilon^{-1}+\log \varphi^{-} 1}{\varepsilon}\right)$
applications for geometric approximation
shattering dimension d
$d \leq \delta \leq d \log d$

