Approximate Voronoi Diagrams

Recap Point Location Among Balls

Recap Point Location Among Balls

- Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q

Recap Point Location Among Balls

- Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q
- Interval structure $I(P, r, R, \varepsilon)$: Create rings around each point of increasing radii $(1+\varepsilon)^{i}$ in interval (r, R)

Recap Point Location Among Balls

- Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q
- Interval structure $I(P, r, R, \varepsilon)$: Create rings around each point of increasing radii $(1+\varepsilon)^{i}$ in interval $(r, R) \quad$ Size: ?

Recap Point Location Among Balls

- Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q
- Interval structure $I(P, r, R, \varepsilon)$: Create rings around each point of increasing radii $(1+\varepsilon)^{i}$ in interval $(r, R) \quad$ Size: $O(n / \varepsilon \log (R / r))$

Recap Point Location Among Balls

- Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q
- Interval structure $I(P, r, R, \varepsilon)$: Create rings around each point of increasing radii $(1+\varepsilon)^{i}$ in interval (r, R)

Size: $O(n / \varepsilon \log (R / r))$

- Create a Balanced Hierarchically Separated Tree (BHST) from the points

How?

Recap Point Location Among Balls

- Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q
- Interval structure $I(P, r, R, \varepsilon)$: Create rings around each point of increasing radii $(1+\varepsilon)^{i}$ in interval (r, R)

Size: $O(n / \varepsilon \log (R / r))$

- Create a Balanced Hierarchically Separated Tree (BHST) from the points

How?

- bottom-up: compute MST, lowest to heighest weight: merge components

Recap Point Location Among Balls

- Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q
- Interval structure $I(P, r, R, \varepsilon)$: Create rings around each point of increasing radii $(1+\varepsilon)^{i}$ in interval (r, R)

Size: $O(n / \varepsilon \log (R / r))$

- Create a Balanced Hierarchically Separated Tree (BHST) from the points

How?

- bottom-up: compute MST, lowest to heighest weight: merge components

Recap Point Location Among Balls

- Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q
- Interval structure $I(P, r, R, \varepsilon)$: Create rings around each point of increasing radii $(1+\varepsilon)^{i}$ in interval (r, R)

Size: $O(n / \varepsilon \log (R / r))$

- Create a Balanced Hierarchically Separated Tree (BHST) from the points
- Space complexity: $O((n / \varepsilon) \log n \log (n / \varepsilon))$

Recap Point Location Among Balls

- Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q
- Interval structure $I(P, r, R, \varepsilon)$: Create rings around each point of increasing radii $(1+\varepsilon)^{i}$ in interval (r, R)

Size: $O(n / \varepsilon \log (R / r))$

- Create a Balanced Hierarchically Separated Tree (BHST) from the points
- Space complexity: $O((n / \varepsilon) \log n \log (n / \varepsilon))$ per interval structure: $O\left(n_{v} / \varepsilon \log \left(n^{O(1)} / \varepsilon\right)=O\left(n_{v} / \varepsilon \log (n / \varepsilon)\right)\right.$

Recap Point Location Among Balls

- Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q
- Interval structure $I(P, r, R, \varepsilon)$: Create rings around each point of increasing radii $(1+\varepsilon)^{i}$ in interval (r, R)

Size: $O(n / \varepsilon \log (R / r))$

- Create a Balanced Hierarchically Separated Tree (BHST) from the points
- Space complexity: $O((n / \varepsilon) \log n \log (n / \varepsilon))$ per interval structure: $O\left(n_{v} / \varepsilon \log \left(n^{O(1)} / \varepsilon\right)=O\left(n_{v} / \varepsilon \log (n / \varepsilon)\right)\right.$
points occur up to $\log n$ times

Recap Point Location Among Balls

- Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q
- Interval structure $I(P, r, R, \varepsilon)$: Create rings around each point of increasing radii $(1+\varepsilon)^{i}$ in interval (r, R)

Size: $O(n / \varepsilon \log (R / r))$

- Create a Balanced Hierarchically Separated Tree (BHST) from the points
- Space complexity: $O((n / \varepsilon) \log n \log (n / \varepsilon))$ improved (book): $O((n / \varepsilon) \log n)$

Recap Point Location Among Balls

- Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q
- Interval structure $I(P, r, R, \varepsilon)$: Create rings around each point of increasing radii $(1+\varepsilon)^{i}$ in interval (r, R)

Size: $O(n / \varepsilon \log (R / r))$

- Create a Balanced Hierarchically Separated Tree (BHST) from the points
- Space complexity: $O((n / \varepsilon) \log n \log (n / \varepsilon))$ improved (book): $O((n / \varepsilon) \log n)$
- \# of near-neighbor queries: $O(\log (n / \varepsilon))$

Recap Point Location Among Balls

- Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q
- Interval structure $I(P, r, R, \varepsilon)$: Create rings around each point of increasing radii $(1+\varepsilon)^{i}$ in interval $(r, R) \quad$ Size: $O(n / \varepsilon \log (R / r))$
- Create a Balanced Hierarchically Separated Tree (BHST) from the points
- Space complexity: $O((n / \varepsilon) \log n \log (n / \varepsilon))$ improved (book): $O((n / \varepsilon) \log n)$
- \# of near-neighbor queries: $O(\log (n / \varepsilon))$ $\log n$ times only against r_{v} and R_{v}

Recap Point Location Among Balls

- Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q
- Interval structure $I(P, r, R, \varepsilon)$: Create rings around each point of increasing radii $(1+\varepsilon)^{i}$ in interval $(r, R) \quad$ Size: $O(n / \varepsilon \log (R / r))$
- Create a Balanced Hierarchically Separated Tree (BHST) from the points
- Space complexity: $O((n / \varepsilon) \log n \log (n / \varepsilon))$ improved (book): $O((n / \varepsilon) \log n)$
- \# of near-neighbor queries: $O(\log (n / \varepsilon))$ $\log n$ times only against r_{v} and R_{v} once $\left[r_{v}, R_{v}\right): O(\log (n / \varepsilon))$

Caveat
$O(\log (n / \varepsilon))$ queries

Caveat

$O(\log (n / \varepsilon))$ queries

Those queries are also hard ...

Approximate balls

- For a ball $b=b(p, r)$ the ball $b \approx$ is a $(1+\varepsilon)$-approximation to b if $b \subseteq b \approx \subset$ $b(p,(1+\varepsilon) r)$

Approximate balls

- For a ball $b=b(p, r)$ the ball $b \approx$ is a $(1+\varepsilon)$-approximation to b if $b \subseteq b \approx \subset$ $b(p,(1+\varepsilon) r)$
- For a set of balls $\mathcal{B}, \mathcal{B} \approx$ is a $(1+\varepsilon)$-approximation if for all $b \in \mathcal{B}$ there is an approximation $b \approx \in \mathcal{B} \approx$

Approximate balls

- For a ball $b=b(p, r)$ the ball $b \approx$ is a $(1+\varepsilon)$-approximation to b if $b \subseteq b \approx \subset$ $b(p,(1+\varepsilon) r)$
- For a set of balls $\mathcal{B}, \mathcal{B} \approx$ is a $(1+\varepsilon)$-approximation if for all $b \in \mathcal{B}$ there is an approximation $b_{\approx} \in \mathcal{B} \approx$
- How should we approximate?

Approximate balls

- For a ball $b=b(p, r)$ the ball $b \approx$ is a $(1+\varepsilon)$-approximation to b if $b \subseteq b \approx \subset$ $b(p,(1+\varepsilon) r)$
- For a set of balls $\mathcal{B}, \mathcal{B} \approx$ is a $(1+\varepsilon)$-approximation if for all $b \in \mathcal{B}$ there is an approximation $b_{\approx} \in \mathcal{B} \approx$
- How should we approximate?

Approximating the ball

Approximating the ball

- Divide the space into a grid with sides ε

Approximating the ball

- Divide the space into a grid with sides ε
- Define $b \approx(p)$ as the grid cells intersected by $b(p)$

Approximating the ball

- Divide the space into a grid with sides ε
- Define $b \approx(p)$ as the grid cells intersected by $b(p)$
- Throw all $b \approx$ into a hashtable

Approximating the ball

- Divide the space into a grid with sides ε
- Define $b \approx(p)$ as the grid cells intersected by $b(p)$
- Throw all $b \approx$ into a hashtable
- Now deciding whether point q falls into a certain range is easy: $O(1)$

Approximating the ball

- Divide the space into a grid with sides ε
- Define $b \approx(p)$ as the grid cells intersected by $b(p)$
- Throw all $b \approx$ into a hashtable
- Now deciding whether point q falls into a certain range is easy: $O(1)$
- For constant ball size this only takes $O\left(n / \varepsilon^{d}\right)$ space!

Approximating the ball

- Divide the space into a grid with sides ε
- Define $b \approx(p)$ as the grid cells intersected by $b(p)$
- Throw all $b \approx$ into a hashtable
- Now deciding whether point q falls into a certain range is easy: $O(1)$
- For constant ball size this only takes $O\left(n / \varepsilon^{d}\right)$ space!

But we don't have constant ball sizes...

Approximate interval structure

Lemma Let $\mathcal{I}_{\approx}(P, r, R, \varepsilon / 16)$ be a $(1+\varepsilon / 16)$-approximation of $\mathcal{I}(P, r, R, \varepsilon / 16)$

Approximate interval structure

Lemma Let $\mathcal{I}_{\approx}(P, r, R, \varepsilon / 16)$ be a $(1+\varepsilon / 16)$-approximation of $\mathcal{I}(P, r, R, \varepsilon / 16)$
For a query point $q \in \mathcal{M}$ if \mathcal{I}_{\approx} returns a target set that is an approximation of a ball in \mathcal{I} centered at a point p with radius $\alpha \in[r, R]$ then p is a $(1+\varepsilon / 4)$-ANN to q

Approximate interval structure

Lemma Let $\mathcal{I}_{\approx}(P, r, R, \varepsilon / 16)$ be a $(1+\varepsilon / 16)$-approximation of $\mathcal{I}(P, r, R, \varepsilon / 16)$
For a query point $q \in \mathcal{M}$ if \mathcal{I}_{\approx} returns a target set that is an approximation of a ball in \mathcal{I} centered at a point p with radius $\alpha \in[r, R]$ then p is a $(1+\varepsilon / 4)$-ANN to q
Proof:

Approximate interval structure

Lemma Let $\mathcal{I}_{\approx}(P, r, R, \varepsilon / 16)$ be a $(1+\varepsilon / 16)$-approximation of $\mathcal{I}(P, r, R, \varepsilon / 16)$
For a query point $q \in \mathcal{M}$ if \mathcal{I}_{\approx} returns a target set that is an approximation of a ball in \mathcal{I} centered at a point p with radius $\alpha \in[r, R]$ then p is a $(1+\varepsilon / 4)$-ANN to q
Proof:
p is only returned if there are two consecutive indices i and $i+1$ such that q is in the ball set of $i+1$ but not in the ball set of i

Approximate interval structure

Lemma Let $\mathcal{I}_{\approx}(P, r, R, \varepsilon / 16)$ be a $(1+\varepsilon / 16)$-approximation of $\mathcal{I}(P, r, R, \varepsilon / 16)$
For a query point $q \in \mathcal{M}$ if \mathcal{I}_{\approx} returns a target set that is an approximation of a ball in \mathcal{I} centered at a point p with radius $\alpha \in[r, R]$ then p is a $(1+\varepsilon / 4)$-ANN to q
Proof:
p is only returned if there are two consecutive indices i and $i+1$ such that q is in the ball set of $i+1$ but not in the ball set of i

$$
\begin{gathered}
r(1+\varepsilon / 16)^{i} \leq \mathbf{d}(q, P) \leq \mathbf{d}(q, p) \leq r(1+\varepsilon / 16)^{i+1}(1+\varepsilon / 16) \leq \\
(1+\varepsilon / 16)^{2} \mathbf{d}(q, P) \leq(1+\varepsilon / 4) \mathbf{d}(q, P)
\end{gathered}
$$

Approximate interval structure

Lemma Let $\mathcal{I}_{\approx}(P, r, R, \varepsilon / 16)$ be a $(1+\varepsilon / 16)$-approximation of $\mathcal{I}(P, r, R, \varepsilon / 16)$
For a query point $q \in \mathcal{M}$ if \mathcal{I}_{\approx} returns a target set that is an approximation of a ball in \mathcal{I} centered at a point p with radius $\alpha \in[r, R]$ then p is a ($1+\varepsilon / 4$)-ANN to q

Proof:

p is only returned if there are two consecutive indices i and $i+1$ such that q is in the ball set of $i+1$ but not in the ball set of i

$$
\begin{gathered}
r(1+\varepsilon / 16)^{i} \leq \mathbf{d}(q, P) \leq \mathbf{d}(q, p) \leq \sqrt{r(1+\varepsilon / 16)^{i+1}(1+\varepsilon / 16)} \leq \\
\quad(1+\varepsilon / 16)^{2} \mathbf{d}(q, P) \leq(1+\varepsilon / 4) \mathbf{d}(q, P) \\
\begin{array}{l}
\text { Approximation from using balls } \\
\text { Approximation from approximating the balls }
\end{array}
\end{gathered}
$$

Approximate interval structure

Lemma Let $\mathcal{I}_{\approx}(P, r, R, \varepsilon / 16)$ be a $(1+\varepsilon / 16)$-approximation of $\mathcal{I}(P, r, R, \varepsilon / 16)$
For a query point $q \in \mathcal{M}$ if \mathcal{I}_{\approx} returns a target set that is an approximation of a ball in \mathcal{I} centered at a point p with radius $\alpha \in[r, R]$ then p is a $(1+\varepsilon / 4)$-ANN to q

Proof:

p is only returned if there are two consecutive indices i and $i+1$ such that q is in the ball set of $i+1$ but not in the ball set of i

$$
\begin{gathered}
r(1+\varepsilon / 16)^{i} \leq \sqrt{\mathbf{d}(q, P)}<\mathbf{d}(q, p) \leq r^{r(1+\varepsilon / 16)^{2}} \\
(1+\varepsilon / 16)^{2} \mathbf{d}(q, P) \leq(1+\varepsilon / 4) \mathbf{d}(q, P)
\end{gathered}
$$

Substitute

Approximate interval structure

Lemma Let $\mathcal{I}_{\approx}(P, r, R, \varepsilon / 16)$ be a $(1+\varepsilon / 16)$-approximation of $\mathcal{I}(P, r, R, \varepsilon / 16)$
For a query point $q \in \mathcal{M}$ if \mathcal{I}_{\approx} returns a target set that is an approximation of a ball in \mathcal{I} centered at a point p with radius $\alpha \in[r, R]$ then p is a ($1+\varepsilon / 4$)-ANN to q
Proof:
p is only returned if there are two consecutive indices i and $i+1$ such that q is in the ball set of $i+1$ but not in the ball set of i

$$
\begin{gathered}
r(1+\varepsilon / 16)^{i} \leq \mathbf{d}(q, P) \leq \mathbf{d}(q, p) \leq r(1+\varepsilon / 16)^{i+1}(1+\varepsilon / 16) \leq \\
{\left[(1+\varepsilon / 16)^{2} \mathbf{d}(q, P) \leq(1+\varepsilon / 4) \mathbf{d}(q, P)\right.} \\
1+\frac{2 \varepsilon}{16}+\frac{\varepsilon^{2}}{16^{2}}=1+\frac{\varepsilon}{8}+\frac{\varepsilon}{16}=1+\frac{3 \varepsilon}{16}=O\left(1+\frac{4}{\varepsilon}\right)
\end{gathered}
$$

Intermediate results

Intermediate results

- Given a set P of n points in \mathbb{R}^{d}, one can compute a set of \mathcal{B} of $O\left(\frac{n}{\varepsilon} \log n\right)$ balls

Intermediate results

- Given a set P of n points in \mathbb{R}^{d}, one can compute a set of \mathcal{B} of $O\left(\frac{n}{\varepsilon} \log n\right)$ balls
- s.t. answering $(1+\varepsilon)$-ANN queries on P can be answered by doing a single target query on \mathcal{B}

Intermediate results

- Given a set P of n points in \mathbb{R}^{d}, one can compute a set of \mathcal{B} of $O\left(\frac{n}{\varepsilon} \log n\right)$ balls
- s.t. answering $(1+\varepsilon)$-ANN queries on P can be answered by doing a single target query on \mathcal{B}
- Furthermore, if we $(1+\varepsilon / 16)$-approximate each ball the target query becomes easier.

Improvements in low dimensions (for large ε)

Improvements in low dimensions (for large ε)

- Initial, simple construction (previous lecture): balls per pair of points

Improvements in low dimensions (for large ε)

- Initial, simple construction (previous lecture): balls per pair of points
- How can we reduce the number of pairs?

Improvements in low dimensions (for large ε)

- Initial, simple construction (previous lecture): balls per pair of points
- How can we reduce the number of pairs?
- Well Separated Pair Decomposition!

Improvements in low dimensions

Improvements in low dimensions

- Construct a (c / ε)-WSPD \mathcal{W} of P, where c is sufficiently large

Improvements in low dimensions

- Construct a (c / ε)-WSPD \mathcal{W} of P, where c is sufficiently large
- The number of pairs in a WSPD is $O\left(\frac{n}{\varepsilon^{d}}\right)$
- For every pair $\{u, v\} \in \mathcal{W}$ compute $\mathcal{B}\left(r e p_{u}, r e p_{v}\right)$ and add it to \mathcal{B} where:

Improvements in low dimensions

- Construct a (c / ε)-WSPD \mathcal{W} of P, where c is sufficiently large
- The number of pairs in a WSPD is $O\left(\frac{n}{\varepsilon^{d}}\right)$
- For every pair $\{u, v\} \in \mathcal{W}$ compute $\mathcal{B}\left(r e p_{u}, r e p_{v}\right)$ and add it to \mathcal{B} where:

$$
\mathcal{B}\left(r e p_{u}, r e p_{v}\right)=\left\{\mathbf{b}\left(r e p_{u}, r\right), \mathbf{b}\left(r e p_{v}, r\right) \mid r=(1+\varepsilon / 3)^{i} \in \mathcal{J}(u, v)\right\}
$$

Improvements in low dimensions

- Construct a (c / ε)-WSPD \mathcal{W} of P, where c is sufficiently large
- The number of pairs in a WSPD is $O\left(\frac{n}{\varepsilon^{d}}\right)$
- For every pair $\{u, v\} \in \mathcal{W}$ compute $\mathcal{B}\left(r e p_{u}, r e p_{v}\right)$ and add it to \mathcal{B} where:

$$
\begin{gathered}
\mathcal{B}\left(r e p_{u}, r e p_{v}\right)=\left\{\mathbf{b}\left(r e p_{u}, r\right), \mathbf{b}\left(r e p_{v}, r\right) \mid r=(1+\varepsilon / 3)^{i} \in \mathcal{J}(u, v)\right\} \\
\text { and } \\
\mathcal{J}(u, v)=\left[\frac{1}{8}, \frac{4}{\varepsilon}\right] \cdot\left\|r e p_{u}-r e p_{v}\right\|
\end{gathered}
$$

Improvements in low dimensions

- Construct a (c / ε)-WSPD \mathcal{W} of P, where c is sufficiently large
- The number of pairs in a WSPD is $O\left(\frac{n}{\varepsilon^{d}}\right)$
- For every pair $\{u, v\} \in \mathcal{W}$ compute $\mathcal{B}\left(r e p_{u}, r e p_{v}\right)$ and add it to \mathcal{B} where:

$$
\begin{gathered}
\mathcal{B}\left(r e p_{u}, r e p_{v}\right)=\left\{\mathbf{b}\left(r e p_{u}, r\right), \mathbf{b}\left(r e p_{v}, r\right) \mid r=(1+\varepsilon / 3)^{i} \in \mathcal{J}(u, v)\right\} \\
\text { and } \\
\mathcal{J}(u, v)=\left[\frac{1}{8}, \frac{4}{\varepsilon}\right] \cdot\left\|r e p_{u}-r e p_{v}\right\|
\end{gathered}
$$

- We have $O\left(\frac{1}{\varepsilon} \log \frac{1}{\varepsilon}\right)$ balls per pair

Improvements in low dimensions

- Construct a (c / ε)-WSPD \mathcal{W} of P, where c is sufficiently large
- The number of pairs in a WSPD is $O\left(\frac{n}{\varepsilon^{d}}\right)$
- For every pair $\{u, v\} \in \mathcal{W}$ compute $\mathcal{B}\left(r e p_{u}, r e p_{v}\right)$ and add it to \mathcal{B} where:

$$
\begin{gathered}
\mathcal{B}\left(r e p_{u}, r e p_{v}\right)=\left\{\mathbf{b}\left(r e p_{u}, r\right), \mathbf{b}\left(r e p_{v}, r\right) \mid r=(1+\varepsilon / 3)^{i} \in \mathcal{J}(u, v)\right\} \\
\text { and } \\
\mathcal{J}(u, v)=\left[\frac{1}{8}, \frac{4}{\varepsilon}\right] \cdot\left\|r e p_{u}-r e p_{v}\right\|
\end{gathered}
$$

- We have $O\left(\frac{1}{\varepsilon} \log \frac{1}{\varepsilon}\right)$ balls per pair
- $|\mathcal{B}|=O\left(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon}\right)$

Improvements in low dimensions

- Construct a (c / ε)-WSPD \mathcal{W} of P, where c is sufficiently large
- The number of pairs in a WSPD is $O\left(\frac{n}{\varepsilon^{d}}\right)$
- For every pair $\{u, v\} \in \mathcal{W}$ compute $\mathcal{B}\left(r e p_{u}, r e p_{v}\right)$ and add it to \mathcal{B} where:

$$
\begin{gathered}
\mathcal{B}\left(r e p_{u}, r e p_{v}\right)=\left\{\mathbf{b}\left(r e p_{u}, r\right), \mathbf{b}\left(r e p_{v}, r\right) \mid r=(1+\varepsilon / 3)^{i} \in \mathcal{J}(u, v)\right\} \\
\text { and } \\
\mathcal{J}(u, v)=\left[\frac{1}{8}, \frac{4}{\varepsilon}\right] \cdot\left\|r e p_{u}-r e p_{v}\right\|
\end{gathered}
$$

- We have $O\left(\frac{1}{\varepsilon} \log \frac{1}{\varepsilon}\right)$ balls per pair
- $|\mathcal{B}|=O\left(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon}\right)$

Motivation

Motivation

Voronoi diagrams have a multitude of uses:

Motivation

Voronoi diagrams have a multitude of uses:

- Biology Model biological structures like cells
- Hydrology Calculate the rainfall in an area based on point measurements
- Aviation Find the nearest safe landing zone in case of failure

What is a Voronoi Diagram?

What is a Voronoi Diagram?

A Voronoi diagram V of a point set $P \subseteq \mathbb{R}^{d}$ is a partition of space into regions such that a cell of point $p \in P$ is:

$$
V(p, P)=s \in \mathbb{R}^{d} \mid\|s-p\| \leq\left\|s-p^{\prime}\right\| \text { for all } p^{\prime} \in P
$$

What is a Voronoi Diagram?

A Voronoi diagram V of a point set $P \subseteq \mathbb{R}^{d}$ is a partition of space into regions such that a cell of point $p \in P$ is:

$$
V(p, P)=s \in \mathbb{R}^{d} \mid\|s-p\| \leq\left\|s-p^{\prime}\right\| \text { for all } p^{\prime} \in P
$$

However, it has complexity $O\left(n^{\left\lceil\frac{d}{2}\right\rceil}\right)$ in \mathbb{R}^{d} in the worst case

What is a Voronoi Diagram?

A Voronoi diagram V of a point set $P \subseteq \mathbb{R}^{d}$ is a partition of space into regions such that a cell of point $p \in P$ is:

$$
V(p, P)=s \in \mathbb{R}^{d} \mid\|s-p\| \leq\left\|s-p^{\prime}\right\| \text { for all } p^{\prime} \in P
$$

However, it has complexity $O\left(n^{\left\lceil\frac{d}{2}\right\rceil}\right)$ in \mathbb{R}^{d} in the worst case
Can we do better?

Approximate Voronoi diagrams

Approximate Voronoi diagrams

Definition: Approximate Voronoi Diagram

Given a set P of n points in \mathbb{R}^{d} and parameter $\varepsilon>0$, a $(1+\varepsilon)$-Approximated
Voronoi Diagram(AVS) of P is a partition \mathcal{V} of \mathbb{R}^{d} into regions φ, s.t. for any region $\varphi \in \mathcal{V}$ we have that $\operatorname{rep}_{\varphi}$ is a $(1+\varepsilon)$-ANN for x, that is:

Approximate Voronoi diagrams

Definition: Approximate Voronoi Diagram

Given a set P of n points in \mathbb{R}^{d} and parameter $\varepsilon>0$, a $(1+\varepsilon)$-Approximated
Voronoi Diagram(AVS) of P is a partition \mathcal{V} of \mathbb{R}^{d} into regions φ, s.t. for any region $\varphi \in \mathcal{V}$ we have that $\operatorname{rep}_{\varphi}$ is a $(1+\varepsilon)$-ANN for x, that is:

$$
\forall x \in \varphi\left\|x-\operatorname{rep}_{\varphi}\right\| \leq(1+\varepsilon) d(x, P)
$$

Approximate Nearest Neighbors in \mathbb{R}^{d}

Approximate Nearest Neighbors in \mathbb{R}^{d}

(now fast, using approximate Voronoi diagrams)

Fast ANN in \mathbb{R}^{d}

- In the following, asssume P is a set of points contained in hypercube $[0.5-\varepsilon / d, 0.5+\varepsilon / d]^{d}$

Fast ANN in \mathbb{R}^{d}

- In the following, asssume P is a set of points contained in hypercube $[0.5-\varepsilon / d, 0.5+\varepsilon / d]^{d}$
- Guarantee by some transformation T

Fast ANN in \mathbb{R}^{d}

- In the following, asssume P is a set of points contained in hypercube $[0.5-\varepsilon / d, 0.5+\varepsilon / d]^{d}$
- Guarantee by some transformation T
- Computing ANN of q on P is equivalent to computing the ANN of $T(q)$ on $T(P)$

Fast ANN in \mathbb{R}^{d}

- In the following, asssume P is a set of points contained in hypercube $[0.5-\varepsilon / d, 0.5+\varepsilon / d]^{d}$
- Guarantee by some transformation T
- Computing ANN of q on P is equivalent to computing the ANN of $T(q)$ on $T(P)$
- If q is outside the unit hypercube $[0,1]^{d}$ any $p \in P$ is an $(1+\varepsilon)$-ANN

Fast ANN in \mathbb{R}^{d}

- In the following, asssume P is a set of points contained in hypercube $[0.5-\varepsilon / d, 0.5+\varepsilon / d]^{d}$
- Guarantee by some transformation T
- Computing ANN of q on P is equivalent to computing the ANN of $T(q)$ on $T(P)$
- If q is outside the unit hypercube $[0,1]^{d}$ any $p \in P$ is an $(1+\varepsilon)$-ANN

(Exercise: Check, in doubt change constants)

Thus only consider ANN for points inside $[0,1]^{d}$

Creating the AVD

- Remember we can compute a set \mathcal{B} of $O\left(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon}\right)$ balls

Creating the AVD

- Remember we can compute a set \mathcal{B} of $O\left(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon}\right)$ balls
- Approximate b by the cells \mathcal{C}^{\prime} that intersect it

Creating the AVD

- Remember we can compute a set \mathcal{B} of $O\left(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon}\right)$ balls
- Approximate b by the cells \mathcal{C}^{\prime} that intersect it
- Pick grid $G_{2^{i}}$ s.t. $\sqrt{d} 2^{i} \leq(\varepsilon / 16) r$

Creating the AVD

- Remember we can compute a set \mathcal{B} of $O\left(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon}\right)$ balls
- Approximate b by the cells \mathcal{C}^{\prime} that intersect it
- Pick grid $G_{2^{i}}$ s.t. $\sqrt{d} 2^{i} \leq(\varepsilon / 16) r$

Creating the AVD

- Remember we can compute a set \mathcal{B} of $O\left(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon}\right)$ balls
- Approximate b by the cells \mathcal{C}^{\prime} that intersect it
- Pick grid $G_{2^{i}}$ s.t. $\sqrt{d} 2^{i} \leq(\varepsilon / 16) r$
- For each ball the amount of grid cells is bound by $O\left(\frac{1}{\varepsilon^{d}}\right)$

Creating the AVD

- Remember we can compute a set \mathcal{B} of $O\left(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon}\right)$ balls
- Approximate b by the cells \mathcal{C}^{\prime} that intersect it
- Pick grid $G_{2^{i}}$ s.t. $\sqrt{d} 2^{i} \leq(\varepsilon / 16) r$
- For each ball the amount of grid cells is bound by $O\left(\frac{1}{\varepsilon^{d}}\right)$
- Create from \mathcal{C}^{\prime} a set \mathcal{C} such that from each instance of $\square \in \mathcal{C}^{\prime}$ we pick the \square associated to the smallest
 ball

Point location on the grids

Point location on the grids

- $(1+\varepsilon)$-ANN \rightarrow target query on \mathcal{B}_{\approx}

Point location on the grids

- $(1+\varepsilon)$-ANN \rightarrow target query on \mathcal{B}_{\approx}
- target query \rightarrow find smallest canonical grid cell of \mathcal{C}

Point location on the grids

- $(1+\varepsilon)$-ANN \rightarrow target query on \mathcal{B}_{\approx}
- target query \rightarrow find smallest canonical grid cell of \mathcal{C}
- store cells in compressed quadtree!

Point location on the grids

- $(1+\varepsilon)$-ANN \rightarrow target query on \mathcal{B}_{\approx}
- target query \rightarrow find smallest canonical grid cell of \mathcal{C}
- store cells in compressed quadtree!
- Construction: $O(|\mathcal{C}| \log |\mathcal{C}|)$ time

Point location on the grids

- $(1+\varepsilon)$-ANN \rightarrow target query on \mathcal{B}_{\approx}
- target query \rightarrow find smallest canonical grid cell of \mathcal{C}
- store cells in compressed quadtree!
- Construction: $O(|\mathcal{C}| \log |\mathcal{C}|)$ time
- Space: $O(|\mathcal{C}|)$

Point location on the grids

- $(1+\varepsilon)$-ANN \rightarrow target query on \mathcal{B}_{\approx}
- target query \rightarrow find smallest canonical grid cell of \mathcal{C}
- store cells in compressed quadtree!
- Construction: $O(|\mathcal{C}| \log |\mathcal{C}|)$ time
- Space: $O(|\mathcal{C}|)$
- Query time: $O(\log |C|)$

Point location on the grids

- $(1+\varepsilon)$-ANN \rightarrow target query on \mathcal{B}_{\approx}
- target query \rightarrow find smallest canonical grid cell of \mathcal{C}
- store cells in compressed quadtree!
- Construction: $O(|\mathcal{C}| \log |\mathcal{C}|)$ time
- Space: $O(|\mathcal{C}|)$
- Query time: $O(\log |C|)$
- Store for each cell in a leaf the smallest ball it belongs to

Theorem:

Theorem:

Let P be a set of n points in \mathbb{R}^{d}. One can build a compressed quadtree \hat{T} in:

Theorem:

Let P be a set of n points in \mathbb{R}^{d}. One can build a compressed quadtree \hat{T} in:

- $O\left(\frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\varepsilon} \log \frac{n}{\varepsilon}\right)$ time

Theorem:

Let P be a set of n points in \mathbb{R}^{d}. One can build a compressed quadtree \hat{T} in:

- $O\left(\frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\varepsilon} \log \frac{n}{\varepsilon}\right)$ time
- $O\left(\frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\varepsilon}\right)$ size

Theorem:

Let P be a set of n points in \mathbb{R}^{d}. One can build a compressed quadtree \hat{T} in:

- $O\left(\frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\varepsilon} \log \frac{n}{\varepsilon}\right)$ time
- $O\left(\frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\varepsilon}\right)$ size

Such that a $(1+\varepsilon)$-ANN query on P can be answered by a single point location query in \hat{T} in:

- $O\left(\log \frac{n}{\varepsilon}\right)$ time

Theorem:

Let P be a set of n points in \mathbb{R}^{d}. One can build a compressed quadtree \hat{T} in:

- $O\left(\frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\varepsilon} \log \frac{n}{\varepsilon}\right)$ time
- $O\left(\frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\varepsilon}\right)$ size

Such that a $(1+\varepsilon)$-ANN query on P can be answered by a single point location query in \hat{T} in:

- $O\left(\log \frac{n}{\varepsilon}\right)$ time

Construction time: $O\left(\frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\varepsilon} \log \frac{n}{\varepsilon}\right)$

Construction time: $O\left(\frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\varepsilon} \log \frac{n}{\varepsilon}\right)$

- Building a compressed quadtree can be done in $O(|C| \log |C|)$ time

Construction time: $O\left(\frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\varepsilon} \log \frac{n}{\varepsilon}\right)$

- Building a compressed quadtree can be done in $O(|C| \log |C|)$ time
- $|C|$ is naively bound by $N=O\left(\frac{|\mathcal{B}|}{\varepsilon^{d}}\right)$

Construction time: $O\left(\frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\varepsilon} \log \frac{n}{\varepsilon}\right)$

- Building a compressed quadtree can be done in $O(|C| \log |C|)$ time
- $|C|$ is naively bound by $N=O\left(\frac{|\mathcal{B}|}{\varepsilon^{d}}\right)$
- $|C|$ can also be computed in that time

Construction time: $O\left(\frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\varepsilon} \log \frac{n}{\varepsilon}\right)$

- Building a compressed quadtree can be done in $O(|C| \log |C|)$ time
- $|C|$ is naively bound by $N=O\left(\frac{|\mathcal{B}|}{\varepsilon^{d}}\right)$
- $|C|$ can also be computed in that time
- $|\mathcal{B}|=O\left(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon}\right)$

Construction time: $O\left(\frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\varepsilon} \log \frac{n}{\varepsilon}\right)$

- Building a compressed quadtree can be done in $O(|C| \log |C|)$ time
- $|C|$ is naively bound by $N=O\left(\frac{|\mathcal{B}|}{\varepsilon^{d}}\right)$
- $|C|$ can also be computed in that time
- $|\mathcal{B}|=O\left(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon}\right)$
- $N=O\left(\frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\varepsilon}\right)$

Construction time: $O\left(\frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\varepsilon} \log \frac{n}{\varepsilon}\right)$

- Building a compressed quadtree can be done in $O(|C| \log |C|)$ time
- $|C|$ is naively bound by $N=O\left(\frac{|\mathcal{B}|}{\varepsilon^{d}}\right)$
- $|C|$ can also be computed in that time
- $|\mathcal{B}|=O\left(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon}\right)$
- $N=O\left(\frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\varepsilon}\right)$
- $\log N=\log \frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\varepsilon}$

Construction time: $O\left(\frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\varepsilon} \log \frac{n}{\varepsilon}\right)$

- Building a compressed quadtree can be done in $O(|C| \log |C|)$ time
- $|C|$ is naively bound by $N=O\left(\frac{|\mathcal{B}|}{\varepsilon^{d}}\right)$
- $|C|$ can also be computed in that time
- $|\mathcal{B}|=O\left(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon}\right)$
- $N=O\left(\frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\varepsilon}\right)$

$$
\log \frac{1}{\varepsilon}=O\left(\frac{1}{\varepsilon}\right)
$$

- $\log N=\log \frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{8}$

Construction time: $O\left(\frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\varepsilon} \log \frac{n}{\varepsilon}\right)$

- Building a compressed quadtree can be done in $O(|C| \log |C|)$ time
- $|C|$ is naively bound by $N=O\left(\frac{|\mathcal{B}|}{\varepsilon^{d}}\right)$
- $|C|$ can also be computed in that time
- $|\mathcal{B}|=O\left(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon}\right)$
- $N=O\left(\frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\varepsilon}\right)$

$$
\log \frac{1}{\varepsilon}=O\left(\frac{1}{\varepsilon}\right)
$$

- $\log N=\log \frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{8} \leq \log \frac{n}{\varepsilon^{2 d+2}}$

Construction time: $O\left(\frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\varepsilon} \log \frac{n}{\varepsilon}\right)$

- Building a compressed quadtree can be done in $O(|C| \log |C|)$ time
- $|C|$ is naively bound by $N=O\left(\frac{|\mathcal{B}|}{\varepsilon^{d}}\right)$
- $|C|$ can also be computed in that time
- $|\mathcal{B}|=O\left(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon}\right)$
- $N=O\left(\frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\varepsilon}\right)$
$\log \frac{1}{\varepsilon}=O\left(\frac{1}{\varepsilon}\right)$
- $\log N=\log \frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{8} \leq \log \frac{n}{\varepsilon^{2 d+2}}$

$$
=\frac{1}{2 d+2} \log \frac{n^{1 /(2 d+2)}}{\varepsilon}
$$

Construction time: $O\left(\frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\varepsilon} \log \frac{n}{\varepsilon}\right)$

- Building a compressed quadtree can be done in $O(|C| \log |C|)$ time
- $|C|$ is naively bound by $N=O\left(\frac{|\mathcal{B}|}{\varepsilon^{d}}\right)$
- $|C|$ can also be computed in that time
- $|\mathcal{B}|=O\left(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon}\right)$
- $N=O\left(\frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\varepsilon}\right)$
$\log \frac{1}{\varepsilon}=O\left(\frac{1}{\varepsilon}\right)$
- $\log N=\log \frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{d} \leq \log \frac{n}{\varepsilon^{2 d+2}}$

Construction time: $O\left(\frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\varepsilon} \log \frac{n}{\varepsilon}\right)$

- Building a compressed quadtree can be done in $O(|C| \log |C|)$ time
- $|C|$ is naively bound by $N=O\left(\frac{|\mathcal{B}|}{\varepsilon^{d}}\right)$
- $|C|$ can also be computed in that time
- $|\mathcal{B}|=O\left(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon}\right)$
- $N=O\left(\frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\varepsilon}\right)$
$\log \frac{1}{\varepsilon}=O\left(\frac{1}{\varepsilon}\right)$
- $\log N=\log \frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{8} \leq \log \frac{n}{\varepsilon^{2 d+2}}$

$$
\begin{aligned}
& =\frac{1}{2 d+2} \log \frac{\sqrt{1 /(2 d+2)}_{\varepsilon} \longrightarrow n^{1 /(2 d+2)} \leq n}{}=O\left(\log \frac{n}{\varepsilon}\right)
\end{aligned}
$$

Construction time: $O\left(\frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\varepsilon} \log \frac{n}{\varepsilon}\right)$

- Building a compressed quadtree can be done in $O(|C| \log |C|)$ time
- $|C|$ is naively bound by $N=O\left(\frac{|\mathcal{B}|}{\varepsilon^{d}}\right)$
- $|C|$ can also be computed in that time
- $|\mathcal{B}|=O\left(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon}\right)$
- $N=O\left(\frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\varepsilon}\right)$

$$
\log \frac{1}{\varepsilon}=O\left(\frac{1}{\varepsilon}\right)
$$

- $\log N=\log \frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\frac{1}{8}} \leq \log \frac{n}{\varepsilon^{2 d+2}}$

$$
\begin{aligned}
& =\frac{1}{2 d+2} \log \frac{n^{1 /(2 d+2)}}{\varepsilon} \longrightarrow n^{1 /(2 d+2)} \leq n \\
& =O\left(\log \frac{n}{\varepsilon}\right)
\end{aligned}
$$

- $O(N \log N)=O\left(\frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\varepsilon} \log \frac{n}{\varepsilon}\right)$

Size: $O\left(\frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\varepsilon}\right)$

Size: $O\left(\frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\varepsilon}\right)$

- Compressed quadtrees have size $O(|C|)$

Size: $O\left(\frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\varepsilon}\right)$

- Compressed quadtrees have size $O(|C|)$
- $|C|$ is bound by $N=\frac{\mathcal{B}}{\varepsilon^{d}}$

Size: $O\left(\frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\varepsilon}\right)$

- Compressed quadtrees have size $O(|C|)$
- $|C|$ is bound by $N=\frac{\mathcal{B}}{\varepsilon^{d}}$
- $N=O\left(\frac{n}{\varepsilon^{2 d+1}} \log \frac{1}{\varepsilon}\right)$

Query time: $O\left(\log \frac{n}{\varepsilon}\right)$

Query time: $O\left(\log \frac{n}{\varepsilon}\right)$

- Compressed quadtrees query time $O(\log |C|)$

Query time: $O\left(\log \frac{n}{\varepsilon}\right)$

- Compressed quadtrees query time $O(\log |C|)$
- $|C|$ is bound by $N=\frac{\mathcal{B}}{\varepsilon^{d}}$

Query time: $O\left(\log \frac{n}{\varepsilon}\right)$

- Compressed quadtrees query time $O(\log |C|)$
- $|C|$ is bound by $N=\frac{\mathcal{B}}{\varepsilon^{d}}$
- $\log N=O\left(\log \frac{n}{\varepsilon}\right)$

Query time: $O\left(\log \frac{n}{\varepsilon}\right)$

- Compressed quadtrees query time $O(\log |C|)$
- $|C|$ is bound by $N=\frac{\mathcal{B}}{\varepsilon^{d}}$
- $\log N=O\left(\log \frac{n}{\varepsilon}\right)$

Summary

Summary

- Recap point-location among balls

Summary

- Recap point-location among balls
- Ball approximation

Summary

- Recap point-location among balls
- Ball approximation
- WSPD for size reduction

Summary

- Recap point-location among balls
- Ball approximation
- WSPD for size reduction
- Approximate Voronoi diagrams with proofs on the bounds

