
Center-based Clustering
2-approximation for k-center clustering
5-approximation for k-median clustering
k-means clustering
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Preliminaries
metric space: pair (X, d) with X a set, and d : X ×X → [0,∞) satisfying

d(x, y) = 0 if and only if x = y,
d(x, y) = d(y, x),
d(x, z) ≤ d(x, y) + d(y, z). (triangle inequality)

x

y

z
d(x, y) d(y, z)

d(x, z)

examples:

R2 with Euclidean distance

Graph with shortest-path distance

curves with Fréchet distance

notation: d(p, C) := minq∈C d(p, q)
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k-center clustering in metric space (X, d)

Given: P ⊂ X and integer k

Goal: Find C ⊂ X of size k such that

maxp∈P d(p, C)

is minimized.

k = 2

discrete k-center problem: C ⊂ P

later:
(discrete) k-median problem: sum instead of max
k-means: sum of squares
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This problem is NP-hard
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Algorithm GreedyKCenter(P, k)

Incrementally add points to C . How can we guarantee to reduce the maximum?
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Add the point p with maximum d(p, C)!

19
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Approximation factor

GreedyKCenter(P, k) computes a 2-approximation for k-center clustering.

c1

c2

c3

c4

Ck = {c1, . . . , ck} computed solution
C∗: an optimal solution withOPT := maxp∈P d(p, C

∗)

ck+1: point maximizing d(ck+1, Ck) =: r c5

k = 4

for i < j:
d(cj , ci) ≥ d(cj , Cj−1) ≥ d(ck+1, Cj−1) ≥ d(ck+1, Ck) = r

pigeonhole principle:
∃ci, cj in the same cluster ofC∗; o := corresponding center

o

triangle inequality:
r ≤ d(cj , ci) ≤ d(cj , o) + d(o, ci) ≤ 2OPT



Quiz

The proof that GreedyKCenter gives a 2-approximation works . . .

A only in R2 with Euclidean distance
B in Rd but only with Euclidean distance
C in any metric space



Quiz

The proof that GreedyKCenter gives a 2-approximation works . . .

A only in R2 with Euclidean distance
B in Rd but only with Euclidean distance
C in any metric space

since it only uses the triangle inequality



Quiz

The proof that GreedyKCenter gives a 2-approximation works . . .

A only in R2 with Euclidean distance
B in Rd but only with Euclidean distance
C in any metric space

since it only uses the triangle inequality

When k is part of the input, the k-center problem is
NP-hard to approximate within a factor
2− ε for general metric spaces



Quiz

The proof that GreedyKCenter gives a 2-approximation works . . .

A only in R2 with Euclidean distance
B in Rd but only with Euclidean distance
C in any metric space

since it only uses the triangle inequality

When k is part of the input, the k-center problem is
NP-hard to approximate within a factor
2− ε for general metric spaces
1.82 for R2 with Euclidean distance



Quiz

The proof that GreedyKCenter gives a 2-approximation works . . .

A only in R2 with Euclidean distance
B in Rd but only with Euclidean distance
C in any metric space

since it only uses the triangle inequality

When k is part of the input, the k-center problem is
NP-hard to approximate within a factor
2− ε for general metric spaces
1.82 for R2 with Euclidean distance
2− ε for R2 with L1- or L∞- distance
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Question (k = 3)
Which set C of 3 points minimizes

∑
p∈P d(p, C)?

1
2 3

45 6

7

8

9
10

11 12
13 14

15
16

17
18

19

20

optimal: {3, 10, 16}

good? {3, 12, 18}, {7, 13, 16}

3

10

16
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GreedyKCenter for k-median?

Use 2-approximation for k-center clustering (?) on n points

maxp∈P d(p, C) ≤
∑
p∈P d(p, C) ≤

∑
p∈P maxp∈P = n ·maxp∈P

This means:
optimal solution to k-center clustering is n-approximation for k-median
2-approximation for k-center clustering is 2n-approximation for k-median

We can do better with local search!
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5.242 5.236
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Running time

Try swapping every p ∈ P \ c with every c ∈ C :
O(nk) possibile swaps
computing

∑
p∈P d(p, C ∪ {p} \ {c}: O(nk) time

time per iteration of while-loop: O((nk)2)

number of iterations: log1/(1−τ)
initialCost

optimalCost ≤ log1/(1−τ) 2n (from 2n-approx.)

Can be simplified to O( lognτ ) [without proof but elementary maths]
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Warning: proof tedious (but fun (?) and insightful)

I will sketch the core ideas

I will show: if we replace until no improvement (aka: ignore τ ),
we get 5-approximation
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LocalSearchKMedian(P, k): (5 + ε) - approximation for discrete k-median

Notation:
C : computed centers,C∗ opt. centers
Ap := d(p, C),Op := d(p, C∗)
γ(p) = center of p ∈ C , γ∗(p) same inC∗

N(c) : cluster of c ∈ C ,N∗(c∗) likewise
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γ

so far
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C

C∗

γ

in general

problem: if we swap o with c := γ(o) = γ(o′), we can’t reassign q ∈ N(c) ∩N∗(o′)
solution: swap o ∈ C∗ with η(o) chosen s.t.

η(o) = γ(o) if γ(o) 6= γ(o′) for o 6= o′ ∈ C∗

η(o) 6= γ(o′) for all o′ ∈ C∗ and
η(o) = η(o′) for at most one other o′

Same argument works, but since we swap out each c ∈ C
up to 2 times, we get

∑
Ap ≤

∑
Op + 2 · 2Op
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summary + discrete k-means + open problems

discrete k-means: minimize
∑
p∈P d(p, C)2

open: α-approximation for k-center inRd with Euclidean distance and 1.82 < α < 2 ?

k-center: 2-approximation by greedy algorithm

discrete k-median: (5 + ε)-approximation by local search

in my research: geometric spaces beyond points, in particular, clustering curves


