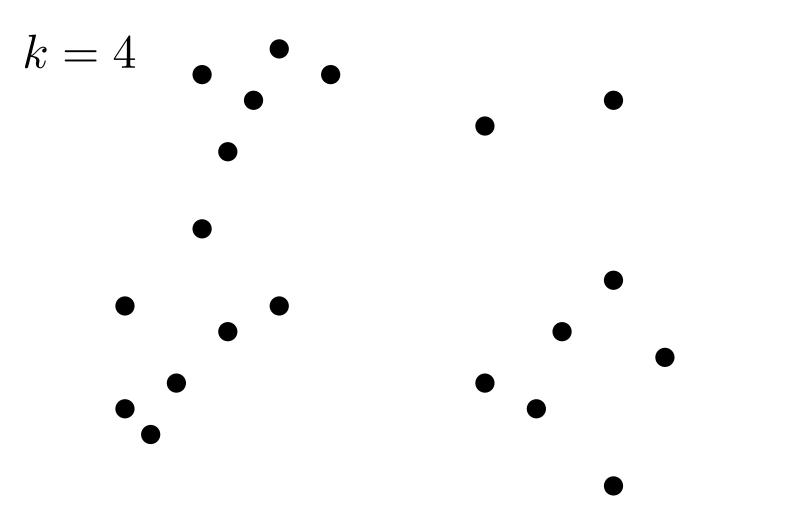
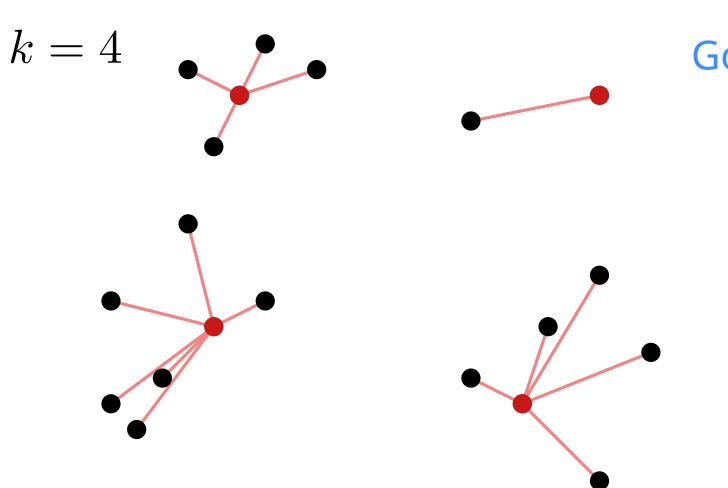
Center-based Clustering

2-approximation for k-center clustering 5-approximation for k-median clustering k-means clustering

Given: integer k, point set P





Given: integer k, point set P

Goal:

point set C, of size k such that every point in P is close to a point in C

k = 4

Goal:

Motivation:

- placing facilities, e.g., hospitals
- finding groups of nearby points

point set C, of size k such that every point in P is close to a point in C

k = 4

Goal:

Motivation:

- placing facilities, e.g., hospitals
- finding groups of nearby points

point set C, of size k such that every point in P is close to a point in C

metric space: pair (X, d) with X a set, and $d: X \times X \to [0, \infty)$ satisfying

metric space: pair (X, d) with X a set, and $d: X \times X \to [0, \infty)$ satisfying d(x, y) = 0 if and only if x = y,

metric space: pair (X, d) with X a set, and $d: X \times X \to [0, \infty)$ satisfying

$$d(x,y) = 0$$
 if and only if $x = y$,
 $d(x,y) = d(y,x)$,

metric space: pair (X, d) with X a set, and $d: X \times X \to [0, \infty)$ satisfying

$$\begin{array}{ll} d(x,y) = 0 \text{ if and only if } x = y, \\ d(x,y) = d(y,x), \\ d(x,z) \leq d(x,y) + d(y,z). \end{array} \text{ (triangle inequality)} \quad \underbrace{\bullet}_{x} \end{array}$$

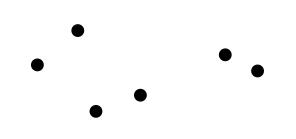
 \boldsymbol{y} $d(y,z) \atop z$ (x, y)d(x,z)

metric space: pair (X, d) with X a set, and $d: X \times X \to [0, \infty)$ satisfying

$$\begin{array}{l} d(x,y)=0 \text{ if and only if } x=y, \\ d(x,y)=d(y,x), \\ d(x,z)\leq d(x,y)+d(y,z). \end{array} \text{ (triangle inequality)} \quad \underbrace{\bullet}_{x} \end{array}$$

examples:

 R^2 with Euclidean distance



 $d(y,z) \ z$ (x,y) • (x,y)d(x, z)

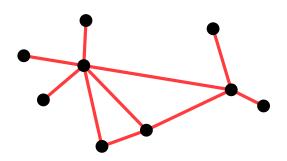
metric space: pair (X, d) with X a set, and $d: X \times X \to [0, \infty)$ satisfying

$$\begin{array}{ll} d(x,y)=0 \text{ if and only if } x=y, \\ d(x,y)=d(y,x), \\ d(x,z)\leq d(x,y)+d(y,z). \end{array} \text{ (triangle inequality)} \quad \underbrace{\bullet}_{x} \end{array}$$

examples:

 R^2 with Euclidean distance

Graph with shortest-path distance



(x, y)d(y,z)d(x,z)

metric space: pair (X, d) with X a set, and $d: X \times X \to [0, \infty)$ satisfying

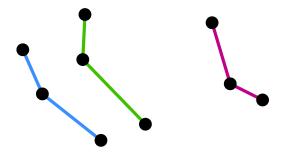
$$\begin{split} &d(x,y)=0 \text{ if and only if } x=y, \\ &d(x,y)=d(y,x), \\ &d(x,z)\leq d(x,y)+d(y,z). \end{split} \text{ (triangle inequality)} \quad \underbrace{\bullet}_x \end{split}$$

examples:

 R^2 with Euclidean distance

Graph with shortest-path distance

curves with Fréchet distance



 $d(y,z) \atop z$ (x,y) a(?d(x,z)

metric space: pair (X, d) with X a set, and $d: X \times X \to [0, \infty)$ satisfying

$$\begin{array}{ll} d(x,y)=0 \text{ if and only if } x=y, \\ d(x,y)=d(y,x), \\ d(x,z)\leq d(x,y)+d(y,z). \end{array} \ \, \mbox{ (triangle inequality) } & \qquad \bullet \\ x \end{array}$$

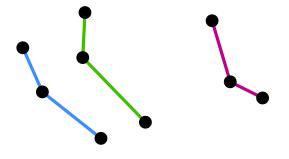
examples:

 R^2 with Euclidean distance

Graph with shortest-path distance

curves with Fréchet distance

notation: $d(p, C) := \min_{q \in C} d(p, q)$



 $(x,y) \stackrel{\circ}{\bullet} d(y,z) \\ d(x,z) \quad z$

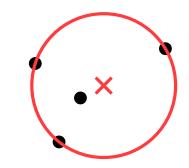
Given: $P \subset X$ and integer kGoal: Find $C \subset X$ of size k such that $\max_{p \in P} d(p, C)$

is minimized.

k = 2

•

Given: $P \subset X$ and integer k Goal: Find $C \subset X$ of size k such that $\max_{p \in P} d(p, C)$



is minimized.

k = 2

Given: $P \subset X$ and integer kGoal: Find $C \subset X$ of size k such that $\max_{p \in P} d(p, C)$

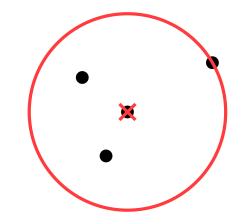
is minimized.

discrete k-center problem: $C\subset P$

k = 2

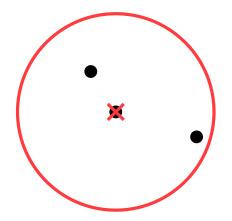
•

Given: $P \subset X$ and integer k Goal: Find $C \subset X$ of size k such that $\max_{p \in P} d(p, C)$



is minimized.

discrete k-center problem: $C \subset P$



k = 2

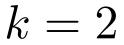
Given: $P \subset X$ and integer k Goal: Find $C \subset X$ of size k such that $\max_{p \in P} d(p, C)$

is minimized.

discrete k-center problem: $C \subset P$

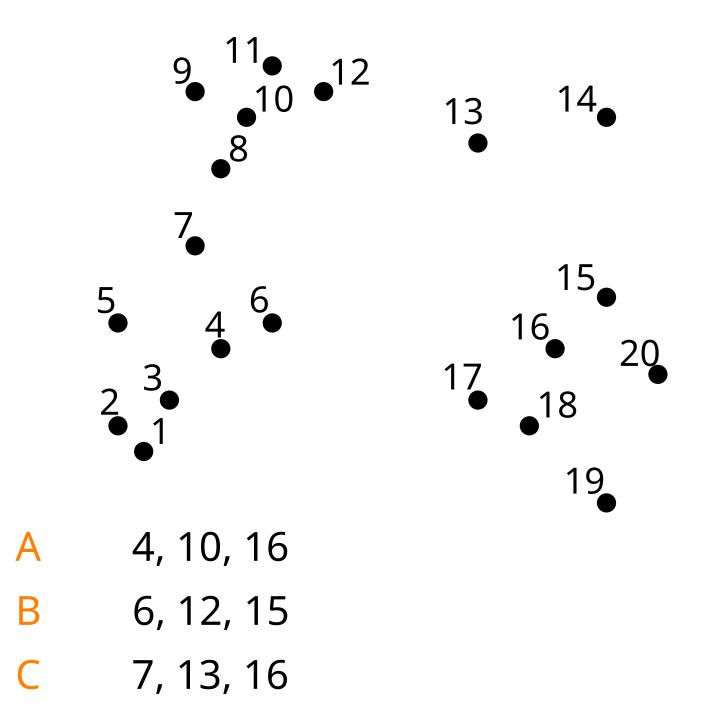
later:

(discrete) k-median problem: sum instead of \max k-means: sum of squares



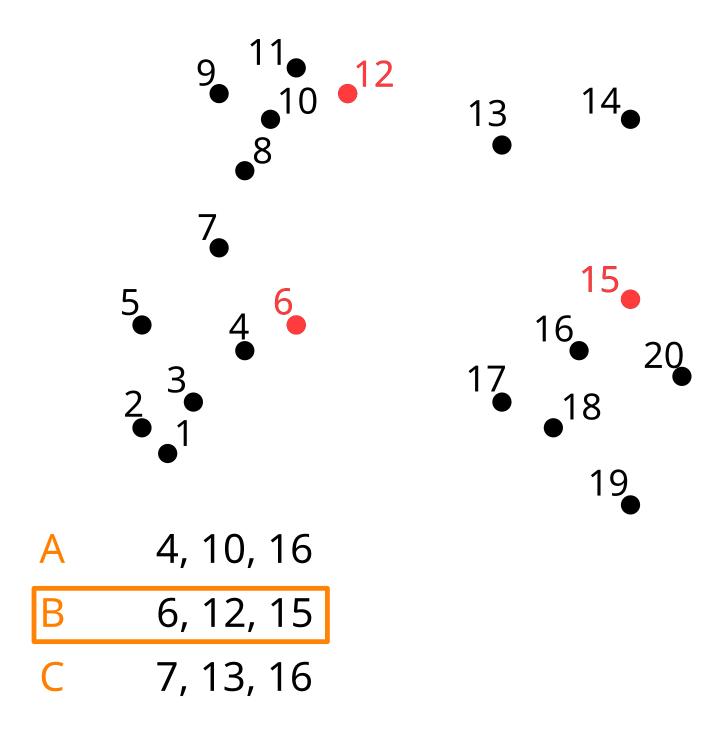
Quiz

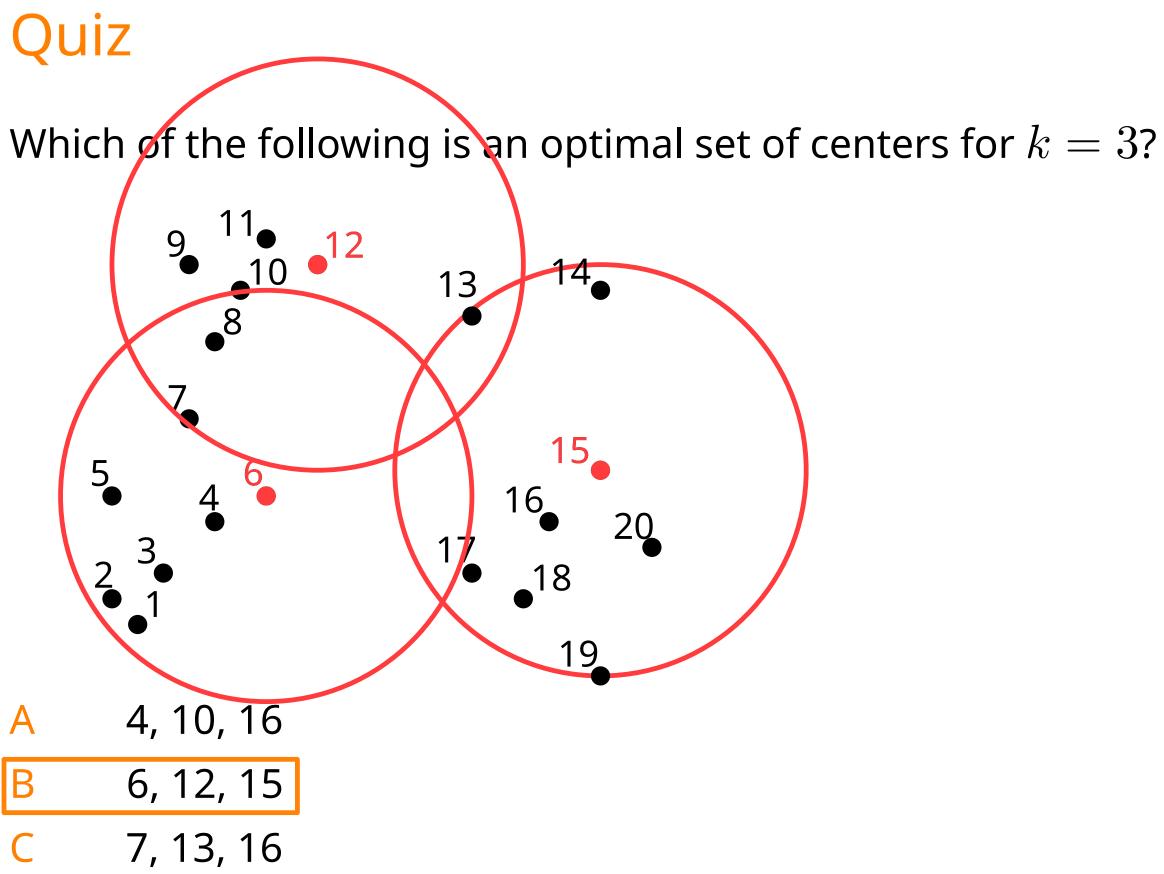
Which of the following is an optimal set of centers for k = 3?

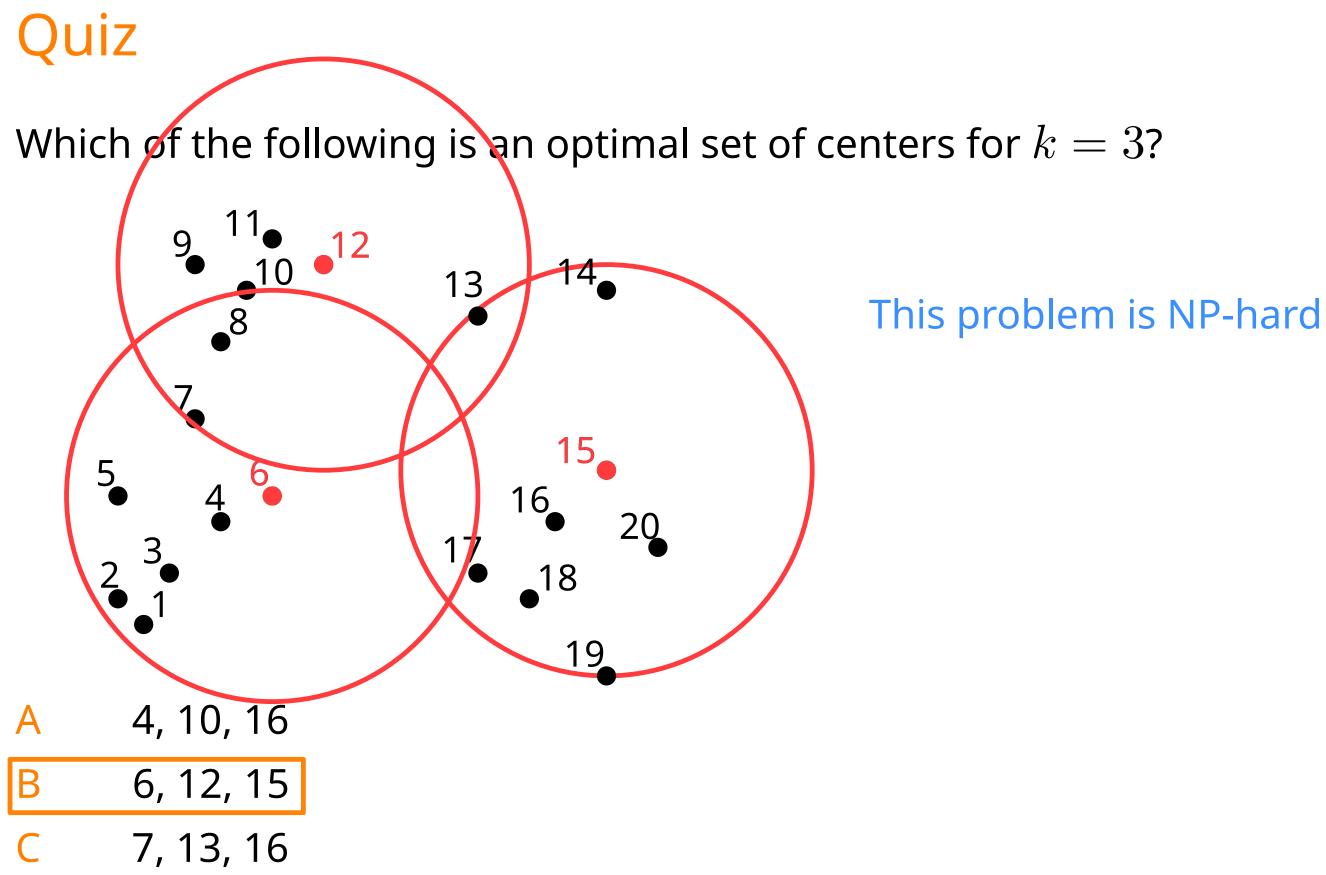


Quiz

Which of the following is an optimal set of centers for k = 3?



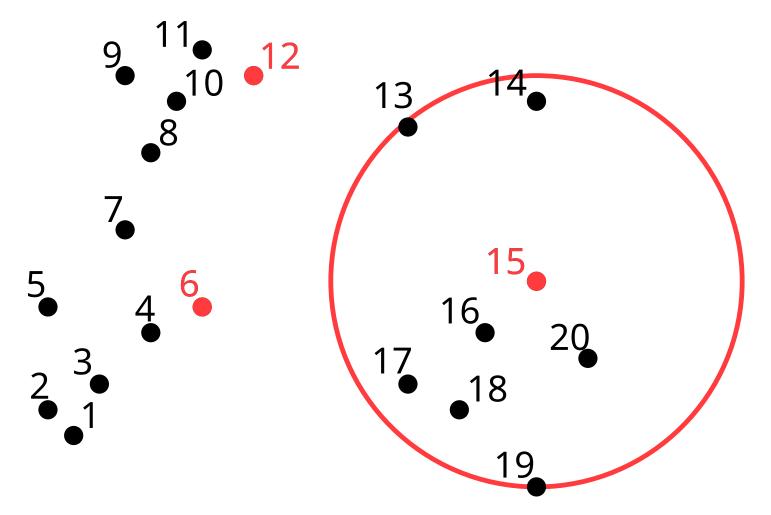




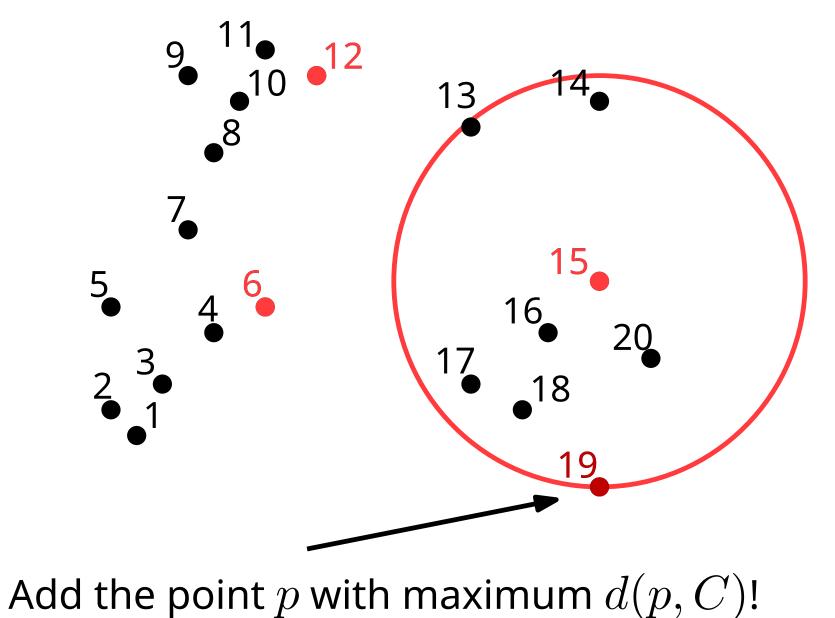
k-center clustering

approximation algorithm

Incrementally add points to C. How can we guarantee to reduce the maximum?



Incrementally add points to C. How can we guarantee to reduce the maximum?



1:
$$c_1 \leftarrow \text{arbitrary point of } P$$

2: $C_1 \leftarrow \{c_1\}$
3: for $i = 2, 3, \dots, k$:
4: Let $c_i \in P$ be the point such that $d(c_i, C_{i-1})$ is matrix
5: $C_i \leftarrow C_{i-1} \cup s_i$
6: return C_k

aximal

→ 1:
$$c_1 \leftarrow \text{arbitrary point of } P$$

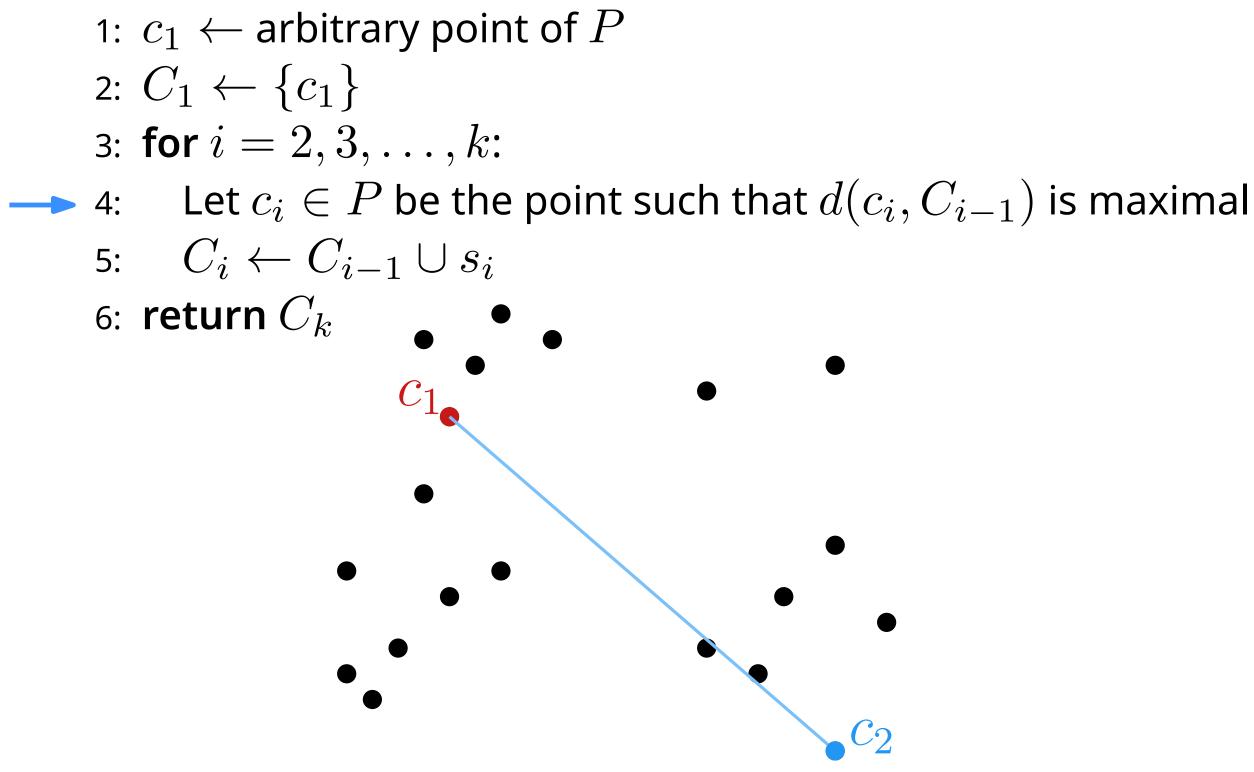
2: $C_1 \leftarrow \{c_1\}$
3: for $i = 2, 3, ..., k$:
4: Let $c_i \in P$ be the point such that $d(c_i, C_{i-1})$ is m
5: $C_i \leftarrow C_{i-1} \cup s_i$
6: return C_k

naximal

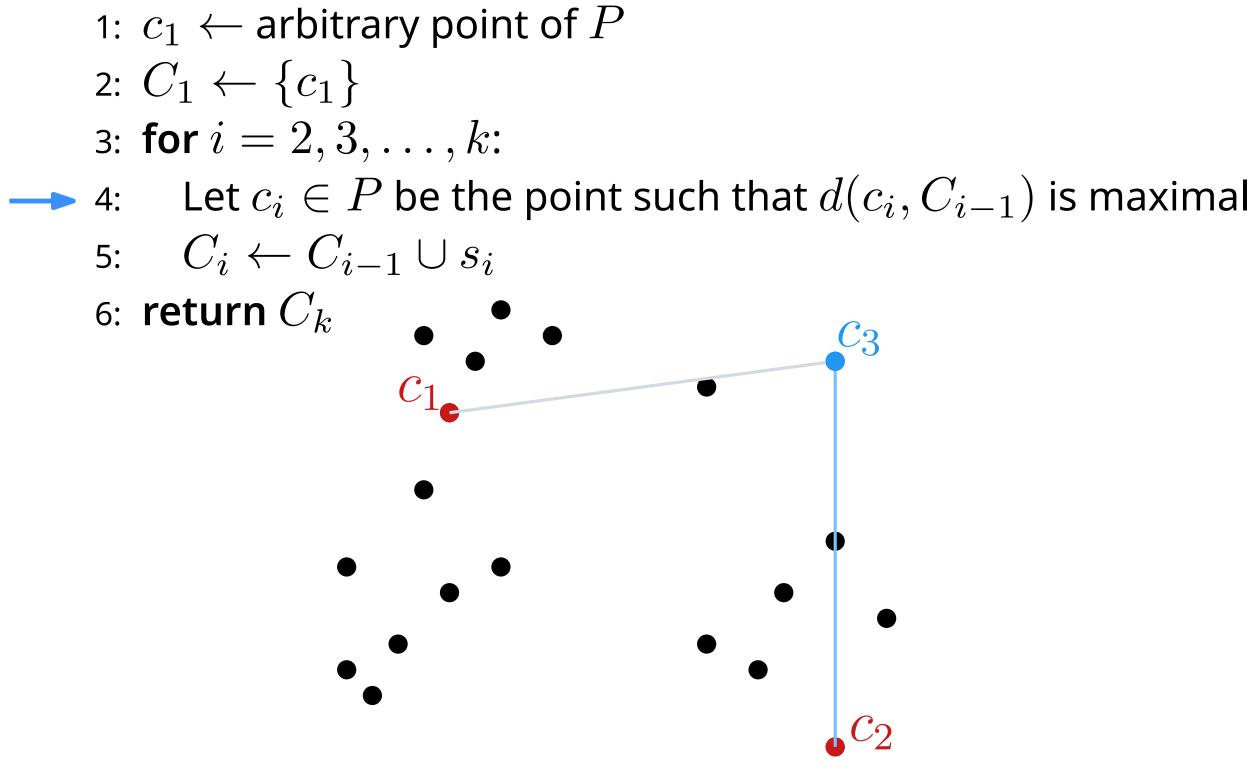
1:
$$c_1 \leftarrow \text{arbitrary point of } P$$

2: $C_1 \leftarrow \{c_1\}$
3: for $i = 2, 3, \dots, k$:
4: Let $c_i \in P$ be the point such that $d(c_i, C_{i-1})$ is m
5: $C_i \leftarrow C_{i-1} \cup s_i$
6: return C_k

naximal



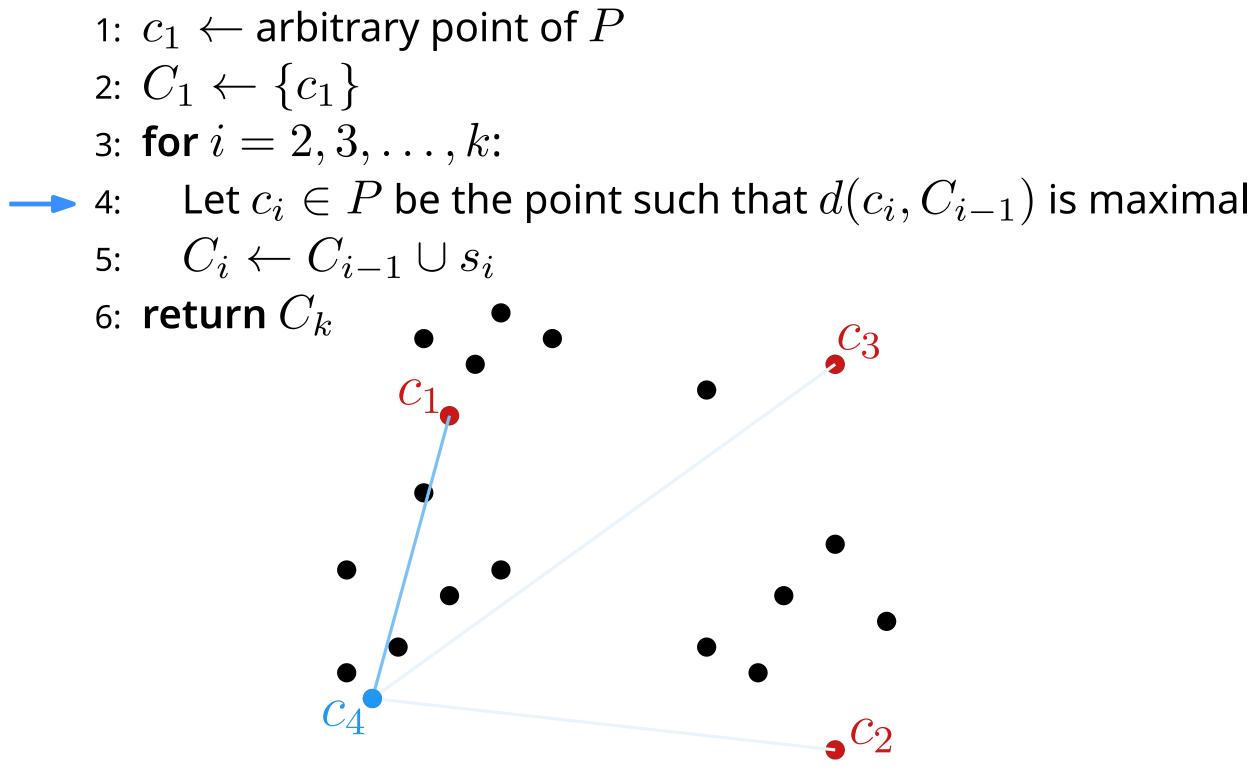
aximal



1:
$$c_1 \leftarrow \text{arbitrary point of } P$$

2: $C_1 \leftarrow \{c_1\}$
3: for $i = 2, 3, \dots, k$:
4: Let $c_i \in P$ be the point such that $d(c_i, C_{i-1})$ is m
5: $C_i \leftarrow C_{i-1} \cup s_i$
6: return C_k
 c_1
 c_3
 c_2

aximal



1:
$$c_1 \leftarrow \text{arbitrary point of } P$$

2: $C_1 \leftarrow \{c_1\}$
3: for $i = 2, 3, \dots, k$:
4: Let $c_i \in P$ be the point such that $d(c_i, C_{i-1})$ is m
5: $C_i \leftarrow C_{i-1} \cup s_i$
6: return C_k
 c_1
 c_3
 c_4
 c_4
 c_2

aximal

1:
$$c_1 \leftarrow \text{arbitrary point of } P$$

2: $C_1 \leftarrow \{c_1\}$
3: for $i = 2, 3, \dots, k$:
4: Let $c_i \in P$ be the point such that $d(c_i, C_{i-1})$ is m
5: $C_i \leftarrow C_{i-1} \cup s_i$
6: return C_k
 c_1
 c_3
 c_4
 c_4
 c_2

aximal

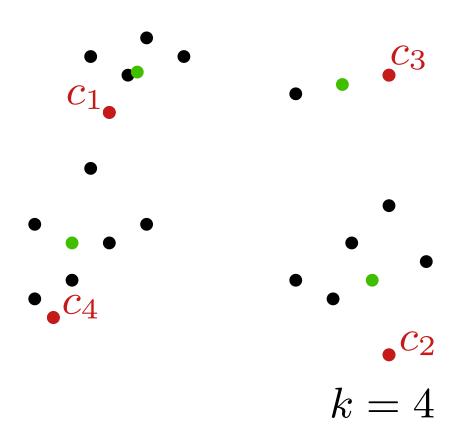
Approximation factor

GreedyKCenter(P, k) computes a 2-approximation for k-center clustering.

GreedyKCenter(P, k) computes a 2-approximation for k-center clustering.

 C^* : an optimal solution with $OPT := \max_{p \in P} d(p, C^*)$

 $C_k = \{c_1, \ldots, c_k\}$ computed solution

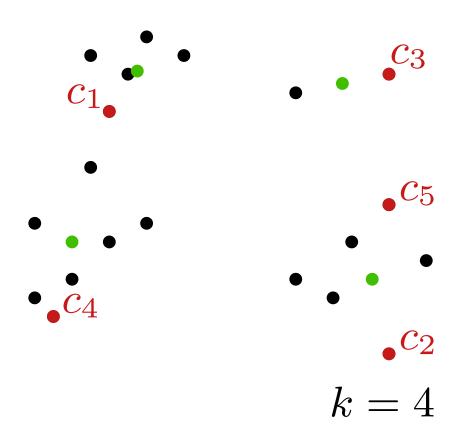


GreedyKCenter(P, k) computes a 2-approximation for k-center clustering.

 C^* : an optimal solution with $OPT := \max_{p \in P} d(p, C^*)$

 $C_k = \{c_1, \ldots, c_k\}$ computed solution

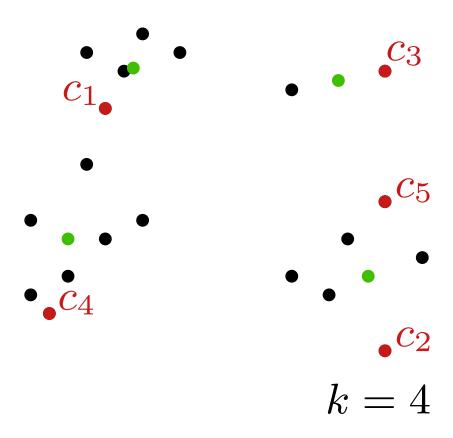
 c_{k+1} : point maximizing $d(c_{k+1}, C_k) =: r$



GreedyKCenter(P, k) computes a 2-approximation for k-center clustering.

 C^* : an optimal solution with $OPT := \max_{p \in P} d(p, C^*)$ $C_k = \{c_1, \ldots, c_k\}$ computed solution c_{k+1} : point maximizing $d(c_{k+1}, C_k) =: r$

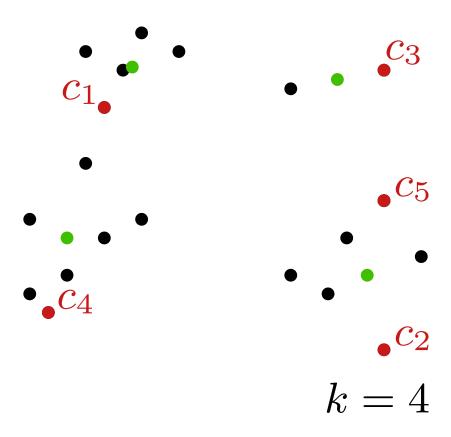
for i < j: $d(c_{i}, c_{i}) \geq d(c_{i}, C_{i-1}) \geq d(c_{k+1}, C_{i-1}) \geq d(c_{k+1}, C_{k}) = r$



GreedyKCenter(P, k) computes a 2-approximation for k-center clustering.

 C^* : an optimal solution with $OPT := \max_{p \in P} d(p, C^*)$ $C_k = \{c_1, \ldots, c_k\}$ computed solution c_{k+1} : point maximizing $d(c_{k+1}, C_k) =: r$

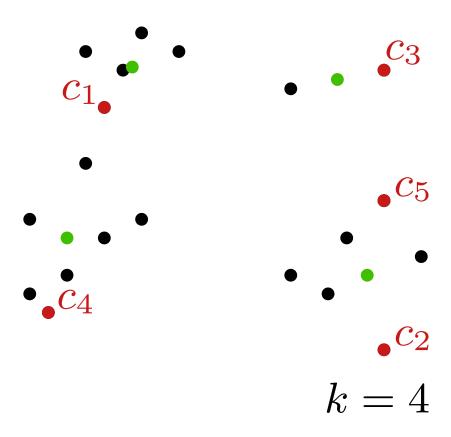
for i < j: $d(c_{i}, c_{i}) \ge d(c_{i}, C_{i-1}) \ge d(c_{k+1}, C_{i-1}) \ge d(c_{k+1}, C_{k}) = r$ $c_i \in C_{i-1}$



GreedyKCenter(P, k) computes a 2-approximation for k-center clustering.

 C^* : an optimal solution with $OPT := \max_{p \in P} d(p, C^*)$ $C_k = \{c_1, \ldots, c_k\}$ computed solution c_{k+1} : point maximizing $d(c_{k+1}, C_k) =: r$

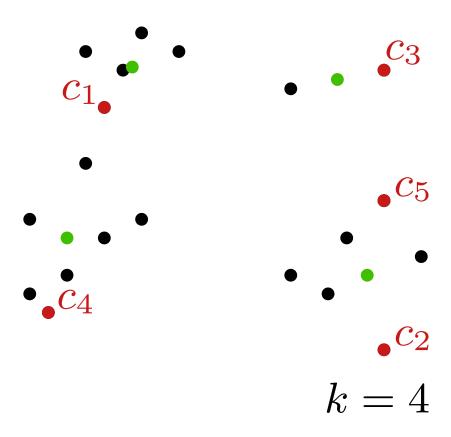
for
$$i < j$$
:
 $d(c_j, c_i) \ge d(c_j, C_{j-1}) \ge d(c_{k+1}, C_{j-1}) \ge d(c_{k+1}, C_k) = r$
 $c_i \in C_{j-1}$ c_j had max
distance in
iteration j



GreedyKCenter(P, k) computes a 2-approximation for k-center clustering.

 C^* : an optimal solution with $OPT := \max_{p \in P} d(p, C^*)$ $C_k = \{c_1, \ldots, c_k\}$ computed solution c_{k+1} : point maximizing $d(c_{k+1}, C_k) =: r$

for
$$i < j$$
:
 $d(c_j, c_i) \ge d(c_j, C_{j-1}) \ge d(c_{k+1}, C_{j-1}) \ge d(c_{k+1}, C_k) = r$
 $c_i \in C_{j-1}$ c_j had max $C_{j-1} \subset C_k$
distance in
iteration j



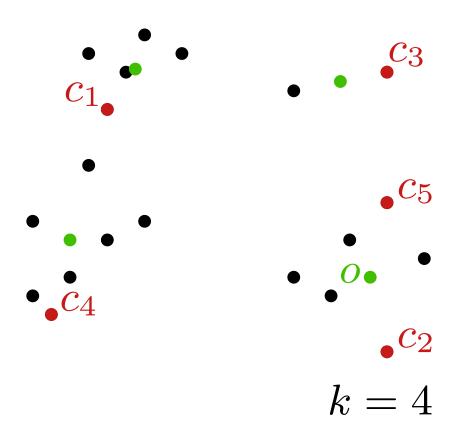
GreedyKCenter(P, k) computes a 2-approximation for k-center clustering.

 C^* : an optimal solution with $OPT := \max_{p \in P} d(p, C^*)$ $C_k = \{c_1, \ldots, c_k\}$ computed solution c_{k+1} : point maximizing $d(c_{k+1}, C_k) =: r$

for
$$i < j$$
:
 $d(c_j, c_i) \ge d(c_j, C_{j-1}) \ge d(c_{k+1}, C_{j-1}) \ge d(c_{k+1}, C_k) = r$

pigeonhole principle:

 $\exists c_i, c_j \text{ in the same cluster of } C^*; o := corresponding center$



GreedyKCenter(P, k) computes a 2-approximation for k-center clustering.

 C^* : an optimal solution with $OPT := \max_{p \in P} d(p, C^*)$ $C_k = \{c_1, \ldots, c_k\}$ computed solution c_{k+1} : point maximizing $d(c_{k+1}, C_k) =: r$

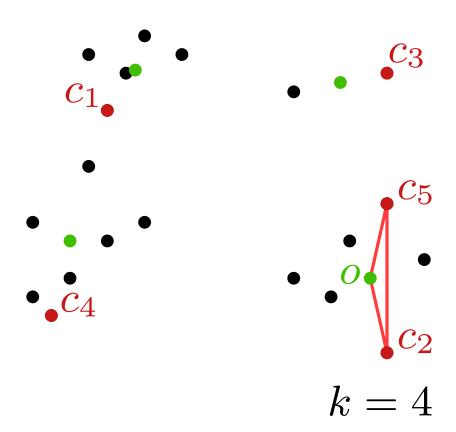
for
$$i < j$$
:
 $d(c_j, c_i) \ge d(c_j, C_{j-1}) \ge d(c_{k+1}, C_{j-1}) \ge d(c_{k+1}, C_k) = r$

pigeonhole principle:

 $\exists c_i, c_j \text{ in the same cluster of } C^*; o := corresponding center$

triangle inequality:

$$r \le d(c_j, c_i) \le d(c_j, o) + d(o, c_i) \le 2OPT$$



Quiz

The proof that GreedyKCenter gives a 2-approximation works . . .

- only in R^2 with Euclidean distance Α
- in \mathbb{R}^d but only with Euclidean distance В
- in any metric space С

Juiz

The proof that GreedyKCenter gives a 2-approximation works . . .

- only in R^2 with Euclidean distance Α
- in R^d but only with Euclidean distance В

in any metric space

since it only uses the triangle inequality

The proof that GreedyKCenter gives a 2-approximation works . . .

- only in R^2 with Euclidean distance Α
- in \mathbb{R}^d but only with Euclidean distance B

in any metric space

since it only uses the triangle inequality

When k is part of the input, the k-center problem is NP-hard to approximate within a factor

 $2-\varepsilon$ for general metric spaces

The proof that GreedyKCenter gives a 2-approximation works . . .

- only in R^2 with Euclidean distance Α
- in R^d but only with Euclidean distance B

in any metric space

since it only uses the triangle inequality

When k is part of the input, the k-center problem is NP-hard to approximate within a factor

$$2-\varepsilon$$
 for general metric spaces
1.82 for R^2 with Euclidean distance

The proof that GreedyKCenter gives a 2-approximation works . . .

- only in R^2 with Euclidean distance Α
- in R^d but only with Euclidean distance B

in any metric space

since it only uses the triangle inequality

When k is part of the input, the k-center problem is NP-hard to approximate within a factor

$$2-\varepsilon$$
 for general metric spaces
1.82 for R^2 with Euclidean distance
 $2-\varepsilon$ for R^2 with L_1 - or L_∞ - distance

discrete k-median clustering

approximation algorithm

discrete k-median clustering in metric space (X, d)

Given: $P \subset X$ and integer k Goal: Find $C \subset P$ of size k such that

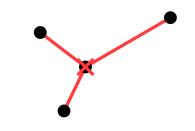
$$\sum_{p \in P} d(p, C)$$

is minimized.

k = 2

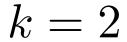
discrete k-median clustering in metric space (X, d)

Given: $P \subset X$ and integer k Goal: Find $C \subset P$ of size k such that



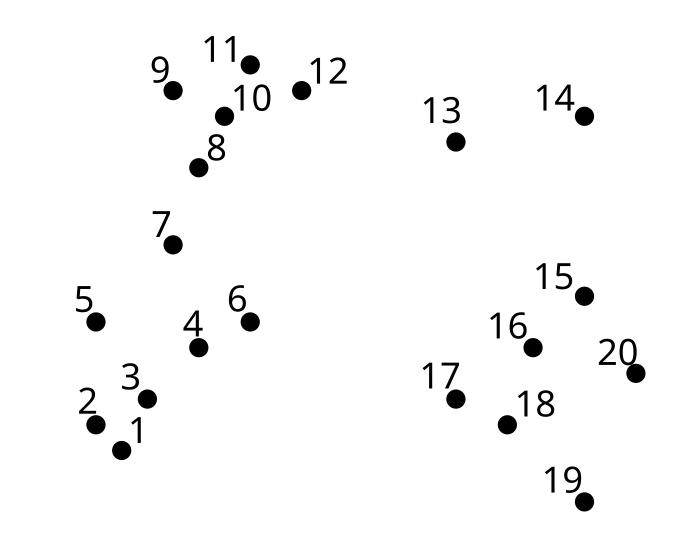
 $\sum_{p \in P} d(p, C)$

is minimized.



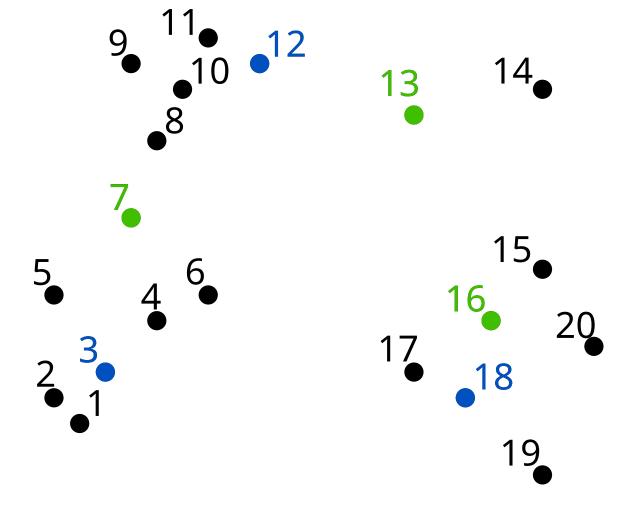
Question (k = 3)

Which set C of 3 points minimizes $\sum_{p\in P} d(p,C)$?



Question (k = 3)

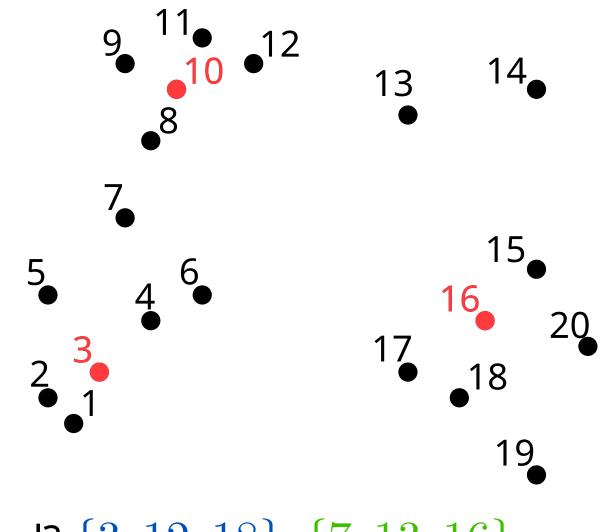
Which set C of 3 points minimizes $\sum_{p\in P} d(p,C)$?



good? $\{3, 12, 18\}, \{7, 13, 16\}$

Question (k = 3)

Which set C of 3 points minimizes $\sum_{p \in P} d(p, C)$?



good? $\{3, 12, 18\}, \{7, 13, 16\}$ optimal: $\{3, 10, 16\}$

Use 2-approximation for k-center clustering (?) on n points

 $\max_{p \in P} d(p, C) \le \sum_{p \in P} d(p, C) \le \sum_{p \in P} \max_{p \in P} \max_{p \in P} n \cdot \max_{p \in P} d(p, C) \le \sum_{p \in P} \max_{p \in P} d(p, C) \le \sum_{p \in P} \max_{p \in P} d(p, C) \le \sum_{p \in P} \max_{p \in P} \max_{p \in P} d(p, C) \le \sum_{p \in P} \max_{p \in P}$

Use 2-approximation for k-center clustering (?) on n points

 $\max_{p \in P} d(p, C) \le \sum_{p \in P} d(p, C) \le \sum_{p \in P} \max_{p \in P} \max_{p \in P} n \cdot \max_{p \in P} d(p, C) \le \sum_{p \in P} \max_{p \in P} d(p, C) \le \sum_{p \in P} \max_{p \in P} d(p, C) \le \sum_{p \in P} \max_{p \in P} \max_{p \in P} d(p, C) \le \sum_{p \in P} \max_{p \in P}$

Use 2-approximation for k-center clustering (?) on n points

$$\max_{p \in P} d(p, C) \le \sum_{p \in P} d(p, C) \le \sum_{p \in P} \max_{p \in P} \max_{p \in P} max_{p \in P} = n$$

This means:

optimal solution to k-center clustering is n-approximation for k-median

$i \cdot \max_{p \in P}$

Use 2-approximation for k-center clustering (?) on n points

$$\max_{p \in P} d(p, C) \le \sum_{p \in P} d(p, C) \le \sum_{p \in P} \max_{p \in P} \max_{p \in P} max_{p \in P} = n$$

This means:

optimal solution to k-center clustering is n-approximation for k-median 2-approximation for k-center clustering is 2n-approximation for k-median

$i \cdot \max_{p \in P}$

Use 2-approximation for k-center clustering (?) on n points

$$\max_{p \in P} d(p, C) \le \sum_{p \in P} d(p, C) \le \sum_{p \in P} \max_{p \in P} \max_{p \in P} max_{p \in P} = n$$

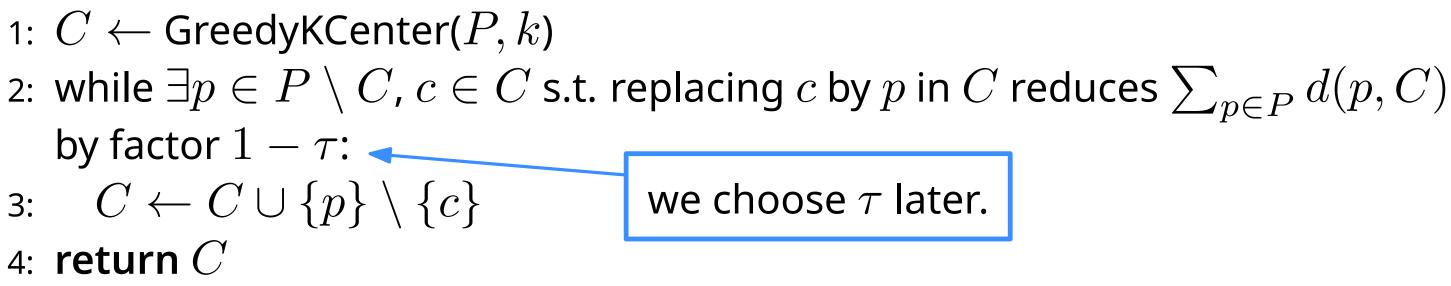
This means:

optimal solution to k-center clustering is n-approximation for k-median 2-approximation for k-center clustering is 2n-approximation for k-median

We can do better with local search!

$i \cdot \max_{p \in P}$

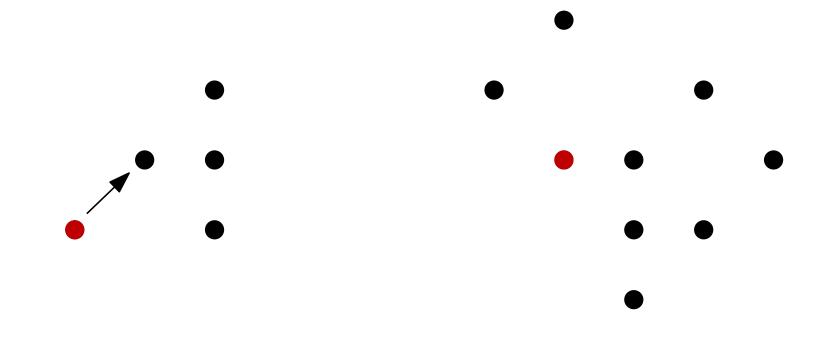
- 1: $C \leftarrow \text{GreedyKCenter}(P, k)$
- 2: while $\exists p \in P \setminus C$, $c \in C$ s.t. replacing c by p in C reduces $\sum_{p \in P} d(p, C)$ by factor $1 - \tau$:
- 3: $C \leftarrow C \cup \{p\} \setminus \{c\}$
- 4: return C



\rightarrow 1: $C \leftarrow \text{GreedyKCenter}(P, k)$

- 2: while $\exists p \in P \setminus C$, $c \in C$ s.t. replacing c by p in C reduces $\sum_{p \in P} d(p, C)$ by factor $1 - \tau$:
- 3: $C \leftarrow C \cup \{p\} \setminus \{c\}$
- 4: return C

- 1: $C \leftarrow \text{GreedyKCenter}(P, k)$ -> 2: while $\exists p \in P \setminus C$, $c \in C$ s.t. replacing c by p in C reduces $\sum_{p \in P} d(p, C)$ by factor $1 - \tau$: 3: $C \leftarrow C \cup \{p\} \setminus \{c\}$
 - 4: return C

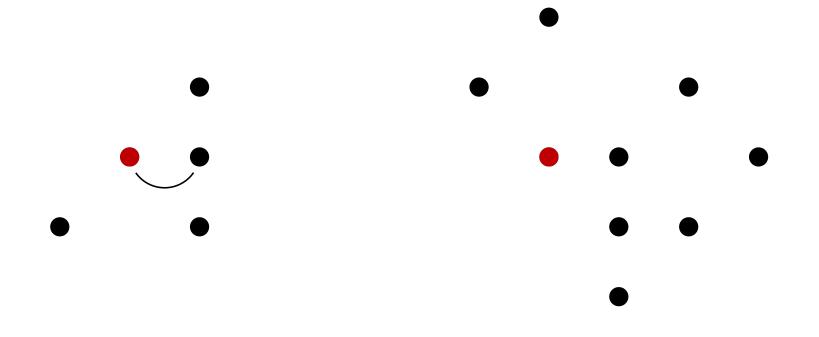


1: $C \leftarrow \text{GreedyKCenter}(P, k)$ 2: while $\exists p \in P \setminus C$, $c \in C$ s.t. replacing c by p in C reduces $\sum_{p \in P} d(p, C)$ by factor $1 - \tau$: \blacksquare 3: $C \leftarrow C \cup \{p\} \setminus \{c\}$ 4: return C

- 1: $C \leftarrow \text{GreedyKCenter}(P, k)$ -> 2: while $\exists p \in P \setminus C$, $c \in C$ s.t. replacing c by p in C reduces $\sum_{p \in P} d(p, C)$ by factor $1 - \tau$: 3: $C \leftarrow C \cup \{p\} \setminus \{c\}$
 - 4: return C

1: $C \leftarrow \text{GreedyKCenter}(P, k)$ 2: while $\exists p \in P \setminus C$, $c \in C$ s.t. replacing c by p in C reduces $\sum_{p \in P} d(p, C)$ by factor $1 - \tau$: \blacksquare 3: $C \leftarrow C \cup \{p\} \setminus \{c\}$ 4: return C

- 1: $C \leftarrow \text{GreedyKCenter}(P, k)$ \rightarrow 2: while $\exists p \in P \setminus C$, $c \in C$ s.t. replacing c by p in C reduces $\sum_{p \in P} d(p, C)$ by factor $1 - \tau$: 3: $C \leftarrow C \cup \{p\} \setminus \{c\}$
 - 4: return C



1: $C \leftarrow \text{GreedyKCenter}(P, k)$ 2: while $\exists p \in P \setminus C$, $c \in C$ s.t. replacing c by p in C reduces $\sum_{p \in P} d(p, C)$ by factor $1 - \tau$: \blacksquare 3: $C \leftarrow C \cup \{p\} \setminus \{c\}$ 4: return C

Running time

Try swapping every $p \in P \setminus c$ with every $c \in C$:

Running time

Try swapping every $p \in P \setminus c$ with every $c \in C$: O(nk) possibile swaps

Running time

Try swapping every $p \in P \setminus c$ with every $c \in C$: O(nk) possibile swaps computing $\sum_{p \in P} d(p, C \cup \{p\} \setminus \{c\}: O(nk)$ time

Try swapping every $p \in P \setminus c$ with every $c \in C$: O(nk) possibile swaps computing $\sum_{p \in P} d(p, C \cup \{p\} \setminus \{c\}: O(nk)$ time

time per iteration of while-loop: $O((nk)^2)$

Try swapping every $p \in P \setminus c$ with every $c \in C$: O(nk) possibile swaps computing $\sum_{p \in P} d(p, C \cup \{p\} \setminus \{c\}: O(nk)$ time

time per iteration of **while**-loop: $O((nk)^2)$

number of iterations: $\log_{1/(1-\tau)} \frac{\text{initialCost}}{\text{optimalCost}}$

Try swapping every $p \in P \setminus c$ with every $c \in C$: O(nk) possibile swaps computing $\sum_{p \in P} d(p, C \cup \{p\} \setminus \{c\}: O(nk)$ time

time per iteration of while-loop: $O((nk)^2)$

number of iterations: $\log_{1/(1-\tau)} \frac{\ln tialCost}{optimalCost} \leq \log_{1/(1-\tau)} 2n$ (from 2*n*-approx.)

Try swapping every $p \in P \setminus c$ with every $c \in C$: O(nk) possibile swaps computing $\sum_{p \in P} d(p, C \cup \{p\} \setminus \{c\}: O(nk)$ time

time per iteration of **while**-loop: $O((nk)^2)$

number of iterations: $\log_{1/(1-\tau)} \frac{\text{initialCost}}{\text{optimalCost}} \le \log_{1/(1-\tau)} 2n$ (from 2n-approx.)

Can be simplified to $O(\frac{\log n}{\tau})$ [without proof but elementary maths]

n (from 2n-approx.) ary maths]

LocalSearchKMedian(P, k): $(5 + \varepsilon)$ - approximation for discrete k-median

LocalSearchKMedian(P, k): $(5 + \varepsilon)$ - approximation for discrete k-median

Warning: proof tedious (but fun (?) and insightful)

LocalSearchKMedian(P, k): $(5 + \varepsilon)$ - approximation for discrete k-median

Warning: proof tedious (but fun (?) and insightful)

I will sketch the core ideas

LocalSearchKMedian(P, k): $(5 + \varepsilon)$ - approximation for discrete k-median

Warning: proof tedious (but fun (?) and insightful)

I will sketch the core ideas

I will show: if we replace until no improvement (aka: ignore τ), we get 5-approximation

LocalSearchKMedian(P, k): $(5 + \varepsilon)$ - approximation for discrete k-median

Notation: C: computed centers, C^* opt. centers $A_p := d(p, C), O_p := d(p, C^*)$

$\gamma(p)=\operatorname{center}\operatorname{of} p\in C$, $\gamma^*(p)$ same in C^* N(c) : cluster of $c \in C$, $N^*(c^*)$ likewise

LocalSearchKMedian(P, k): $(5 + \varepsilon)$ - approximation for discrete k-median

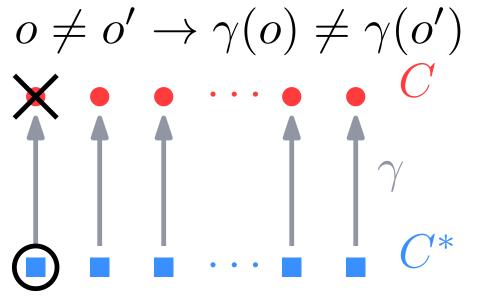
simple case: for all $o, o' \in C^*$: $o \neq o' \rightarrow \gamma(o) \neq \gamma(o')$

 $\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \gamma$

Notation: C: computed centers, C^* opt. centers $A_p := d(p, C), O_p := d(p, C^*)$

LocalSearchKMedian(P, k): $(5 + \varepsilon)$ - approximation for discrete k-median

simple case: for all $o, o' \in C^*$:

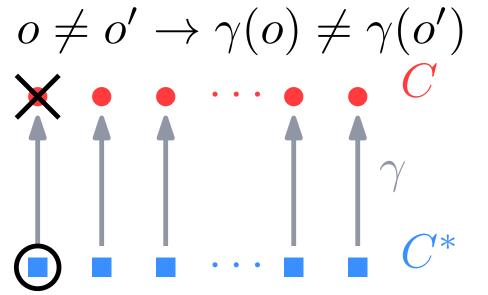


Notation: C: computed centers, C^* opt. centers $A_p := d(p, C), O_p := d(p, C^*)$

Idea: for $o \in C^*$ consider $C' := C + o - \gamma(o)$

LocalSearchKMedian(P, k): $(5 + \varepsilon)$ - approximation for discrete k-median

simple case: for all $o, o' \in C^*$:



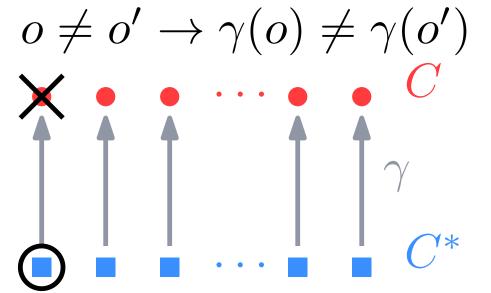
Notation: C: computed centers, C^* opt. centers $A_p := d(p, C), O_p := d(p, C^*)$

Idea: for $o \in C^*$ consider $C' := C + o - \gamma(o)$

 $0 \le cost(C + o - \gamma(o)) - cost(C)$

LocalSearchKMedian(P, k): $(5 + \varepsilon)$ - approximation for discrete k-median

simple case: for all $o, o' \in C^*$:



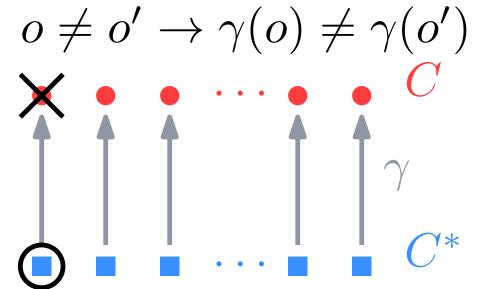
Notation: C: computed centers, C^* opt. centers $A_p := d(p, C), O_p := d(p, C^*)$

Idea: for $o \in C^*$ consider $C' := C + o - \gamma(o)$

 $0 \le cost(C + o - \gamma(o)) - cost(C)$ $\leq \sum_{p \in N^*(o)} (O_p - A_p) + \sum_{q \in N(\gamma(o))} (d(q, \gamma(\gamma^*(q))) - A_q)$

LocalSearchKMedian(P, k): $(5 + \varepsilon)$ - approximation for discrete k-median

simple case: for all $o, o' \in C^*$:



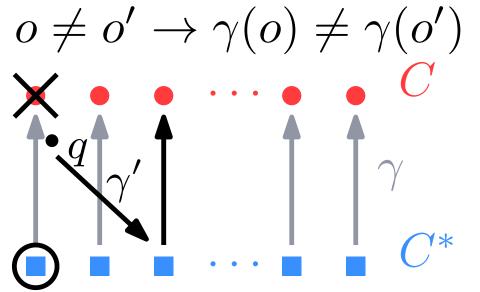
Notation: C: computed centers, C^* opt. centers $A_p := d(p, C), O_p := d(p, C^*)$

Idea: for $o \in C^*$ consider $C' := C + o - \gamma(o)$

 $0 \le cost(C + o - \gamma(o)) - cost(C)$ $\leq \sum_{p \in N^*(o)} (O_p - A_p) + \sum_{q \in N(\gamma(o))} (d(q, \gamma(\gamma^*(q))) - A_q)$ $d(p, C') \leq$ $d(p, o) = O_p$

LocalSearchKMedian(P, k): $(5 + \varepsilon)$ - approximation for discrete k-median

simple case: for all $o, o' \in C^*$:



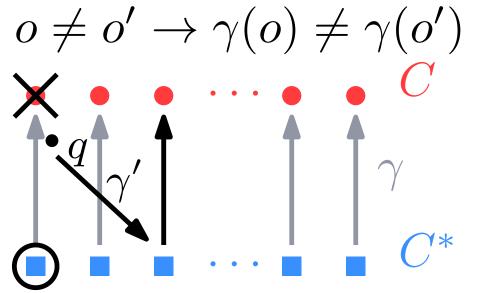
Notation: C: computed centers, C^* opt. centers $A_p := d(p, C), O_p := d(p, C^*)$

Idea: for $o \in C^*$ consider $C' := C + o - \gamma(o)$

 $0 \le cost(C + o - \gamma(o)) - cost(C)$ $\leq \sum_{p \in N^*(o)} (O_p - A_p) + \sum_{q \in N(\gamma(o))} (d(q, \gamma(\gamma^*(q))) - A_q)$ $d(p, C') \leq bound \operatorname{cost} \operatorname{for} q \in N(\gamma(o)) \setminus N^*(o)$ $d(p, o) = O_p$ by taking $d(q, \gamma(\gamma^*(q)))$

LocalSearchKMedian(P, k): $(5 + \varepsilon)$ - approximation for discrete k-median

simple case: for all $o, o' \in C^*$:



Notation: C: computed centers, C^* opt. centers $A_p := d(p, C), O_p := d(p, C^*)$

Idea: for $o \in C^*$ consider $C' := C + o - \gamma(o)$

 $0 \le cost(C + o - \gamma(o)) - cost(C)$ $\leq \sum_{p \in N^*(o)} (O_p - A_p) + \sum_{q \in N(\gamma(o))} (d(q, \gamma(\gamma^*(q))) - A_q)$

by triangle ineq. (proof later): $\leq \sum_{q \in N(\gamma(o))} 2O_q$ By doing this for all $o \in C^*$ and summing: $\sum A_p \leq 3 \sum O_p$

LocalSearchKMedian(P, k): $(5 + \varepsilon)$ - approximation for discrete k-median

simple case: for all $o, o' \in C^*$:



Notation: C: computed centers, C^* opt. centers $A_p := d(p, C), O_p := d(p, C^*)$

proof of $d(q, \gamma(\gamma^*(q))) - A_q \leq 2O_q$:

LocalSearchKMedian(P, k): $(5 + \varepsilon)$ - approximation for discrete k-median

simple case: for all $o, o' \in C^*$:

 $o \neq o' \rightarrow \gamma(o) \neq \gamma(o')$

Notation: C: computed centers, C^* opt. centers $A_p := d(p, C), O_p := d(p, C^*)$

proof of $d(q, \gamma(\gamma^*(q))) - A_q \leq 2O_q$: $d(q,\gamma(\gamma^*(q))) < d(q,\gamma^*(q)) + d(\gamma^*(q),\gamma(\gamma^*(q)))$

LocalSearchKMedian(P, k): $(5 + \varepsilon)$ - approximation for discrete k-median

simple case: for all $o, o' \in C^*$:

 $o \neq o' \rightarrow \gamma(o) \neq \gamma(o')$

Notation: C: computed centers, C^* opt. centers $A_p := d(p, C), O_p := d(p, C^*)$

proof of $d(q, \gamma(\gamma^*(q))) - A_q \leq 2O_q$: $d(q,\gamma(\gamma^*(q))) \le d(q,\gamma^*(q)) + d(\gamma^*(q),\gamma(\gamma^*(q)))$ $\leq O_q + d(\gamma^*(q), \gamma(\gamma^*(q)))$

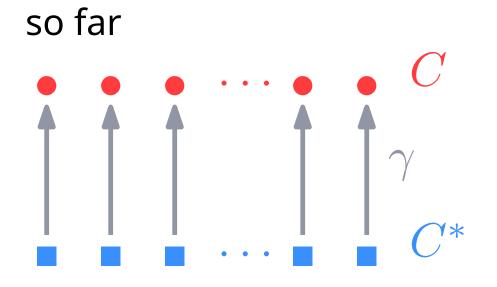
LocalSearchKMedian(P, k): $(5 + \varepsilon)$ - approximation for discrete k-median

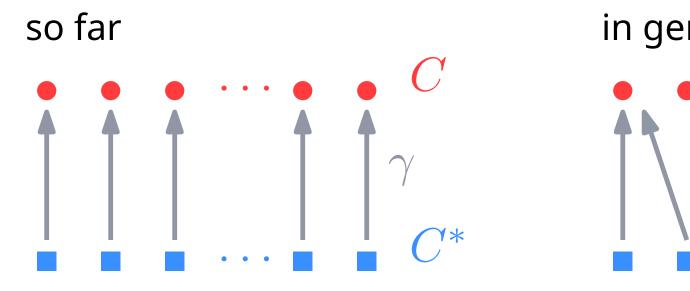
simple case: for all $o, o' \in C^*$:

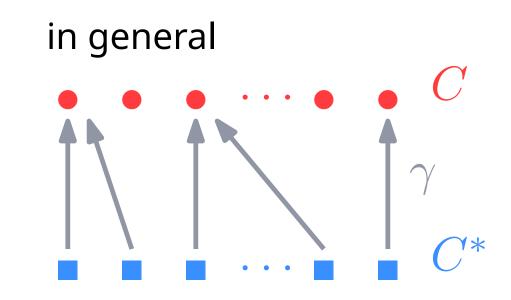
 $o \neq o' \rightarrow \gamma(o) \neq \gamma(o')$

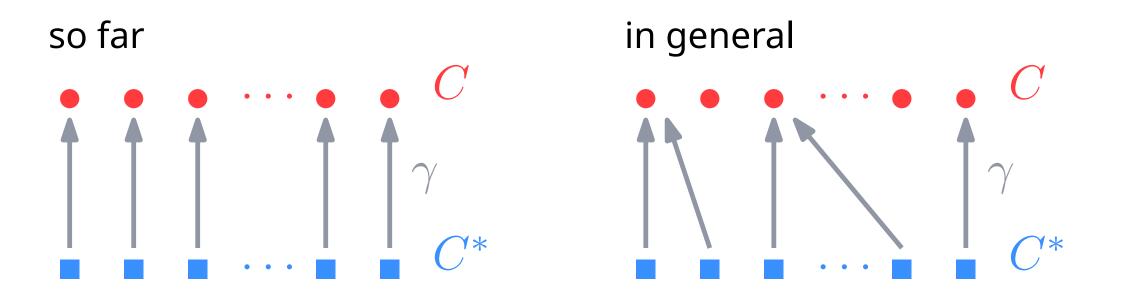
Notation: C: computed centers, C^* opt. centers $A_p := d(p, C), O_p := d(p, C^*)$

proof of $d(q, \gamma(\gamma^*(q))) - A_q < 2O_q$: $d(q,\gamma(\gamma^*(q))) \le d(q,\gamma^*(q)) + d(\gamma^*(q),\gamma(\gamma^*(q)))$ $< O_q + d(\gamma^*(q), \gamma(\gamma^*(q)))$ $\leq O_q + d(\gamma^*(q), \gamma(q))$ $< O_q + d(\gamma^*(q), q) + d(q, \gamma(q))$ $= O_q + O_q + A_a$

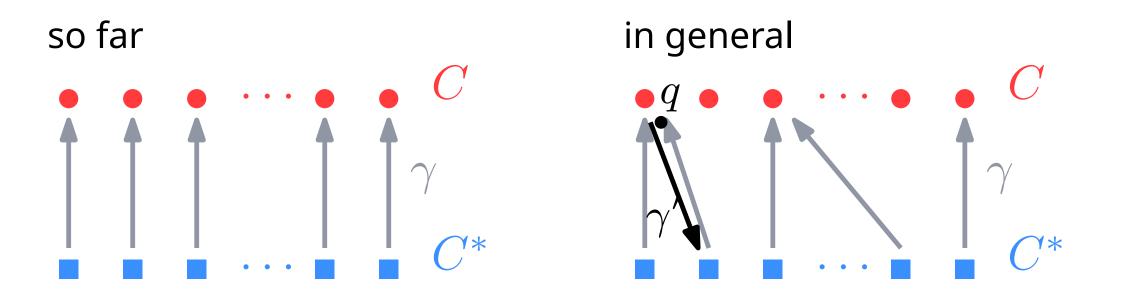




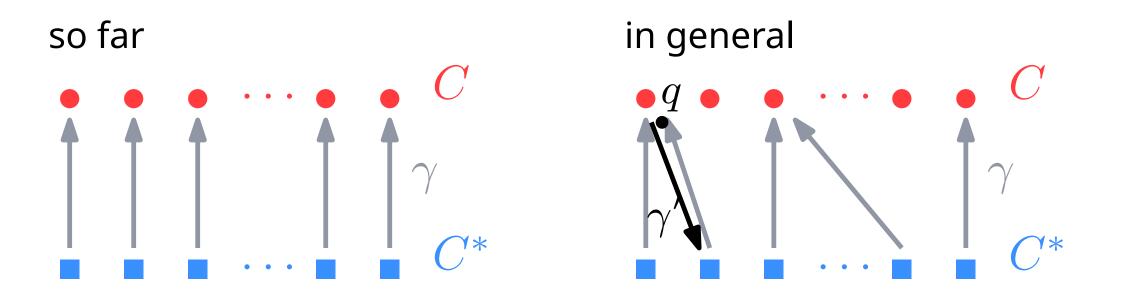




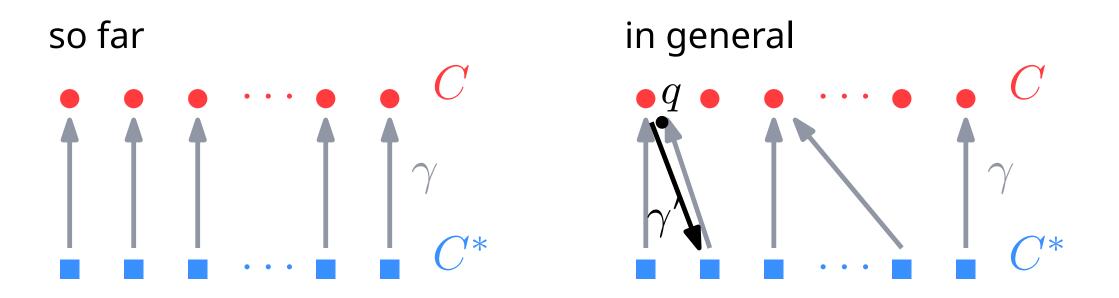
problem: if we swap o with $c := \gamma(o) = \gamma(o')$, we can't reassign $q \in N(c) \cap N^*(o')$



problem: if we swap o with $c := \gamma(o) = \gamma(o')$, we can't reassign $q \in N(c) \cap N^*(o')$

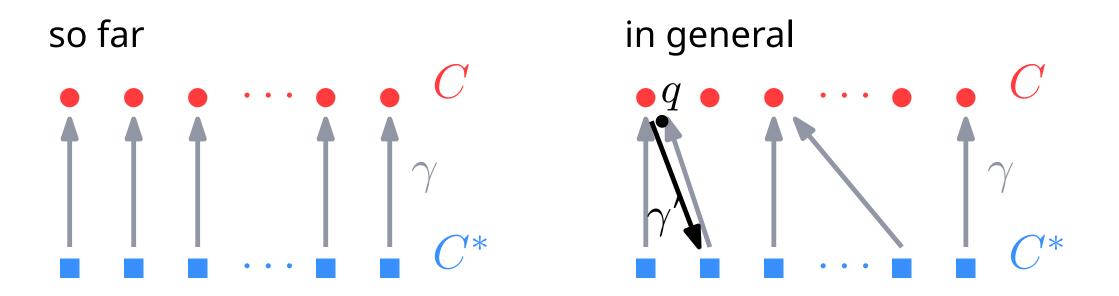


problem: if we swap o with $c := \gamma(o) = \gamma(o')$, we can't reassign $q \in N(c) \cap N^*(o')$ solution: swap $o \in C^*$ with $\eta(o)$ chosen s.t.



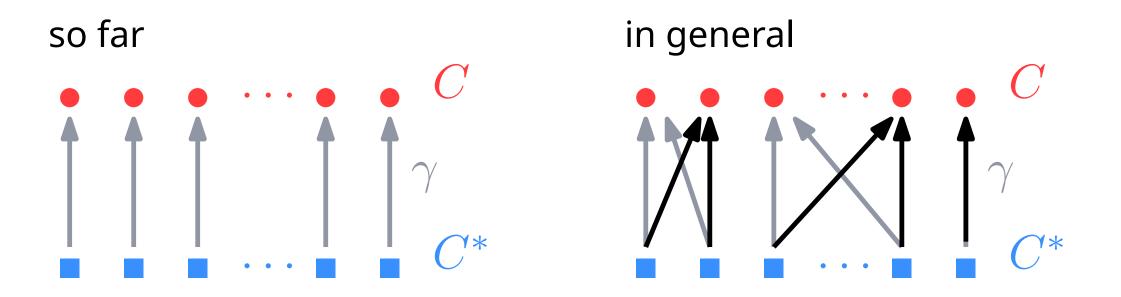
problem: if we swap o with $c := \gamma(o) = \gamma(o')$, we can't reassign $q \in N(c) \cap N^*(o')$ solution: swap $o \in C^*$ with $\eta(o)$ chosen s.t.

$$\eta(o)=\gamma(o) \text{ if } \gamma(o)\neq\gamma(o') \text{ for } o\neq o'\in C^*$$



problem: if we swap o with $c := \gamma(o) = \gamma(o')$, we can't reassign $q \in N(c) \cap N^*(o')$ solution: swap $o \in C^*$ with $\eta(o)$ chosen s.t.

$$\begin{split} \eta(o) &= \gamma(o) \text{ if } \gamma(o) \neq \gamma(o') \text{ for } o \neq o' \in C^* \\ \eta(o) &\neq \gamma(o') \text{ for all } o' \in C^* \text{ and} \\ \eta(o) &= \eta(o') \text{ for at most one other } o' \end{split}$$



problem: if we swap o with $c := \gamma(o) = \gamma(o')$, we can't reassign $q \in N(c) \cap N^*(o')$ solution: swap $o \in C^*$ with $\eta(o)$ chosen s.t.

$$\begin{split} \eta(o) &= \gamma(o) \text{ if } \gamma(o) \neq \gamma(o') \text{ for } o \neq o' \in C^* \\ \eta(o) &\neq \gamma(o') \text{ for all } o' \in C^* \text{ and} \\ \eta(o) &= \eta(o') \text{ for at most one other } o' \end{split}$$

Same argument works, but since we swap out each $c \in C$ up to 2 times, we get $\sum A_p \leq \sum O_p + 2 \cdot 2O_p$

k-center: 2-approximation by greedy algorithm

discrete *k*-median: $(5 + \varepsilon)$ -approximation by local search

k-center: 2-approximation by greedy algorithm

discrete *k*-median: $(5 + \varepsilon)$ -approximation by local search

discrete k-means: minimize $\sum_{p \in P} d(p, C)^2$

k-center: 2-approximation by greedy algorithm

discrete *k*-median: $(5 + \varepsilon)$ -approximation by local search

discrete *k*-means: minimize $\sum_{p \in P} d(p, C)^2$

open: α -approximation for k-center in R^d with Euclidean distance and $1.82 < \alpha < 2$?

k-center: 2-approximation by greedy algorithm

discrete k-median: $(5 + \varepsilon)$ -approximation by local search

discrete k-means: minimize $\sum_{p \in P} d(p, C)^2$

open: α -approximation for k-center in R^d with Euclidean distance and $1.82 < \alpha < 2$? in my research: geometric spaces beyond points, in particular, clustering curves