Center-based Clustering

2-approximation for k-center clustering
5-approximation for k-median clustering
k-means clustering

Center-based clustering - intuition

Given: integer k, point set P

Center-based clustering - intuition

$k=4$

Given: integer k, point set P
Goal: point set C, of size k such that every point in P is close to a point in C

Center-based clustering - intuition

$k=4$

Given: integer k, point set P

Goal: point set C, of size k such that every point in P is close to a point in C

Motivation:

- placing facilities, e.g., hospitals
- finding groups of nearby points

Center-based clustering - intuition

$k=4$

Goal: point set C, of size k such that every point in P is close to a point in C

Motivation:

- placing facilities, e.g., hospitals
- finding groups of nearby points

Preliminaries

metric space: pair (X, d) with X a set, and $d: X \times X \rightarrow[0, \infty)$ satisfying

Preliminaries

metric space: pair (X, d) with X a set, and $d: X \times X \rightarrow[0, \infty)$ satisfying $d(x, y)=0$ if and only if $x=y$,

Preliminaries

metric space: pair (X, d) with X a set, and $d: X \times X \rightarrow[0, \infty)$ satisfying

$$
\begin{aligned}
& d(x, y)=0 \text { if and only if } x=y \\
& d(x, y)=d(y, x)
\end{aligned}
$$

Preliminaries

metric space: pair (X, d) with X a set, and $d: X \times X \rightarrow[0, \infty)$ satisfying

$$
\begin{aligned}
& d(x, y)=0 \text { if and only if } x=y \\
& d(x, y)=d(y, x) \\
& d(x, z) \leq d(x, y)+d(y, z) . \quad(\text { triangle inequality })
\end{aligned}
$$

Preliminaries

metric space: pair (X, d) with X a set, and $d: X \times X \rightarrow[0, \infty)$ satisfying

$$
\begin{aligned}
& d(x, y)=0 \text { if and only if } x=y \\
& d(x, y)=d(y, x)
\end{aligned}
$$

$$
d(x, z) \leq d(x, y)+d(y, z) . \quad \text { (triangle inequality) }
$$

examples:

R^{2} with Euclidean distance

Preliminaries

metric space: pair (X, d) with X a set, and $d: X \times X \rightarrow[0, \infty)$ satisfying

$$
\begin{aligned}
& d(x, y)=0 \text { if and only if } x=y \\
& d(x, y)=d(y, x) \\
& d(x, z) \leq d(x, y)+d(y, z) . \quad \text { (triangle inequality) }
\end{aligned}
$$

examples:

R^{2} with Euclidean distance
Graph with shortest-path distance

Preliminaries

metric space: pair (X, d) with X a set, and $d: X \times X \rightarrow[0, \infty)$ satisfying

$$
\begin{aligned}
& d(x, y)=0 \text { if and only if } x=y \\
& d(x, y)=d(y, x) \\
& d(x, z) \leq d(x, y)+d(y, z) . \quad \text { (triangle inequality) }
\end{aligned}
$$

examples:

R^{2} with Euclidean distance
Graph with shortest-path distance curves with Fréchet distance

Preliminaries

metric space: pair (X, d) with X a set, and $d: X \times X \rightarrow[0, \infty)$ satisfying

$$
\begin{aligned}
d(x, y) & =0 \text { if and only if } x=y \\
d(x, y) & =d(y, x) \\
d(x, z) & \leq d(x, y)+d(y, z) . \quad \text { (triangle inequality) }
\end{aligned}
$$

examples:

R^{2} with Euclidean distance
Graph with shortest-path distance curves with Fréchet distance
notation: $d(p, C):=\min _{q \in C} d(p, q)$
k-center clustering in metric space (X, d)
Given: $P \subset X$ and integer k
Goal: Find $C \subset X$ of size k such that

$$
\max _{p \in P} d(p, C)
$$

is minimized.
k-center clustering in metric space (X, d)
Given: $P \subset X$ and integer k
Goal: Find $C \subset X$ of size k such that

$$
\max _{p \in P} d(p, C)
$$

is minimized.

k-center clustering in metric space (X, d)

Given: $P \subset X$ and integer k
Goal: Find $C \subset X$ of size k such that

$$
\max _{p \in P} d(p, C)
$$

is minimized.
discrete k-center problem: $C \subset P$
k-center clustering in metric space (X, d)
Given: $P \subset X$ and integer k
Goal: Find $C \subset X$ of size k such that

$$
\max _{p \in P} d(p, C)
$$

is minimized.
discrete k-center problem: $C \subset P$

k-center clustering in metric space (X, d)

Given: $P \subset X$ and integer k
Goal: Find $C \subset X$ of size k such that

$$
\max _{p \in P} d(p, C)
$$

is minimized.
discrete k-center problem: $C \subset P$

later:

(discrete) k-median problem: sum instead of max
k-means: sum of squares

Quiz

Which of the following is an optimal set of centers for $k=3$?

Quiz

Which of the following is an optimal set of centers for $k=3$?

Quiz

Which of the following is an optimal set of centers for $k=3$?

A	$4,10,16$
B	$6,12,15$
C	$7,13,16$

Quiz

Which of the following is an optimal set of centers for $k=3$?
k-center clustering
approximation algorithm

Algorithm GreedyKCenter (P, k)

Incrementally add points to C. How can we guarantee to reduce the maximum?

Algorithm GreedyKCenter (P, k)

Incrementally add points to C. How can we guarantee to reduce the maximum?

Add the point p with maximum $d(p, C)$!

Algorithm GreedyKCenter (P, k)

1: $c_{1} \leftarrow$ arbitrary point of P
2: $C_{1} \leftarrow\left\{c_{1}\right\}$
3: for $i=2,3, \ldots, k$:
4: Let $c_{i} \in P$ be the point such that $d\left(c_{i}, C_{i-1}\right)$ is maximal
5: $\quad C_{i} \leftarrow C_{i-1} \cup s_{i}$
6: return C_{k}

Algorithm GreedyKCenter(P, k)

\longrightarrow 1: $c_{1} \leftarrow$ arbitrary point of P
2: $C_{1} \leftarrow\left\{c_{1}\right\}$
3: for $i=2,3, \ldots, k$:
4: Let $c_{i} \in P$ be the point such that $d\left(c_{i}, C_{i-1}\right)$ is maximal
5: $\quad C_{i} \leftarrow C_{i-1} \cup s_{i}$
6: return C_{k}

Algorithm GreedyKCenter (P, k)

1: $c_{1} \leftarrow$ arbitrary point of P
\longrightarrow 2: $C_{1} \leftarrow\left\{c_{1}\right\}$
3: for $i=2,3, \ldots, k$:
4: Let $c_{i} \in P$ be the point such that $d\left(c_{i}, C_{i-1}\right)$ is maximal
5: $\quad C_{i} \leftarrow C_{i-1} \cup s_{i}$
6: return C_{k}

Algorithm GreedyKCenter (P, k)

1: $c_{1} \leftarrow$ arbitrary point of P
2: $C_{1} \leftarrow\left\{c_{1}\right\}$
3: for $i=2,3, \ldots, k$:
$\longrightarrow 4$: Let $c_{i} \in P$ be the point such that $d\left(c_{i}, C_{i-1}\right)$ is maximal
5: $\quad C_{i} \leftarrow C_{i-1} \cup s_{i}$
6: return C_{k}

Algorithm GreedyKCenter (P, k)

1: $c_{1} \leftarrow$ arbitrary point of P
2: $C_{1} \leftarrow\left\{c_{1}\right\}$
3: for $i=2,3, \ldots, k$:
4: Let $c_{i} \in P$ be the point such that $d\left(c_{i}, C_{i-1}\right)$ is maximal
\longrightarrow 5: $\quad C_{i} \leftarrow C_{i-1} \cup s_{i}$
6: return C_{k}

Algorithm GreedyKCenter (P, k)

1: $c_{1} \leftarrow$ arbitrary point of P
2: $C_{1} \leftarrow\left\{c_{1}\right\}$
3: for $i=2,3, \ldots, k$:
$\longrightarrow 4$: Let $c_{i} \in P$ be the point such that $d\left(c_{i}, C_{i-1}\right)$ is maximal
5: $\quad C_{i} \leftarrow C_{i-1} \cup s_{i}$
6: return C_{k}

Algorithm GreedyKCenter (P, k)

1: $c_{1} \leftarrow$ arbitrary point of P
2: $C_{1} \leftarrow\left\{c_{1}\right\}$
3: for $i=2,3, \ldots, k$:
4: Let $c_{i} \in P$ be the point such that $d\left(c_{i}, C_{i-1}\right)$ is maximal
\longrightarrow 5: $\quad C_{i} \leftarrow C_{i-1} \cup s_{i}$
6: return C_{k}

Algorithm GreedyKCenter (P, k)

1: $c_{1} \leftarrow$ arbitrary point of P
2: $C_{1} \leftarrow\left\{c_{1}\right\}$
3: for $i=2,3, \ldots, k$:
$\longrightarrow 4$: Let $c_{i} \in P$ be the point such that $d\left(c_{i}, C_{i-1}\right)$ is maximal
5: $\quad C_{i} \leftarrow C_{i-1} \cup s_{i}$
6: return C_{k}

Algorithm GreedyKCenter (P, k)

1: $c_{1} \leftarrow$ arbitrary point of P
2: $C_{1} \leftarrow\left\{c_{1}\right\}$
3: for $i=2,3, \ldots, k$:
4: Let $c_{i} \in P$ be the point such that $d\left(c_{i}, C_{i-1}\right)$ is maximal
\longrightarrow 5: $\quad C_{i} \leftarrow C_{i-1} \cup s_{i}$
6: return C_{k}

Algorithm GreedyKCenter (P, k)

1: $c_{1} \leftarrow$ arbitrary point of P
2: $C_{1} \leftarrow\left\{c_{1}\right\}$
3: for $i=2,3, \ldots, k$:
4: Let $c_{i} \in P$ be the point such that $d\left(c_{i}, C_{i-1}\right)$ is maximal
5: $\quad C_{i} \leftarrow C_{i-1} \cup s_{i}$
\longrightarrow 6: return C_{k}

Approximation factor

GreedyKCenter (P, k) computes a 2-approximation for k-center clustering.

Approximation factor

GreedyKCenter (P, k) computes a 2-approximation for k-center clustering.

C^{*} : an optimal solution with $O P T:=\max _{p \in P} d\left(p, C^{*}\right)$
$C_{k}=\left\{c_{1}, \ldots, c_{k}\right\}$ computed solution

Approximation factor

GreedyKCenter (P, k) computes a 2-approximation for k-center clustering.

C^{*} : an optimal solution with $O P T:=\max _{p \in P} d\left(p, C^{*}\right)$
$C_{k}=\left\{c_{1}, \ldots, c_{k}\right\}$ computed solution
c_{k+1} : point maximizing $d\left(c_{k+1}, C_{k}\right)=: r$

Approximation factor

GreedyKCenter (P, k) computes a 2-approximation for k-center clustering.

C^{*} : an optimal solution with $O P T:=\max _{p \in P} d\left(p, C^{*}\right)$
$C_{k}=\left\{c_{1}, \ldots, c_{k}\right\}$ computed solution
c_{k+1} : point maximizing $d\left(c_{k+1}, C_{k}\right)=: r$

```
for \(i<j\) :
\(d\left(c_{j}, c_{i}\right) \geq d\left(c_{j}, C_{j-1}\right) \geq d\left(c_{k+1}, C_{j-1}\right) \geq d\left(c_{k+1}, C_{k}\right)=r\)
```


Approximation factor

GreedyKCenter (P, k) computes a 2-approximation for k-center clustering.

C^{*} : an optimal solution with $O P T:=\max _{p \in P} d\left(p, C^{*}\right)$
$C_{k}=\left\{c_{1}, \ldots, c_{k}\right\}$ computed solution
c_{k+1} : point maximizing $d\left(c_{k+1}, C_{k}\right)=: r$

$$
\begin{aligned}
& \text { for } i<j \text { : } \\
& d\left(c_{j}, c_{i}\right) \geq d\left(c_{j}, C_{j-1}\right) \geq d\left(c_{k+1}, C_{j-1}\right) \geq d\left(c_{k+1}, C_{k}\right)=r \\
& \quad c_{i} \in C_{j-1}
\end{aligned}
$$

Approximation factor

GreedyKCenter (P, k) computes a 2-approximation for k-center clustering.

C^{*} : an optimal solution with $O P T:=\max _{p \in P} d\left(p, C^{*}\right)$
$C_{k}=\left\{c_{1}, \ldots, c_{k}\right\}$ computed solution
c_{k+1} : point maximizing $d\left(c_{k+1}, C_{k}\right)=: r$

$$
\begin{aligned}
& \text { for } i<j \text { : } \\
& \qquad d\left(c_{j}, c_{i}\right) \geq d\left(c_{j}, C_{j-1}\right) \geq d\left(c_{k+1}, C_{j-1}\right) \geq d\left(c_{k+1}, C_{k}\right)=r \\
& c_{i} \in C_{j-1} \quad \begin{array}{l}
c_{j} \text { had max } \\
\\
\quad \begin{array}{l}
\text { distance in } \\
\text { iteration } j
\end{array}
\end{array}
\end{aligned}
$$

Approximation factor

GreedyKCenter (P, k) computes a 2-approximation for k-center clustering.

C^{*} : an optimal solution with $O P T:=\max _{p \in P} d\left(p, C^{*}\right)$
$C_{k}=\left\{c_{1}, \ldots, c_{k}\right\}$ computed solution
c_{k+1} : point maximizing $d\left(c_{k+1}, C_{k}\right)=: r$

$$
\begin{aligned}
& \text { for } i<j \text { : } \\
& d\left(c_{j}, c_{i}\right) \geq d\left(c_{j}, C_{j-1}\right) \geq d\left(c_{k+1}, C_{j-1}\right) \geq d\left(c_{k+1}, C_{k}\right)=r \\
& c_{i} \in C_{j-1} \quad \begin{array}{l}
c_{j} \text { had } \max \quad C_{j-1} \subset C_{k} \\
\\
\\
\\
\\
\text { itstantion in } j
\end{array}
\end{aligned}
$$

Approximation factor

GreedyKCenter (P, k) computes a 2-approximation for k-center clustering.

C^{*} : an optimal solution with $O P T:=\max _{p \in P} d\left(p, C^{*}\right)$
$C_{k}=\left\{c_{1}, \ldots, c_{k}\right\}$ computed solution
c_{k+1} : point maximizing $d\left(c_{k+1}, C_{k}\right)=: r$

pigeonhole principle:

Approximation factor

GreedyKCenter (P, k) computes a 2-approximation for k-center clustering.
C^{*} : an optimal solution with $O P T:=\max _{p \in P} d\left(p, C^{*}\right)$
$C_{k}=\left\{c_{1}, \ldots, c_{k}\right\}$ computed solution
c_{k+1} : point maximizing $d\left(c_{k+1}, C_{k}\right)=: r$

```
for \(i<j\) :
\(d\left(c_{j}, c_{i}\right) \geq d\left(c_{j}, C_{j-1}\right) \geq d\left(c_{k+1}, C_{j-1}\right) \geq d\left(c_{k+1}, C_{k}\right)=r\)
```

pigeonhole principle:

$k=4$
$\exists c_{i}, c_{j}$ in the same cluster of $C^{*} ; o:=$ corresponding center
triangle inequality:
$r \leq d\left(c_{j}, c_{i}\right) \leq d\left(c_{j}, o\right)+d\left(o, c_{i}\right) \leq 2 O P T$

Quiz

The proof that GreedyKCenter gives a 2-approximation works . . .
A only in R^{2} with Euclidean distance
B in R^{d} but only with Euclidean distance
C in any metric space

The proof that GreedyKCenter gives a 2-approximation works . . .
A only in R^{2} with Euclidean distance
B in R^{d} but only with Euclidean distance
C in any metric space
since it only uses the triangle inequality

Quiz

The proof that GreedyKCenter gives a 2-approximation works . . .
A only in R^{2} with Euclidean distance
B in R^{d} but only with Euclidean distance
C in any metric space
since it only uses the triangle inequality
When k is part of the input, the k-center problem is
NP-hard to approximate within a factor
$2-\varepsilon$ for general metric spaces

The proof that GreedyKCenter gives a 2-approximation works . . .
A only in R^{2} with Euclidean distance
B in R^{d} but only with Euclidean distance
C in any metric space
since it only uses the triangle inequality
When k is part of the input, the k-center problem is
NP-hard to approximate within a factor
$2-\varepsilon$ for general metric spaces
1.82 for R^{2} with Euclidean distance

Quiz

The proof that GreedyKCenter gives a 2-approximation works . . .
A only in R^{2} with Euclidean distance
B in R^{d} but only with Euclidean distance
C in any metric space
since it only uses the triangle inequality
When k is part of the input, the k-center problem is
NP-hard to approximate within a factor
$2-\varepsilon$ for general metric spaces
1.82 for R^{2} with Euclidean distance
$2-\varepsilon$ for R^{2} with L_{1} - or L_{∞} - distance
discrete k-median clustering
approximation algorithm

discrete k-median clustering in metric space (X, d)

Given: $P \subset X$ and integer k
Goal: Find $C \subset P$ of size k such that

$$
\sum_{p \in P} d(p, C)
$$

is minimized.

discrete k-median clustering in metric space (X, d)

Given: $P \subset X$ and integer k
Goal: Find $C \subset P$ of size k such that

$$
\sum_{p \in P} d(p, C)
$$

is minimized.

Question $(k=3)$

Which set C of 3 points minimizes $\sum_{p \in P} d(p, C)$?

Question $(k=3)$

Which set C of 3 points minimizes $\sum_{p \in P} d(p, C)$?

Question $(k=3)$

Which set C of 3 points minimizes $\sum_{p \in P} d(p, C)$?

good? $\{3,12,18\},\{7,13,16\}$ optimal: $\{3,10,16\}$

GreedyKCenter for k-median?

Use 2 -approximation for k-center clustering (?) on n points

$$
\max _{p \in P} d(p, C) \leq \sum_{p \in P} d(p, C) \leq \sum_{p \in P} \max _{p \in P}=n \cdot \max _{p \in P}
$$

GreedyKCenter for k-median?

Use 2 -approximation for k-center clustering (?) on n points

$$
\max _{p \in P} d(p, C) \leq \sum_{p \in P} d(p, C) \leq \sum_{p \in P} \max _{p \in P}=n \cdot \max _{p \in P}
$$

GreedyKCenter for k-median?

Use 2 -approximation for k-center clustering (?) on n points

$$
\max _{p \in P} d(p, C) \leq \sum_{p \in P} d(p, C) \leq \sum_{p \in P} \max _{p \in P}=n \cdot \max _{p \in P}
$$

This means:
optimal solution to k-center clustering is n-approximation for k-median

GreedyKCenter for k-median?

Use 2-approximation for k-center clustering (?) on n points

$$
\max _{p \in P} d(p, C) \leq \sum_{p \in P} d(p, C) \leq \sum_{p \in P} \max _{p \in P}=n \cdot \max _{p \in P}
$$

This means:
optimal solution to k-center clustering is n-approximation for k-median
2 -approximation for k-center clustering is $2 n$-approximation for k-median

GreedyKCenter for k-median?

Use 2-approximation for k-center clustering (?) on n points

$$
\max _{p \in P} d(p, C) \leq \sum_{p \in P} d(p, C) \leq \sum_{p \in P} \max _{p \in P}=n \cdot \max _{p \in P}
$$

This means:
optimal solution to k-center clustering is n-approximation for k-median 2 -approximation for k-center clustering is $2 n$-approximation for k-median

We can do better with local search!

LocalSearchKMedian (P, k)

1: $C \leftarrow \operatorname{GreedyKCenter}(P, k)$
2: while $\exists p \in P \backslash C, c \in C$ s.t. replacing c by p in C reduces $\sum_{p \in P} d(p, C)$ by factor $1-\tau$:
3: $\quad C \leftarrow C \cup\{p\} \backslash\{c\}$
4: return C

LocalSearchKMedian (P, k)

1: $C \leftarrow \operatorname{GreedyKCenter}(P, k)$
2: while $\exists p \in P \backslash C, c \in C$ s.t. replacing c by p in C reduces $\sum_{p \in P} d(p, C)$ by factor $1-\tau$:
3: $\quad C \leftarrow C \cup\{p\} \backslash\{c\}$ we choose τ later.
4: return C

LocalSearchKMedian (P, k)

\rightarrow 1: $C \leftarrow \operatorname{GreedyKCenter}(P, k)$
2: while $\exists p \in P \backslash C, c \in C$ s.t. replacing c by p in C reduces $\sum_{p \in P} d(p, C)$ by factor $1-\tau$:
3: $C \leftarrow C \cup\{p\} \backslash\{c\}$
4: return C

LocalSearchKMedian (P, k)

1: $C \leftarrow \operatorname{GreedyKCenter}(P, k)$
\longrightarrow 2: while $\exists p \in P \backslash C, c \in C$ s.t. replacing c by p in C reduces $\sum_{p \in P} d(p, C)$ by factor $1-\tau$:
3: $\quad C \leftarrow C \cup\{p\} \backslash\{c\}$
4: return C

LocalSearchKMedian (P, k)

1: $C \leftarrow \operatorname{GreedyKCenter}(P, k)$
2: while $\exists p \in P \backslash C, c \in C$ s.t. replacing c by p in C reduces $\sum_{p \in P} d(p, C)$ by factor $1-\tau$:
$\rightarrow 3: \quad C \leftarrow C \cup\{p\} \backslash\{c\}$
4: return C

LocalSearchKMedian (P, k)

1: $C \leftarrow \operatorname{GreedyKCenter}(P, k)$
\rightarrow 2: while $\exists p \in P \backslash C, c \in C$ s.t. replacing c by p in C reduces $\sum_{p \in P} d(p, C)$ by factor $1-\tau$:
3: $C \leftarrow C \cup\{p\} \backslash\{c\}$
4: return C

LocalSearchKMedian (P, k)

1: $C \leftarrow \operatorname{GreedyKCenter}(P, k)$
2: while $\exists p \in P \backslash C, c \in C$ s.t. replacing c by p in C reduces $\sum_{p \in P} d(p, C)$ by factor $1-\tau$:
$\rightarrow 3: \quad C \leftarrow C \cup\{p\} \backslash\{c\}$
4: return C

LocalSearchKMedian (P, k)

1: $C \leftarrow \operatorname{GreedyKCenter}(P, k)$
\rightarrow 2: while $\exists p \in P \backslash C, c \in C$ s.t. replacing c by p in C reduces $\sum_{p \in P} d(p, C)$ by factor $1-\tau$:
3: $C \leftarrow C \cup\{p\} \backslash\{c\}$
4: return C

LocalSearchKMedian (P, k)

1: $C \leftarrow \operatorname{GreedyKCenter}(P, k)$
2: while $\exists p \in P \backslash C, c \in C$ s.t. replacing c by p in C reduces $\sum_{p \in P} d(p, C)$ by factor $1-\tau$:
\rightarrow 3: $\quad C \leftarrow C \cup\{p\} \backslash\{c\}$
4: return C

Running time

Try swapping every $p \in P \backslash c$ with every $c \in C$:

Running time

Try swapping every $p \in P \backslash c$ with every $c \in C$:
$O(n k)$ possibile swaps

Running time

Try swapping every $p \in P \backslash c$ with every $c \in C$:
$O(n k)$ possibile swaps
computing $\sum_{p \in P} d(p, C \cup\{p\} \backslash\{c\}: O(n k)$ time

Running time

Try swapping every $p \in P \backslash c$ with every $c \in C$:
$O(n k)$ possibile swaps
computing $\sum_{p \in P} d(p, C \cup\{p\} \backslash\{c\}: O(n k)$ time
time per iteration of while-loop: $O\left((n k)^{2}\right)$

Running time

Try swapping every $p \in P \backslash c$ with every $c \in C$:
$O(n k)$ possibile swaps
computing $\sum_{p \in P} d(p, C \cup\{p\} \backslash\{c\}: O(n k)$ time
time per iteration of while-loop: $O\left((n k)^{2}\right)$
number of iterations: $\log _{1 /(1-\tau)} \frac{\text { initialCost }}{\text { optimalCost }}$

Running time

Try swapping every $p \in P \backslash c$ with every $c \in C$:
$O(n k)$ possibile swaps
computing $\sum_{p \in P} d(p, C \cup\{p\} \backslash\{c\}: O(n k)$ time
time per iteration of while-loop: $O\left((n k)^{2}\right)$
number of iterations: $\log _{1 /(1-\tau)} \frac{\text { initialCost }}{\text { optimalcost }} \leq \log _{1 /(1-\tau)} 2 n \quad$ (from $2 n$-approx.)

Running time

Try swapping every $p \in P \backslash c$ with every $c \in C$:
$O(n k)$ possibile swaps
computing $\sum_{p \in P} d(p, C \cup\{p\} \backslash\{c\}: O(n k)$ time
time per iteration of while-loop: $O\left((n k)^{2}\right)$
number of iterations: $\log _{1 /(1-\tau)} \frac{\text { initialCost }}{\text { optimalcost }} \leq \log _{1 /(1-\tau)} 2 n \quad$ (from $2 n$-approx.)
Can be simplified to $O\left(\frac{\log n}{\tau}\right)$ [without proof but elementary maths]

Approximation factor

LocalSearchKMedian (P, k) : $(5+\varepsilon)$ - approximation for discrete k-median

Approximation factor

LocalSearchKMedian (P, k) : $(5+\varepsilon)$ - approximation for discrete k-median

Warning: proof tedious (but fun (?) and insightful)

Approximation factor

LocalSearchKMedian (P, k) : $(5+\varepsilon)$ - approximation for discrete k-median

Warning: proof tedious (but fun (?) and insightful)

I will sketch the core ideas

Approximation factor

LocalSearchKMedian (P, k) : $(5+\varepsilon)$ - approximation for discrete k-median

Warning: proof tedious (but fun (?) and insightful)
I will sketch the core ideas
I will show: if we replace until no improvement (aka: ignore τ), we get 5-approximation

Approximation factor

LocalSearchKMedian (P, k) : $(5+\varepsilon)$ - approximation for discrete k-median

$$
\begin{aligned}
& \text { Notation: } \\
& C: \text { computed centers, } C^{*} \text { opt. centers } \\
& A_{p}:=d(p, C), O_{p}:=d\left(p, C^{*}\right) \\
& \gamma(p)=\text { center of } p \in C, \gamma^{*}(p) \text { same in } C^{*} \\
& N(c): \text { cluster of } c \in C, N^{*}\left(c^{*}\right) \text { likewise }
\end{aligned}
$$

Approximation factor

LocalSearchKMedian $(P, k):(5+\varepsilon)$ - approximation for discrete k-median
simple case: for all $o, o^{\prime} \in C^{*}$:
$o \neq o^{\prime} \rightarrow \gamma(o) \neq \gamma\left(o^{\prime}\right)$

Approximation factor

LocalSearchKMedian $(P, k):(5+\varepsilon)$ - approximation for discrete k-median
simple case: for all $o, o^{\prime} \in C^{*}$:
$o \neq o^{\prime} \rightarrow \gamma(o) \neq \gamma\left(o^{\prime}\right)$

$$
\begin{aligned}
& \text { Notation: } \\
& C: \text { computed centers, } C^{*} \text { opt. centers } \\
& A_{p}:=d(p, C), O_{p}:=d\left(p, C^{*}\right) \\
& \gamma(p)=\text { center of } p \in C, \gamma^{*}(p) \text { same in } C^{*} \\
& N(c): \text { cluster of } c \in C, N^{*}\left(c^{*}\right) \text { likewise }
\end{aligned}
$$

Idea: for $o \in C^{*}$ consider $C^{\prime}:=C+o-\gamma(o)$

Approximation factor

LocalSearchKMedian $(P, k):(5+\varepsilon)$ - approximation for discrete k-median
simple case: for all $o, o^{\prime} \in C^{*}$:
$o \neq o^{\prime} \rightarrow \gamma(o) \neq \gamma\left(o^{\prime}\right)$

Notation:

C : computed centers, C^{*} opt. centers

$$
A_{p}:=d(p, C), O_{p}:=d\left(p, C^{*}\right)
$$

$$
\gamma(p)=\text { center of } p \in C, \gamma^{*}(p) \text { same in } C^{*}
$$

$$
N(c): \text { cluster of } c \in C, N^{*}\left(c^{*}\right) \text { likewise }
$$

Idea: for $o \in C^{*}$ consider $C^{\prime}:=C+o-\gamma(o)$
$0 \leq \operatorname{cost}(C+o-\gamma(o))-\operatorname{cost}(C)$

Approximation factor

LocalSearchKMedian $(P, k):(5+\varepsilon)$ - approximation for discrete k-median
simple case: for all $o, o^{\prime} \in C^{*}$:
$o \neq o^{\prime} \rightarrow \gamma(o) \neq \gamma\left(o^{\prime}\right)$

Notation:

C : computed centers, C^{*} opt. centers

$$
A_{p}:=d(p, C), O_{p}:=d\left(p, C^{*}\right)
$$

$$
\gamma(p)=\text { center of } p \in C, \gamma^{*}(p) \text { same in } C^{*}
$$

$$
N(c): \text { cluster of } c \in C, N^{*}\left(c^{*}\right) \text { likewise }
$$

Idea: for $o \in C^{*}$ consider $C^{\prime}:=C+o-\gamma(o)$

$$
\begin{aligned}
0 & \leq \operatorname{cost}(C+o-\gamma(o))-\operatorname{cost}(C) \\
& \leq \sum_{p \in N^{*}(o)}\left(O_{p}-A_{p}\right)+\sum_{q \in N(\gamma(o))}\left(d\left(q, \gamma\left(\gamma^{*}(q)\right)\right)-A_{q}\right)
\end{aligned}
$$

Approximation factor

LocalSearchKMedian $(P, k):(5+\varepsilon)$ - approximation for discrete k-median
simple case: for all $o, o^{\prime} \in C^{*}$:
$o \neq o^{\prime} \rightarrow \gamma(o) \neq \gamma\left(o^{\prime}\right)$

Notation:

C : computed centers, C^{*} opt. centers
$A_{p}:=d(p, C), O_{p}:=d\left(p, C^{*}\right)$
$\gamma(p)=$ center of $p \in C, \gamma^{*}(p)$ same in C^{*}
$N(c)$: cluster of $c \in C, N^{*}\left(c^{*}\right)$ likewise

Idea: for $o \in C^{*}$ consider $C^{\prime}:=C+o-\gamma(o)$

$$
\begin{aligned}
& 0 \leq \operatorname{cost}(C+o-\gamma(o))-\operatorname{cost}(C) \\
& \leq \sum_{p \in N^{*}(o)}\left(O_{p}-A_{p}\right)+\sum_{q \in N(\gamma(o))}\left(d\left(q, \gamma\left(\gamma^{*}(q)\right)\right)-A_{q}\right) \\
& \quad d\left(p, C^{\prime}\right) \leq \\
& \quad d(p, o)=O_{p}
\end{aligned}
$$

Approximation factor

LocalSearchKMedian (P, k) : $(5+\varepsilon)$ - approximation for discrete k-median simple case: for all $o, o^{\prime} \in C^{*}$:
$o \neq o^{\prime} \rightarrow \gamma(o) \neq \gamma\left(o^{\prime}\right)$

Notation:

C : computed centers, C^{*} opt. centers
$A_{p}:=d(p, C), O_{p}:=d\left(p, C^{*}\right)$
$\gamma(p)=$ center of $p \in C, \gamma^{*}(p)$ same in C^{*}
$N(c)$: cluster of $c \in C, N^{*}\left(c^{*}\right)$ likewise

Idea: for $o \in C^{*}$ consider $C^{\prime}:=C+o-\gamma(o)$

$$
\begin{aligned}
& 0 \leq \operatorname{cost}(C+o-\gamma(o))-\operatorname{cost}(C) \\
& \leq \sum_{p \in N^{*}(o)}\left(O_{p}-A_{p}\right)+\sum_{q \in N(\gamma(o))}\left(d\left(q, \gamma\left(\gamma^{*}(q)\right)\right)-A_{q}\right) \\
& d\left(p, C^{\prime}\right) \leq \quad \text { bound cost for } q \in N(\gamma(o)) \backslash N^{*}(o) \\
& d(p, o)=O_{p} \quad \text { by taking } d\left(q, \gamma\left(\gamma^{*}(q)\right)\right)
\end{aligned}
$$

Approximation factor

LocalSearchKMedian (P, k) : $(5+\varepsilon)$ - approximation for discrete k-median simple case: for all $o, o^{\prime} \in C^{*}$:
$o \neq o^{\prime} \rightarrow \gamma(o) \neq \gamma\left(o^{\prime}\right)$

Notation:

C : computed centers, C^{*} opt. centers
$A_{p}:=d(p, C), O_{p}:=d\left(p, C^{*}\right)$
$\gamma(p)=$ center of $p \in C, \gamma^{*}(p)$ same in C^{*}
$N(c)$: cluster of $c \in C, N^{*}\left(c^{*}\right)$ likewise

Idea: for $o \in C^{*}$ consider $C^{\prime}:=C+o-\gamma(o)$
$0 \leq \operatorname{cost}(C+o-\gamma(o))-\operatorname{cost}(C)$

$$
\leq \sum_{p \in N^{*}(o)}\left(O_{p}-A_{p}\right)+\sum_{q \in N(\gamma(o))}\left(d\left(q, \gamma\left(\gamma^{*}(q)\right)\right)-A_{q}\right)
$$

by triangle ineq. (proof later): $\leq \sum_{q \in N(\gamma(o))} 2 O_{q}$
By doing this for all $o \in C^{*}$ and summing: $\sum A_{p} \leq 3 \sum O_{p}$

Approximation factor

LocalSearchKMedian (P, k) : $(5+\varepsilon)$ - approximation for discrete k-median
simple case: for all $o, o^{\prime} \in C^{*}$:
$o \neq o^{\prime} \rightarrow \gamma(o) \neq \gamma\left(o^{\prime}\right)$

proof of $d\left(q, \gamma\left(\gamma^{*}(q)\right)\right)-A_{q} \leq 2 O_{q}$:

Notation:

C : computed centers, C^{*} opt. centers

$$
A_{p}:=d(p, C), O_{p}:=d\left(p, C^{*}\right)
$$

$$
\gamma(p)=\text { center of } p \in C, \gamma^{*}(p) \text { same in } C^{*}
$$

$$
N(c): \text { cluster of } c \in C, N^{*}\left(c^{*}\right) \text { likewise }
$$

Approximation factor

LocalSearchKMedian $(P, k):(5+\varepsilon)$ - approximation for discrete k-median
simple case: for all $o, o^{\prime} \in C^{*}$:
$o \neq o^{\prime} \rightarrow \gamma(o) \neq \gamma\left(o^{\prime}\right)$

proof of $d\left(q, \gamma\left(\gamma^{*}(q)\right)\right)-A_{q} \leq 2 O_{q}$:
$d\left(q, \gamma\left(\gamma^{*}(q)\right)\right) \leq d\left(q, \gamma^{*}(q)\right)+d\left(\gamma^{*}(q), \gamma\left(\gamma^{*}(q)\right)\right)$

Notation:

C : computed centers, C^{*} opt. centers
$A_{p}:=d(p, C), O_{p}:=d\left(p, C^{*}\right)$
$\gamma(p)=$ center of $p \in C, \gamma^{*}(p)$ same in C^{*}
$N(c)$: cluster of $c \in C, N^{*}\left(c^{*}\right)$ likewise

Approximation factor

LocalSearchKMedian $(P, k):(5+\varepsilon)$ - approximation for discrete k-median
simple case: for all $o, o^{\prime} \in C^{*}$:
$o \neq o^{\prime} \rightarrow \gamma(o) \neq \gamma\left(o^{\prime}\right)$

Notation:

C : computed centers, C^{*} opt. centers

$$
A_{p}:=d(p, C), O_{p}:=d\left(p, C^{*}\right)
$$

$$
\gamma(p)=\text { center of } p \in C, \gamma^{*}(p) \text { same in } C^{*}
$$

$$
N(c): \text { cluster of } c \in C, N^{*}\left(c^{*}\right) \text { likewise }
$$

proof of $d\left(q, \gamma\left(\gamma^{*}(q)\right)\right)-A_{q} \leq 2 O_{q}$:
$d\left(q, \gamma\left(\gamma^{*}(q)\right)\right) \leq d\left(q, \gamma^{*}(q)\right)+d\left(\gamma^{*}(q), \gamma\left(\gamma^{*}(q)\right)\right)$

$$
\leq O_{q}+d\left(\gamma^{*}(q), \gamma\left(\gamma^{*}(q)\right)\right)
$$

Approximation factor

LocalSearchKMedian (P, k) : $(5+\varepsilon)$ - approximation for discrete k-median

 simple case: for all $o, o^{\prime} \in C^{*}$: $o \neq o^{\prime} \rightarrow \gamma(o) \neq \gamma\left(o^{\prime}\right)$

Notation:

C : computed centers, C^{*} opt. centers

$$
\begin{aligned}
& A_{p}:=d(p, C), O_{p}:=d\left(p, C^{*}\right) \\
& \gamma(p)=\text { center of } p \in C, \gamma^{*}(p) \text { same in } C^{*} \\
& N(c): \text { cluster of } c \in C, N^{*}\left(c^{*}\right) \text { likewise }
\end{aligned}
$$

proof of $d\left(q, \gamma\left(\gamma^{*}(q)\right)\right)-A_{q} \leq 2 O_{q}$:

$$
d\left(q, \gamma\left(\gamma^{*}(q)\right)\right) \leq d\left(q, \gamma^{*}(q)\right)+d\left(\gamma^{*}(q), \gamma\left(\gamma^{*}(q)\right)\right)
$$

$$
\leq O_{q}+d\left(\gamma^{*}(q), \gamma\left(\gamma^{*}(q)\right)\right)
$$

$$
\leq O_{q}+d\left(\gamma^{*}(q), \gamma(q)\right)
$$

$$
\leq O_{q}+d\left(\gamma^{*}(q), q\right)+d(q, \gamma(q))
$$

$$
=O_{q}+O_{q}+A_{q}
$$

Approximation factor (general case)

Approximation factor (general case)

Approximation factor (general case)

problem: if we swap o with $c:=\gamma(o)=\gamma\left(o^{\prime}\right)$, we can't reassign $q \in N(c) \cap N^{*}\left(o^{\prime}\right)$

Approximation factor (general case)

problem: if we swap o with $c:=\gamma(o)=\gamma\left(o^{\prime}\right)$, we can't reassign $q \in N(c) \cap N^{*}\left(o^{\prime}\right)$

Approximation factor (general case)

in general

problem: if we swap o with $c:=\gamma(o)=\gamma\left(o^{\prime}\right)$, we can't reassign $q \in N(c) \cap N^{*}\left(o^{\prime}\right)$ solution: swap $o \in C^{*}$ with $\eta(o)$ chosen s.t.

Approximation factor (general case)

in general

problem: if we swap o with $c:=\gamma(o)=\gamma\left(o^{\prime}\right)$, we can't reassign $q \in N(c) \cap N^{*}\left(o^{\prime}\right)$ solution: swap $o \in C^{*}$ with $\eta(o)$ chosen s.t.

$$
\eta(o)=\gamma(o) \text { if } \gamma(o) \neq \gamma\left(o^{\prime}\right) \text { for } o \neq o^{\prime} \in C^{*}
$$

Approximation factor (general case)

so far

in general

problem: if we swap o with $c:=\gamma(o)=\gamma\left(o^{\prime}\right)$, we can't reassign $q \in N(c) \cap N^{*}\left(o^{\prime}\right)$ solution: swap $o \in C^{*}$ with $\eta(o)$ chosen s.t.

$$
\begin{aligned}
& \eta(o)=\gamma(o) \text { if } \gamma(o) \neq \gamma\left(o^{\prime}\right) \text { for } o \neq o^{\prime} \in C^{*} \\
& \eta(o) \neq \gamma\left(o^{\prime}\right) \text { for all } o^{\prime} \in C^{*} \text { and } \\
& \eta(o)=\eta\left(o^{\prime}\right) \text { for at most one other } o^{\prime}
\end{aligned}
$$

Approximation factor (general case)

so far

in general

problem: if we swap o with $c:=\gamma(o)=\gamma\left(o^{\prime}\right)$, we can't reassign $q \in N(c) \cap N^{*}\left(o^{\prime}\right)$ solution: swap $o \in C^{*}$ with $\eta(o)$ chosen s.t.

$$
\begin{aligned}
& \eta(o)=\gamma(o) \text { if } \gamma(o) \neq \gamma\left(o^{\prime}\right) \text { for } o \neq o^{\prime} \in C^{*} \\
& \eta(o) \neq \gamma\left(o^{\prime}\right) \text { for all } o^{\prime} \in C^{*} \text { and } \\
& \eta(o)=\eta\left(o^{\prime}\right) \text { for at most one other } o^{\prime}
\end{aligned}
$$

Same argument works, but since we swap out each $c \in C$
up to 2 times, we get $\sum A_{p} \leq \sum O_{p}+2 \cdot 2 O_{p}$

summary + discrete k-means + open problems

k-center: 2-approximation by greedy algorithm
discrete k-median: $(5+\varepsilon)$-approximation by local search

summary + discrete k-means + open problems

k-center: 2-approximation by greedy algorithm
discrete k-median: $(5+\varepsilon)$-approximation by local search
discrete k-means: minimize $\sum_{p \in P} d(p, C)^{2}$

summary + discrete k-means + open problems

k-center: 2-approximation by greedy algorithm
discrete k-median: $(5+\varepsilon)$-approximation by local search
discrete k-means: minimize $\sum_{p \in P} d(p, C)^{2}$
open: α-approximation for k-center in R^{d} with Euclidean distance and $1.82<\alpha<2$?

summary + discrete k-means + open problems

k-center: 2-approximation by greedy algorithm
discrete k-median: $(5+\varepsilon)$-approximation by local search
discrete k-means: minimize $\sum_{p \in P} d(p, C)^{2}$
open: α-approximation for k-center in R^{d} with Euclidean distance and $1.82<\alpha<2$?
in my research: geometric spaces beyond points, in particular, clustering curves

