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Many Applications
https://en.wikipedia.org/wiki/

Nearest_neighbor_search
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Exact nearest neighbor
Problem statement

Preprocess set P of n points in IRd such that
given a query point q, we can find the closest point in P to q quickly.

notation:
Nearest neighbor of q: nn(q) = nn(q, P)
d(q, P) = ‖q− nn(q)‖
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Exact nearest neighbor

Computing the Voronoi diagram of P and
preprocessing it for point-location queries
requires roughly O(ndd/2e + n log n) time.

Faster approximation?

How about quadtrees?
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Approximate nearest neighbor (Bounded spread)

s ∈ P is a (1 + ε)-approximate nearest neighbor (ANN) of q
if ||q− s|| ≤ (1 + ε)d(q, P).

Spread: Φ(P) = maxp,q∈P ||p−q||
minp,q∈P,p6=q ||p−q||

• P ⊂ [0, 1]d, diameter(P) = Ω(1), Φ(P) = O(nc), for constant c.
• T : quadtree of P
• repu ∈ P: representative of node u ∈ T
• ε > 0
• query point q

Setting:
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Approximate nearest neighbor (Bounded spread)

Questions:
How long does point location
take in a quadtree? How long in
a compressed quadtree?
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Ideas for ANN?
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Approximate nearest neighbor (Bounded spread)
Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance rcurr = d(q, p)
only recurse on nodes/squares that could decrease distance significantly

q

p rcurr

could contain s ∈ P with ||q− s|| < (1− ε/2)rcurr
ignore cell w if ||q−repw|| − diam(�w) > (1− ε/2)rcurr
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Question: How do we analyze the
running time?
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Approximate nearest neighbor (Bounded spread)

Running time main ideas

1. as long as cells > d(q, P) only O(1) cells per level
# such cells = O(height) = O(logΦ(P))

2. ends when cells have size εd(q, P)

cell size
≈ d(q, P)

cell size
≈ εd(q, P)

# cells in last levels = O(1/εd)

# = O(1/εd)



Approximate nearest neighbor (Bounded spread)

Running time
r := d(q, P)
Claim: node w with square σ with diam(σ) < (ε/4)r is not further considered



Approximate nearest neighbor (Bounded spread)

Running time
r := d(q, P)
Claim: node w with square σ with diam(σ) < (ε/4)r is not further considered
‖q− repw‖ − diam(σw) ≥ ‖q− repw‖ − (ε/4)r



Approximate nearest neighbor (Bounded spread)

Running time
r := d(q, P)
Claim: node w with square σ with diam(σ) < (ε/4)r is not further considered
‖q− repw‖ − diam(σw) ≥ ‖q− repw‖ − (ε/4)r

≥ rcurr − (ε/4)rcurr ≥ (1− ε/4)rcurr



Approximate nearest neighbor (Bounded spread)

Running time
r := d(q, P)
Claim: node w with square σ with diam(σ) < (ε/4)r is not further considered
‖q− repw‖ − diam(σw) ≥ ‖q− repw‖ − (ε/4)r

≥ rcurr − (ε/4)rcurr ≥ (1− ε/4)rcurr

side length at depth i: 2−i



Approximate nearest neighbor (Bounded spread)

Running time
r := d(q, P)
Claim: node w with square σ with diam(σ) < (ε/4)r is not further considered
‖q− repw‖ − diam(σw) ≥ ‖q− repw‖ − (ε/4)r

≥ rcurr − (ε/4)rcurr ≥ (1− ε/4)rcurr

side length at depth i: 2−i

diameter at depth i:
√
d2−i



Approximate nearest neighbor (Bounded spread)

Running time
r := d(q, P)
Claim: node w with square σ with diam(σ) < (ε/4)r is not further considered
‖q− repw‖ − diam(σw) ≥ ‖q− repw‖ − (ε/4)r

≥ rcurr − (ε/4)rcurr ≥ (1− ε/4)rcurr

side length at depth i: 2−i

diameter at depth i:
√
d2−i ≥ (ε/4)r



Approximate nearest neighbor (Bounded spread)

Running time
r := d(q, P)
Claim: node w with square σ with diam(σ) < (ε/4)r is not further considered
‖q− repw‖ − diam(σw) ≥ ‖q− repw‖ − (ε/4)r

≥ rcurr − (ε/4)rcurr ≥ (1− ε/4)rcurr

side length at depth i: 2−i

diameter at depth i:
√
d2−i ≥ (ε/4)r

only levels with i ≤ −dlog((ε/4)r)/
√
de considered
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Running time
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How many? (upper bound)

at most ni =
(
2d `i

2−i−1 e
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2−i−1

)d)
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Running time
• only levels with i ≤ d− log((ε/4)r)/

√
de ≤ −dlog((ε/4)r)e =: h considered

Let u be node of depth i containing nn(q)
`i := d(q, repu) ≤ diamu + r⇒ after iteration i: rcurr ≤ diamu + r = r +

√
d2−i

iteration i + 1: only cells at distance rcurr ≤ `i to q considered.

How many? (upper bound)

at most ni =
(
2d `i

2−i−1 e
)d
= O
((

1 + r+
√
d2−i

2−i−1

)d)
= O
(
1 +
(
2ir
)d)
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Running time
• only levels with i ≤ d− log((ε/4)r)/

√
de ≤ −dlog((ε/4)r)e =: h considered

• cells further considered at depth i: ni = O
(
1 +
(
2ir
)d)

h∑
i=0

ni = O(h + 2hr) = O(− log(εr) + 1/εd)

= O(log(1/r) + 1/εd)

Alternative bound on i: i ≤ logΦ(P)
Summary:
A (1 + ε)-ANN query on a quadtree takes O(1/εd + logΦ(P)) time.

How about unbounded spread?
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3. Use algorithm for bounded spread (extended to compressed
quadtrees) on these cells



low-quality approximation→ unbounded spread

Assume we can compute p that is 4n-ANN of q.

R := ‖p− q‖, L := blog Rc

Algorithm

1. Compute 4n-approximation

2. Find cells of grid G2L at distance≤ R from q

3. Use algorithm for bounded spread (extended to compressed
quadtrees) on these cells

in short:
running time (without step 1) = O(1/ε2 + log(R/r)) = O(1/ε2 + log n)



Overview

1. Introduction
2. ANN with quadtree (bounded spread)
3. Why low-quality approximation helps for unbounded spread
4. Low-quality approximation:

ring separator tree
later lecture: shifting



Low-quality approximate nearest 
neighbour search
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For every node v we ensure the following:
• There is a ball bv = b(cv, rv) such that all the points of Pv

in = Pv ∩ bv are in one child of v 
(the ‘inner’ child)

• All other points of Pv are outside the enlarged ball b(cv, (1+t)∙rv) and are stored in the 
other child (the ‘outer’ child)

• We store an arbitrary repv ∈ Pv
in in v
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Search procedure

Given query point q:
v ← root of T, rcurr ← ∞
while v is not a leaf:

L ←||q – repv||
if L < rcurr then rcurr ← L
rmid ← (1 + t/2) ∙ rv

if ||q – cv|| ≤ rmid then
v ← ‘inner’ child of v

else
v ← ‘outer’ child of v

return rcurr
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Intuition

Case distinction:
query point is inside the inner ball

There must be a nearby point, ignore the outside

query point is outside the enlarged ball
The inner points are far away, ignore the inside

query point is in the ring
Split the ring halfway, group with inner or outer set
Slightly worse constants
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time.



Proof outline

Let P be a set of n points in Rd. One can preprocess it in O(n log n) time, such that 
given a query point q ∈ Rd, one can return a (1 + 4n)-ANN of q in P in O(log n) 
time.

Step 1: prove that the approximation factor is met by the search, which takes 
O(depth(tree)) time



Proof outline

Let P be a set of n points in Rd. One can preprocess it in O(n log n) time, such that 
given a query point q ∈ Rd, one can return a (1 + 4n)-ANN of q in P in O(log n) 
time.

Step 1: prove that the approximation factor is met by the search, which takes 
O(depth(tree)) time
Step 2: prove that the tree of depth O(log n) can be built in O (n log n) time



Proof outline

Let P be a set of n points in Rd. One can preprocess it in O(n log n) time, such that 
given a query point q ∈ Rd, one can return a (1 + 4n)-ANN of q in P in O(log n) 
time.

Step 1: prove that the approximation factor is met by the search, which takes 
O(depth(tree)) time
Step 2: prove that the tree of depth O(log n) can be built in O (n log n) time
Step 3: combine previous steps to reach above goal
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