Approximate Voronoi Diagrams

• Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q

• Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q

• Interval structure $I(P,r,R,\varepsilon)$: Create rings around each point of increasing radii $(1+\varepsilon)^i$ in interval (r,R)

• Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q

• Interval structure $I(P, r, R, \varepsilon)$: Create rings around each point of increasing radii $(1 + \varepsilon)^i$ in interval (r, R) Size: ?

• Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q

• Interval structure $I(P, r, R, \varepsilon)$: Create rings around each point of increasing radii $(1 + \varepsilon)^i$ in interval (r, R) Size: $O(n/\varepsilon \log(R/r))$

• Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q

• Interval structure $I(P, r, R, \varepsilon)$: Create rings around each point of increasing radii $(1 + \varepsilon)^i$ in interval (r, R) Size: $O(n/\varepsilon \log(R/r))$

Create a Balanced Hierarchically Separated
 Tree (BHST) from the points

How?

• Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q

• Interval structure $I(P, r, R, \varepsilon)$: Create rings around each point of increasing radii $(1 + \varepsilon)^i$ in interval (r, R) Size: $O(n/\varepsilon \log(R/r))$

Create a Balanced Hierarchically Separated
 Tree (BHST) from the points

How?

 bottom-up: compute MST, lowest to heighest weight: merge components

• Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q

• Interval structure $I(P, r, R, \varepsilon)$: Create rings around each point of increasing radii $(1 + \varepsilon)^i$ in interval (r, R) Size: $O(n/\varepsilon \log(R/r))$

Create a Balanced Hierarchically Separated
 Tree (BHST) from the points

How?

- bottom-up: compute MST, lowest to heighest weight: merge components
- Euclidean space: shifted quadtree

• Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q

• Interval structure $I(P, r, R, \varepsilon)$: Create rings around each point of increasing radii $(1 + \varepsilon)^i$ in interval (r, R) Size: $O(n/\varepsilon \log(R/r))$

- Create a Balanced Hierarchically Separated
 Tree (BHST) from the points
- Space complexity: $O((n/\varepsilon) \log n \log(n/\varepsilon))$

- Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q
- Interval structure $I(P,r,R,\varepsilon)$: Create rings around each point of increasing radii $(1+\varepsilon)^i$ in interval (r,R) Size: $O\left(n/\varepsilon\log(R/r)\right)$
- Create a Balanced Hierarchically Separated
 Tree (BHST) from the points
- Space complexity: $O((n/\varepsilon) \log n \log(n/\varepsilon))$

per interval structure:

$$O(n_v/\varepsilon \log(n^{O(1)}/\varepsilon) = O(n_v/\varepsilon \log(n/\varepsilon))$$

- Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q
- Interval structure $I(P, r, R, \varepsilon)$: Create rings around each point of increasing radii $(1 + \varepsilon)^i$ in interval (r, R) Size: $O(n/\varepsilon \log(R/r))$
- Create a Balanced Hierarchically Separated
 Tree (BHST) from the points
- Space complexity: $O((n/\varepsilon)\log n\log(n/\varepsilon))$

per interval structure:

$$O(n_v/\varepsilon \log(n^{O(1)}/\varepsilon) = O(n_v/\varepsilon \log(n/\varepsilon))$$

points occur up to $\log n$ times

• Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q

• Interval structure $I(P,r,R,\varepsilon)$: Create rings around each point of increasing radii $(1+\varepsilon)^i$ in interval (r,R) Size: $O\left(n/\varepsilon\log(R/r)\right)$

- Create a Balanced Hierarchically Separated
 Tree (BHST) from the points
- Space complexity: $O((n/\varepsilon)\log n\log(n/\varepsilon))$ improved (book): $O((n/\varepsilon)\log n)$

- Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q
- Interval structure $I(P, r, R, \varepsilon)$: Create rings around each point of increasing radii $(1 + \varepsilon)^i$ in interval (r, R) Size: $O(n/\varepsilon \log(R/r))$
- Create a Balanced Hierarchically Separated
 Tree (BHST) from the points
- Space complexity: $O((n/\varepsilon)\log n\log(n/\varepsilon))$ improved (book): $O((n/\varepsilon)\log n)$
- # of near-neighbor queries: $O(\log{(n/\varepsilon)})$

• Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q

• Interval structure $I(P,r,R,\varepsilon)$: Create rings around each point of increasing radii $(1+\varepsilon)^i$ in interval (r,R) Size: $O\left(n/\varepsilon\log(R/r)\right)$

- Create a Balanced Hierarchically Separated
 Tree (BHST) from the points
- Space complexity: $O((n/\varepsilon)\log n\log(n/\varepsilon))$ improved (book): $O((n/\varepsilon)\log n)$
- # of near-neighbor queries: $O(\log{(n/\varepsilon)})$ \log{n} times only against r_v and R_v

- Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q
- Interval structure $I(P, r, R, \varepsilon)$: Create rings around each point of increasing radii $(1 + \varepsilon)^i$ in interval (r, R) Size: $O(n/\varepsilon \log(R/r))$
- Create a Balanced Hierarchically Separated
 Tree (BHST) from the points
- Space complexity: $O((n/\varepsilon)\log n\log(n/\varepsilon))$ improved (book): $O((n/\varepsilon)\log n)$
- # of near-neighbor queries: $O(\log{(n/\varepsilon)})$ \log{n} times only against r_v and R_v once $[r_v, R_v)$: $O(\log{(n/\varepsilon)})$

Caveat

 $O(\log{(n/\varepsilon)})$ queries

Caveat

 $O(\log{(n/\varepsilon)})$ queries

Those queries are also hard ...

• For a ball b=b(p,r) the ball b_{\approx} is a $(1+\varepsilon)$ -approximation to b if $b\subseteq b_{\approx}\subset b(p,(1+\varepsilon)r)$

- For a ball b=b(p,r) the ball b_{\approx} is a $(1+\varepsilon)$ -approximation to b if $b\subseteq b_{\approx}\subset b(p,(1+\varepsilon)r)$
- For a set of balls \mathcal{B} , \mathcal{B}_{\approx} is a $(1+\varepsilon)$ -approximation if for all $b\in\mathcal{B}$ there is an approximation $b_{\approx}\in\mathcal{B}_{\approx}$

- For a ball b=b(p,r) the ball b_{\approx} is a $(1+\varepsilon)$ -approximation to b if $b\subseteq b_{\approx}\subset b(p,(1+\varepsilon)r)$
- For a set of balls \mathcal{B} , \mathcal{B}_{\approx} is a $(1+\varepsilon)$ -approximation if for all $b\in\mathcal{B}$ there is an approximation $b_{\approx}\in\mathcal{B}_{\approx}$
- How should we approximate?

- For a ball b=b(p,r) the ball b_{\approx} is a $(1+\varepsilon)$ -approximation to b if $b\subseteq b_{\approx}\subset b(p,(1+\varepsilon)r)$
- For a set of balls \mathcal{B} , \mathcal{B}_{\approx} is a $(1+\varepsilon)$ -approximation if for all $b\in\mathcal{B}$ there is an approximation $b_{\approx}\in\mathcal{B}_{\approx}$
- How should we approximate?

The power of grids!

• Divide the space into a grid with sides ε

- Divide the space into a grid with sides ε
- Define $b_{pprox}(p)$ as the grid cells intersected by b(p)

- Divide the space into a grid with sides ε
- Define $b_{pprox}(p)$ as the grid cells intersected by b(p)
- Throw all b_{\approx} into a hashtable

- Divide the space into a grid with sides arepsilon
- Define $b_{\approx}(p)$ as the grid cells intersected by b(p)
- Throw all b_{\approx} into a hashtable
- Now deciding whether point q falls into a certain range is easy: ${\cal O}(1)$

- Divide the space into a grid with sides arepsilon
- Define $b_{\approx}(p)$ as the grid cells intersected by b(p)
- Throw all b_{\approx} into a hashtable
- Now deciding whether point q falls into a certain range is easy: ${\cal O}(1)$
- For constant ball size this only takes $O(n/\varepsilon^d)$ space!

- Divide the space into a grid with sides arepsilon
- Define $b_{\approx}(p)$ as the grid cells intersected by b(p)
- Throw all b_{\approx} into a hashtable
- Now deciding whether point q falls into a certain range is easy: ${\cal O}(1)$
- For constant ball size this only takes $O(n/\varepsilon^d)$ space!

But we don't have constant ball sizes...

Lemma Let $\mathcal{I}_\approx(P,r,R,\varepsilon/16)$ be a $(1+\varepsilon/16)$ -approximation of $\mathcal{I}(P,r,R,\varepsilon/16)$

Lemma Let $\mathcal{I}_{\approx}(P,r,R,\varepsilon/16)$ be a $(1+\varepsilon/16)$ -approximation of $\mathcal{I}(P,r,R,\varepsilon/16)$ For a query point $q\in\mathcal{M}$ if \mathcal{I}_{\approx} returns a target set that is an approximation of a ball in \mathcal{I} centered at a point p with radius $\alpha\in[r,R]$ then p is a $(1+\varepsilon/4)$ -ANN to q

Lemma Let $\mathcal{I}_\approx(P,r,R,\varepsilon/16)$ be a $(1+\varepsilon/16)$ -approximation of $\mathcal{I}(P,r,R,\varepsilon/16)$ For a query point $q\in\mathcal{M}$ if \mathcal{I}_\approx returns a target set that is an approximation of a ball in \mathcal{I} centered at a point p with radius $\alpha\in[r,R]$ then p is a $(1+\varepsilon/4)$ -ANN to q

Lemma Let $\mathcal{I}_{\approx}(P,r,R,\varepsilon/16)$ be a $(1+\varepsilon/16)$ -approximation of $\mathcal{I}(P,r,R,\varepsilon/16)$ For a query point $q\in\mathcal{M}$ if \mathcal{I}_{\approx} returns a target set that is an approximation of a ball in \mathcal{I} centered at a point p with radius $\alpha\in[r,R]$ then p is a $(1+\varepsilon/4)$ -ANN to q

Proof:

p is only returned if there are two consecutive indices i and i+1 such that q is in the ball set of i+1 but not in the ball set of i

Lemma Let $\mathcal{I}_\approx(P,r,R,\varepsilon/16)$ be a $(1+\varepsilon/16)$ -approximation of $\mathcal{I}(P,r,R,\varepsilon/16)$

For a query point $q\in\mathcal{M}$ if \mathcal{I}_{\approx} returns a target set that is an approximation of a ball in \mathcal{I} centered at a point p with radius $\alpha\in[r,R]$ then p is a $(1+\varepsilon/4)$ -ANN to q

Proof:

p is only returned if there are two consecutive indices i and i+1 such that q is in the ball set of i+1 but not in the ball set of i

$$r(1+\varepsilon/16)^i \leq \operatorname{d}(q,P) \leq \operatorname{d}(q,p) \leq r(1+\varepsilon/16)^{i+1}(1+\varepsilon/16) \leq (1+\varepsilon/16)^2 \operatorname{d}(q,P) \leq (1+\varepsilon/4)\operatorname{d}(q,P)$$

Lemma Let $\mathcal{I}_{\approx}(P,r,R,\varepsilon/16)$ be a $(1+\varepsilon/16)$ -approximation of $\mathcal{I}(P,r,R,\varepsilon/16)$

For a query point $q\in\mathcal{M}$ if \mathcal{I}_{\approx} returns a target set that is an approximation of a ball in \mathcal{I} centered at a point p with radius $\alpha\in[r,R]$ then p is a $(1+\varepsilon/4)$ -ANN to q

Proof:

p is only returned if there are two consecutive indices i and i+1 such that q is in the ball set of i+1 but not in the ball set of i

$$r(1+\varepsilon/16)^i \leq \operatorname{d}(q,P) \leq \operatorname{d}(q,p) \leq r(1+\varepsilon/16)^{i+1}(1+\varepsilon/16) \leq (1+\varepsilon/16)^2 \operatorname{d}(q,P) \leq (1+\varepsilon/4)\operatorname{d}(q,P)$$

Approximation from using balls

Approximation from approximating the balls

Lemma Let $\mathcal{I}_{pprox}(P,r,R,arepsilon/16)$ be a (1+arepsilon/16)-approximation of $\mathcal{I}(P,r,R,arepsilon/16)$

For a query point $q\in\mathcal{M}$ if \mathcal{I}_{\approx} returns a target set that is an approximation of a ball in \mathcal{I} centered at a point p with radius $\alpha\in[r,R]$ then p is a $(1+\varepsilon/4)$ -ANN to q

Proof:

p is only returned if there are two consecutive indices i and i+1 such that q is in the ball set of i+1 but not in the ball set of i

$$r(1+\varepsilon/16)^i \leq \operatorname{d}(q,P) \leq \operatorname{d}(q,p) \leq r(1+\varepsilon/16)^{i+1}(1+\varepsilon/16) \leq (1+\varepsilon/16)^2 \operatorname{d}(q,P) \leq (1+\varepsilon/4)\operatorname{d}(q,P)$$

Substitute

Approximate interval structure

Lemma Let $\mathcal{I}_\approx(P,r,R,\varepsilon/16)$ be a $(1+\varepsilon/16)$ -approximation of $\mathcal{I}(P,r,R,\varepsilon/16)$

For a query point $q\in\mathcal{M}$ if \mathcal{I}_{\approx} returns a target set that is an approximation of a ball in \mathcal{I} centered at a point p with radius $\alpha\in[r,R]$ then p is a $(1+\varepsilon/4)$ -ANN to q

Proof:

p is only returned if there are two consecutive indices i and i+1 such that q is in the ball set of i+1 but not in the ball set of i

$$r(1+\varepsilon/16)^i \leq \operatorname{d}(q,P) \leq \operatorname{d}(q,p) \leq r(1+\varepsilon/16)^{i+1}(1+\varepsilon/16) \leq \frac{(1+\varepsilon/16)^2 \operatorname{d}(q,P) \leq (1+\varepsilon/4) \operatorname{d}(q,P)}{(1+\varepsilon/16)^2 \operatorname{d}(q,P) \leq (1+\varepsilon/4) \operatorname{d}(q,P)}$$

$$1 + \frac{2\varepsilon}{16} + \frac{\varepsilon^2}{16^2} = 1 + \frac{\varepsilon}{8} + \frac{\varepsilon}{16} = 1 + \frac{3\varepsilon}{16} = O(1 + \frac{4}{\varepsilon})$$

• Given a set P of n points in \mathbb{R}^d , one can compute a set of \mathcal{B} of $O(\frac{n}{\varepsilon}\log n)$ balls

- Given a set P of n points in \mathbb{R}^d , one can compute a set of \mathcal{B} of $O(\frac{n}{\varepsilon}\log n)$ balls
- s.t. answering $(1+\varepsilon)$ -ANN queries on P can be answered by doing a single target query on $\mathcal B$

- Given a set P of n points in \mathbb{R}^d , one can compute a set of \mathcal{B} of $O(\frac{n}{\varepsilon}\log n)$ balls
- s.t. answering $(1+\varepsilon)$ -ANN queries on P can be answered by doing a single target query on $\mathcal B$
- Furthermore, if we $(1+\varepsilon/16)$ -approximate each ball the target query becomes easier.

• Initial, simple construction (previous lecture): balls per pair of points

- Initial, simple construction (previous lecture): balls per pair of points
- How can we reduce the number of pairs?

- Initial, simple construction (previous lecture): balls per pair of points
- How can we reduce the number of pairs?
- Well Separated Pair Decomposition!

• Construct a (c/ε) -WSPD ${\mathcal W}$ of P, where c is sufficiently large

- Construct a (c/ε) -WSPD ${\cal W}$ of P, where c is sufficiently large
- The number of pairs in a WSPD is $O(\frac{n}{\varepsilon^d})$
- For every pair $\{u,v\}\in\mathcal{W}$ compute $\mathcal{B}(rep_u,rep_v)$ and add it to \mathcal{B} where:

- Construct a (c/ε) -WSPD ${\mathcal W}$ of P, where c is sufficiently large
- The number of pairs in a WSPD is $O(\frac{n}{\varepsilon^d})$
- For every pair $\{u,v\}\in\mathcal{W}$ compute $\mathcal{B}(rep_u,rep_v)$ and add it to \mathcal{B} where:

$$\mathcal{B}(rep_u, rep_v) = \{ \mathbf{b}(rep_u, r), \mathbf{b}(rep_v, r) | r = (1 + \varepsilon/3)^i \in \mathcal{J}(u, v) \}$$

- Construct a (c/ε) -WSPD ${\mathcal W}$ of P, where c is sufficiently large
- The number of pairs in a WSPD is $O(\frac{n}{\varepsilon^d})$
- For every pair $\{u,v\}\in\mathcal{W}$ compute $\mathcal{B}(rep_u,rep_v)$ and add it to \mathcal{B} where:

$$\mathcal{B}(rep_u,rep_v)=\{\mathbf{b}(rep_u,r),\mathbf{b}(rep_v,r)|r=(1+arepsilon/3)^i\in\mathcal{J}(u,v)\}$$
 and

$$\mathcal{J}(u,v) = \left[\frac{1}{8}, \frac{4}{\varepsilon}\right] \cdot \|rep_u - rep_v\|$$

- Construct a (c/ε) -WSPD ${\mathcal W}$ of P, where c is sufficiently large
- The number of pairs in a WSPD is $O(\frac{n}{\varepsilon^d})$
- For every pair $\{u,v\}\in\mathcal{W}$ compute $\mathcal{B}(rep_u,rep_v)$ and add it to \mathcal{B} where:

$$\mathcal{B}(rep_u,rep_v)=\{\mathbf{b}(rep_u,r),\mathbf{b}(rep_v,r)|r=(1+arepsilon/3)^i\in\mathcal{J}(u,v)\}$$
 and

$$\mathcal{J}(u,v) = \left[\frac{1}{8}, \frac{4}{\varepsilon}\right] \cdot \|rep_u - rep_v\|$$

• We have $O(\frac{1}{\varepsilon}\log\frac{1}{\varepsilon})$ balls per pair

- Construct a (c/ε) -WSPD ${\mathcal W}$ of P, where c is sufficiently large
- The number of pairs in a WSPD is $O(\frac{n}{\varepsilon^d})$
- For every pair $\{u,v\}\in\mathcal{W}$ compute $\mathcal{B}(rep_u,rep_v)$ and add it to \mathcal{B} where:

$$\mathcal{B}(rep_u, rep_v) = \{\mathbf{b}(rep_u, r), \mathbf{b}(rep_v, r) | r = (1 + \varepsilon/3)^i \in \mathcal{J}(u, v)\}$$

and

$$\mathcal{J}(u,v) = \left[\frac{1}{8}, \frac{4}{\varepsilon}\right] \cdot \|rep_u - rep_v\|$$

- We have $O(\frac{1}{\varepsilon}\log\frac{1}{\varepsilon})$ balls per pair
- $|\mathcal{B}| = O(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon})$

- Construct a (c/ε) -WSPD ${\mathcal W}$ of P, where c is sufficiently large
- The number of pairs in a WSPD is $O(\frac{n}{\varepsilon^d})$
- For every pair $\{u,v\}\in\mathcal{W}$ compute $\mathcal{B}(rep_u,rep_v)$ and add it to \mathcal{B} where:

$$\mathcal{B}(rep_u, rep_v) = \{\mathbf{b}(rep_u, r), \mathbf{b}(rep_v, r) | r = (1 + \varepsilon/3)^i \in \mathcal{J}(u, v)\}$$

and

$$\mathcal{J}(u,v) = \left[\frac{1}{8}, \frac{4}{\varepsilon}\right] \cdot \|rep_u - rep_v\|$$

- We have $O(\frac{1}{\varepsilon}\log\frac{1}{\varepsilon})$ balls per pair
- $|\mathcal{B}| = O(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon})$

Correctness proof: as exercise

Motivation

Motivation

Voronoi diagrams have a multitude of uses:

Motivation

Voronoi diagrams have a multitude of uses:

- Biology Model biological structures like cells
- Hydrology Calculate the rainfall in an area based on point measurements
- *Aviation* Find the nearest safe landing zone in case of failure

A Voronoi diagram V of a point set $P\subseteq \mathbb{R}^d$ is a partition of space into regions such that a cell of point $p\in P$ is:

$$V(p,P) = s \in \mathbb{R}^d | ||s-p|| \le ||s-p'||$$
 for all $p' \in P$

A Voronoi diagram V of a point set $P\subseteq \mathbb{R}^d$ is a partition of space into regions such that a cell of point $p\in P$ is:

$$V(p,P)=s\in\mathbb{R}^d|\|s-p\|\leq \|s-p'\|$$
 for all $p'\in P$

However, it has complexity $O(n^{\lceil \frac{d}{2} \rceil})$ in \mathbb{R}^d in the worst case

A Voronoi diagram V of a point set $P\subseteq \mathbb{R}^d$ is a partition of space into regions such that a cell of point $p\in P$ is:

$$V(p,P) = s \in \mathbb{R}^d | \|s-p\| \le \|s-p'\| \text{for all } p' \in P$$

However, it has complexity $O(n^{\lceil \frac{d}{2} \rceil})$ in \mathbb{R}^d in the worst case Can we do better?

Approximate Voronoi diagrams

Approximate Voronoi diagrams

Definition: Approximate Voronoi Diagram

Given a set P of n points in \mathbb{R}^d and parameter $\varepsilon > 0$, a $(1 + \varepsilon)$ -Approximated Voronoi Diagram(AVS) of P is a partition \mathcal{V} of \mathbb{R}^d into regions φ , s.t. for any region $\varphi \in \mathcal{V}$ we have that rep_{φ} is a $(1 + \varepsilon)$ -ANN for x, that is:

Approximate Voronoi diagrams

Definition: Approximate Voronoi Diagram

Given a set P of n points in \mathbb{R}^d and parameter $\varepsilon > 0$, a $(1 + \varepsilon)$ -Approximated Voronoi Diagram(AVS) of P is a partition \mathcal{V} of \mathbb{R}^d into regions φ , s.t. for any region $\varphi \in \mathcal{V}$ we have that rep_{φ} is a $(1 + \varepsilon)$ -ANN for x, that is:

$$\forall x \in \varphi \|x - rep_{\varphi}\| \le (1 + \varepsilon)d(x, P)$$

Approximate Nearest Neighbors in \mathbb{R}^d

Approximate Nearest Neighbors in \mathbb{R}^d

(now fast, using approximate Voronoi diagrams)

• In the following, asssume P is a set of points contained in hypercube $[0.5-\varepsilon/d,0.5+\varepsilon/d]^d$

- In the following, asssume P is a set of points contained in hypercube $[0.5-\varepsilon/d,0.5+\varepsilon/d]^d$
- Guarantee by some transformation T

- In the following, asssume P is a set of points contained in hypercube $[0.5-\varepsilon/d,0.5+\varepsilon/d]^d$
- Guarantee by some transformation T
- ullet Computing ANN of q on P is equivalent to computing the ANN of T(q) on T(P)

- In the following, asssume P is a set of points contained in hypercube $[0.5-\varepsilon/d,0.5+\varepsilon/d]^d$
- Guarantee by some transformation ${\it T}$
- ullet Computing ANN of q on P is equivalent to computing the ANN of T(q) on T(P)
- If q is outside the unit hypercube $[0,1]^d$ any $p\in P$ is an $(1+\varepsilon)$ -ANN

(Exercise: Check, in doubt change constants)

- In the following, asssume P is a set of points contained in hypercube $[0.5-\varepsilon/d,0.5+\varepsilon/d]^d$
- Guarantee by some transformation ${\it T}$
- ullet Computing ANN of q on P is equivalent to computing the ANN of T(q) on T(P)
- If q is outside the unit hypercube $[0,1]^d$ any $p\in P$ is an $(1+\varepsilon)$ -ANN

(Exercise: Check, in doubt change constants)

Thus only consider ANN for points inside $[0,1]^d$

• Remember we can compute a set \mathcal{B} of $O(\frac{n}{\varepsilon^{d+1}}\log\frac{1}{\varepsilon})$ balls

- Remember we can compute a set \mathcal{B} of $O(\frac{n}{\varepsilon^{d+1}}\log\frac{1}{\varepsilon})$ balls
- Approximate b by the cells \mathcal{C}' that intersect it

- Remember we can compute a set \mathcal{B} of $O(\frac{n}{\varepsilon^{d+1}}\log\frac{1}{\varepsilon})$ balls
- Approximate b by the cells \mathcal{C}' that intersect it
- Pick grid G_{2^i} s.t. $\sqrt{d}2^i \leq (\varepsilon/16)r$

- Remember we can compute a set \mathcal{B} of $O(\frac{n}{\varepsilon^{d+1}}\log\frac{1}{\varepsilon})$ balls
- Approximate b by the cells \mathcal{C}' that intersect it
- Pick grid G_{2^i} s.t. $\sqrt{d}2^i \leq (\varepsilon/16)r$

- Remember we can compute a set \mathcal{B} of $O(\frac{n}{\varepsilon^{d+1}}\log\frac{1}{\varepsilon})$ balls
- Approximate b by the cells \mathcal{C}' that intersect it
- Pick grid G_{2^i} s.t. $\sqrt{d}2^i \leq (\varepsilon/16)r$
- For each ball the amount of grid cells is bound by $O(\frac{1}{\varepsilon^d})$

- Remember we can compute a set \mathcal{B} of $O(\frac{n}{\varepsilon^{d+1}}\log\frac{1}{\varepsilon})$ balls
- Approximate b by the cells \mathcal{C}' that intersect it
- Pick grid G_{2^i} s.t. $\sqrt{d}2^i \leq (\varepsilon/16)r$
- For each ball the amount of grid cells is bound by $O(\frac{1}{\varepsilon^d})$
- Create from \mathcal{C}' a set \mathcal{C} such that from each instance of $\square \in \mathcal{C}'$ we pick the \square associated to the smallest ball

• (1+arepsilon)-ANN o target query on \mathcal{B}_pprox

- (1+arepsilon)-ANN o target query on \mathcal{B}_pprox
- target query o find smallest canonical grid cell of ${\mathcal C}$

- (1+arepsilon)-ANN o target query on \mathcal{B}_pprox
- target query o find smallest canonical grid cell of ${\mathcal C}$
- store cells in compressed quadtree!

- $(1+\varepsilon)$ -ANN \to target query on \mathcal{B}_{\approx}
- target query o find smallest canonical grid cell of ${\mathcal C}$
- store cells in compressed quadtree!
- Construction: $O(|\mathcal{C}|\log |\mathcal{C}|)$ time

- $(1+\varepsilon)$ -ANN \to target query on \mathcal{B}_{\approx}
- target query o find smallest canonical grid cell of ${\mathcal C}$
- store cells in compressed quadtree!
- Construction: $O(|\mathcal{C}|\log |\mathcal{C}|)$ time
- Space: $O(|\mathcal{C}|)$

- $(1+\varepsilon)$ -ANN \to target query on \mathcal{B}_{\approx}
- target query o find smallest canonical grid cell of ${\mathcal C}$
- store cells in compressed quadtree!
- Construction: $O(|\mathcal{C}|\log |\mathcal{C}|)$ time
- Space: $O(|\mathcal{C}|)$
- Query time: $O(\log |C|)$

- $(1+\varepsilon)$ -ANN \to target query on \mathcal{B}_{\approx}
- target query o find smallest canonical grid cell of ${\mathcal C}$
- store cells in compressed quadtree!
- Construction: $O(|\mathcal{C}|\log |\mathcal{C}|)$ time
- Space: $O(|\mathcal{C}|)$
- Query time: $O(\log |C|)$
- Store for each cell in a leaf the smallest ball it belongs to

Let P be a set of n points in \mathbb{R}^d . One can build a compressed quadtree \hat{T} in:

Let P be a set of n points in \mathbb{R}^d . One can build a compressed quadtree \hat{T} in:

• $O(\frac{n}{\varepsilon^{2d+1}}\log\frac{1}{\varepsilon}\log\frac{n}{\varepsilon})$ time

Let P be a set of n points in \mathbb{R}^d . One can build a compressed quadtree \hat{T} in:

- $O(\frac{n}{\varepsilon^{2d+1}}\log\frac{1}{\varepsilon}\log\frac{n}{\varepsilon})$ time
- $O(\frac{n}{\varepsilon^{2d+1}}\log\frac{1}{\varepsilon})$ size

Let P be a set of n points in \mathbb{R}^d . One can build a compressed quadtree \hat{T} in:

- $O(\frac{n}{\varepsilon^{2d+1}}\log\frac{1}{\varepsilon}\log\frac{n}{\varepsilon})$ time
- $O(\frac{n}{\varepsilon^{2d+1}}\log\frac{1}{\varepsilon})$ size

Such that a $(1+\varepsilon)$ -ANN query on P can be answered by a single point location query in \hat{T} in:

• $O(\log \frac{n}{\varepsilon})$ time

Let P be a set of n points in \mathbb{R}^d . One can build a compressed quadtree \hat{T} in:

- $O(\frac{n}{\varepsilon^{2d+1}}\log\frac{1}{\varepsilon}\log\frac{n}{\varepsilon})$ time
- $O(\frac{n}{\varepsilon^{2d+1}}\log\frac{1}{\varepsilon})$ size

Such that a $(1+\varepsilon)$ -ANN query on P can be answered by a single point location query in \hat{T} in:

• $O(\log \frac{n}{\varepsilon})$ time

• Building a compressed quadtree can be done in $O(|C|\log |C|)$ time

Construction time:
$$O(\frac{n}{\varepsilon^{2d+1}}\log\frac{1}{\varepsilon}\log\frac{n}{\varepsilon})$$

- Building a compressed quadtree can be done in $O(|C|\log |C|)$ time
- |C| is naively bound by $N = O(\frac{|\mathcal{B}|}{\varepsilon^d})$

- Building a compressed quadtree can be done in $O(|C|\log |C|)$ time
- |C| is naively bound by $N = O(\frac{|\mathcal{B}|}{\varepsilon^d})$
- |C| can also be computed in that time

- Building a compressed quadtree can be done in $O(|C|\log |C|)$ time
- |C| is naively bound by $N = O(\frac{|\mathcal{B}|}{\varepsilon^d})$
- |C| can also be computed in that time
- $|\mathcal{B}| = O(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon})$

- Building a compressed quadtree can be done in $O(|C|\log |C|)$ time
- |C| is naively bound by $N = O(\frac{|\mathcal{B}|}{\varepsilon^d})$
- |C| can also be computed in that time
- $|\mathcal{B}| = O(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon})$
- $N = O(\frac{n}{\varepsilon^{2d+1}} \log \frac{1}{\varepsilon})$

- Building a compressed quadtree can be done in $O(|C|\log |C|)$ time
- |C| is naively bound by $N = O(\frac{|\mathcal{B}|}{\varepsilon^d})$
- |C| can also be computed in that time
- $|\mathcal{B}| = O(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon})$
- $N = O(\frac{n}{\varepsilon^{2d+1}} \log \frac{1}{\varepsilon})$
- $\log N = \log \frac{n}{\varepsilon^{2d+1}} \log \frac{1}{\varepsilon}$

- Building a compressed quadtree can be done in $O(|C|\log |C|)$ time
- |C| is naively bound by $N = O(\frac{|\mathcal{B}|}{\varepsilon^d})$
- |C| can also be computed in that time

•
$$|\mathcal{B}| = O(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon})$$

•
$$N = O(\frac{n}{\varepsilon^{2d+1}} \log \frac{1}{\varepsilon})$$

•
$$\log N = \log \frac{n}{\varepsilon^{2d+1}} \log \frac{1}{\varepsilon}$$

$$\log \frac{1}{\varepsilon} = O(\frac{1}{\varepsilon})$$

- Building a compressed quadtree can be done in $O(|C|\log |C|)$ time
- |C| is naively bound by $N = O(\frac{|\mathcal{B}|}{\varepsilon^d})$
- |C| can also be computed in that time

•
$$|\mathcal{B}| = O(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon})$$

•
$$N = O(\frac{n}{\varepsilon^{2d+1}} \log \frac{1}{\varepsilon})$$

•
$$\log N = \log \frac{n}{\varepsilon^{2d+1}} \log \frac{1}{\varepsilon} \le \log \frac{n}{\varepsilon^{2d+2}}$$

$$\log \frac{1}{\varepsilon} = O(\frac{1}{\varepsilon})$$

- Building a compressed quadtree can be done in $O(|C|\log |C|)$ time
- |C| is naively bound by $N = O(\frac{|\mathcal{B}|}{\varepsilon^d})$
- |C| can also be computed in that time

•
$$|\mathcal{B}| = O(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon})$$

•
$$N = O(\frac{n}{\varepsilon^{2d+1}} \log \frac{1}{\varepsilon})$$

$$\log \frac{1}{\varepsilon} = O(\frac{1}{\varepsilon})$$

•
$$\log N = \log \frac{n}{\varepsilon^{2d+1}} \log \frac{1}{\varepsilon} \le \log \frac{n}{\varepsilon^{2d+2}}$$

$$= \frac{1}{2d+2} \log \frac{n^{1/(2d+2)}}{\varepsilon}$$

- Building a compressed quadtree can be done in $O(|C|\log |C|)$ time
- |C| is naively bound by $N = O(\frac{|\mathcal{B}|}{\varepsilon^d})$
- |C| can also be computed in that time

•
$$|\mathcal{B}| = O(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon})$$

•
$$N = O(\frac{n}{\varepsilon^{2d+1}} \log \frac{1}{\varepsilon})$$

$$\log \frac{1}{\varepsilon} = O(\frac{1}{\varepsilon})$$

•
$$\log N = \log \frac{n}{\varepsilon^{2d+1}} \log \frac{1}{\varepsilon} \le \log \frac{n}{\varepsilon^{2d+2}}$$

- Building a compressed quadtree can be done in $O(|C|\log |C|)$ time
- |C| is naively bound by $N = O(\frac{|\mathcal{B}|}{\varepsilon^d})$
- |C| can also be computed in that time

•
$$|\mathcal{B}| = O(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon})$$

•
$$N = O(\frac{n}{\varepsilon^{2d+1}} \log \frac{1}{\varepsilon})$$

$$\log \frac{1}{\varepsilon} = O(\frac{1}{\varepsilon})$$

•
$$\log N = \log \frac{n}{\varepsilon^{2d+1}} \log \frac{1}{\varepsilon} \le \log \frac{n}{\varepsilon^{2d+2}}$$

$$=O(\log\frac{n}{\varepsilon})$$

- Building a compressed quadtree can be done in $O(|C|\log |C|)$ time
- |C| is naively bound by $N = O(\frac{|\mathcal{B}|}{\varepsilon^d})$
- |C| can also be computed in that time

•
$$|\mathcal{B}| = O(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon})$$

•
$$N = O(\frac{n}{\varepsilon^{2d+1}} \log \frac{1}{\varepsilon})$$

$$\log \frac{1}{\varepsilon} = O(\frac{1}{\varepsilon})$$

•
$$\log N = \log \frac{n}{\varepsilon^{2d+1}} \log \frac{1}{\varepsilon} \le \log \frac{n}{\varepsilon^{2d+2}}$$

$$= \frac{1}{2d+2} \log \frac{n^{1/(2d+2)}}{\varepsilon}$$

$$= O(\log \frac{n}{\varepsilon})$$

•
$$O(N \log N) = O(\frac{n}{\varepsilon^{2d+1}} \log \frac{1}{\varepsilon} \log \frac{n}{\varepsilon})$$

Size: $O(\frac{n}{\varepsilon^{2d+1}}\log\frac{1}{\varepsilon})$

Size:
$$O(\frac{n}{\varepsilon^{2d+1}}\log\frac{1}{\varepsilon})$$

• Compressed quadtrees have size O(|C|)

Size:
$$O(\frac{n}{\varepsilon^{2d+1}}\log\frac{1}{\varepsilon})$$

- Compressed quadtrees have size O(|C|)
- |C| is bound by $N = \frac{\mathcal{B}}{\varepsilon^d}$

Size:
$$O(\frac{n}{\varepsilon^{2d+1}}\log\frac{1}{\varepsilon})$$

- Compressed quadtrees have size O(|C|)
- |C| is bound by $N = \frac{\mathcal{B}}{\varepsilon^d}$
- $N = O(\frac{n}{\varepsilon^{2d+1}} \log \frac{1}{\varepsilon})$

• Compressed quadtrees query time $O(\log |C|)$

- Compressed quadtrees query time $O(\log |C|)$
- |C| is bound by $N = \frac{\mathcal{B}}{\varepsilon^d}$

- Compressed quadtrees query time $O(\log |C|)$
- |C| is bound by $N = \frac{\mathcal{B}}{\varepsilon^d}$
- $\log N = O(\log \frac{n}{\varepsilon})$

- Compressed quadtrees query time $O(\log |C|)$
- |C| is bound by $N=\frac{\mathcal{B}}{\varepsilon^d}$
- $\log N = O(\log \frac{n}{\varepsilon})$

$$\log N = \log \frac{n}{\varepsilon^{2d+1}} \log \frac{1}{\varepsilon} \le \log \frac{n}{\varepsilon^{2d+2}}$$

$$= \frac{1}{2d+2} \log \frac{n^{1/(2d+2)}}{\varepsilon} \qquad n^{1/(2d+2)} \le n$$

$$= O(\log \frac{n}{\varepsilon})$$

Recap point-location among balls

- Recap point-location among balls
- Ball approximation

- Recap point-location among balls
- Ball approximation
- WSPD for size reduction

- Recap point-location among balls
- Ball approximation
- WSPD for size reduction
- Approximate Voronoi diagrams with proofs on the bounds