
Approximate Nearest Neighbors
Low Dimensions

Welcome!

Approximate Nearest Neighbors
Low Dimensions

Welcome!

Overview

1. Introduction
2. ANN with quadtree (bounded spread)
3. Why low-quality approximation helps for unbounded spread
4. Low-quality approximation

Many Applications
https://en.wikipedia.org/wiki/

Nearest_neighbor_search

Exact nearest neighbor
Problem statement

Preprocess set P of n points in IRd such that
given a query point q, we can find the closest point in P to q quickly.

Exact nearest neighbor
Problem statement

Preprocess set P of n points in IRd such that
given a query point q, we can find the closest point in P to q quickly.

Exact nearest neighbor
Problem statement

Preprocess set P of n points in IRd such that
given a query point q, we can find the closest point in P to q quickly.

Exact nearest neighbor
Problem statement

Preprocess set P of n points in IRd such that
given a query point q, we can find the closest point in P to q quickly.

notation:
Nearest neighbor of q: nn(q) = nn(q, P)
d(q, P) = ‖q− nn(q)‖

Exact nearest neighbor

Exact nearest neighbor

Voronoi diagram

Exact nearest neighbor

Voronoi diagram

Exact nearest neighbor

Computing the Voronoi diagram of P and
preprocessing it for point-location queries
requires roughly O(ndd/2e + n log n) time.

Voronoi diagram

Exact nearest neighbor

Computing the Voronoi diagram of P and
preprocessing it for point-location queries
requires roughly O(ndd/2e + n log n) time.

Voronoi diagram

Faster approximation?

Exact nearest neighbor

Computing the Voronoi diagram of P and
preprocessing it for point-location queries
requires roughly O(ndd/2e + n log n) time.

Faster approximation?

How about quadtrees?

Approximate nearest neighbor (Bounded spread)

Approximate nearest neighbor (Bounded spread)

s ∈ P is a (1 + ε)-approximate nearest neighbor (ANN) of q
if ||q− s|| ≤ (1 + ε)d(q, P).

Approximate nearest neighbor (Bounded spread)

s ∈ P is a (1 + ε)-approximate nearest neighbor (ANN) of q
if ||q− s|| ≤ (1 + ε)d(q, P).

Spread: Φ(P) = maxp,q∈P ||p−q||
minp,q∈P,p6=q ||p−q||

Approximate nearest neighbor (Bounded spread)

s ∈ P is a (1 + ε)-approximate nearest neighbor (ANN) of q
if ||q− s|| ≤ (1 + ε)d(q, P).

Spread: Φ(P) = maxp,q∈P ||p−q||
minp,q∈P,p6=q ||p−q||

• P ⊂ [0, 1]d, diameter(P) = Ω(1), Φ(P) = O(nc), for constant c.
• T : quadtree of P
• repu ∈ P: representative of node u ∈ T
• ε > 0
• query point q

Setting:

Approximate nearest neighbor (Bounded spread)

Approximate nearest neighbor (Bounded spread)

Approximate nearest neighbor (Bounded spread)

Approximate nearest neighbor (Bounded spread)

Questions:
How long does point location
take in a quadtree? How long in
a compressed quadtree?

Approximate nearest neighbor (Bounded spread)

Approximate nearest neighbor (Bounded spread)

Approximate nearest neighbor (Bounded spread)

1

2 3 4 5

6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23
24

25 26 27 28
29

Ideas for ANN?

Approximate nearest neighbor (Bounded spread)
Algorithm ideas

recursive: start at root (like point location).

Approximate nearest neighbor (Bounded spread)
Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance rcurr = d(q, p)

q

p rcurr

Approximate nearest neighbor (Bounded spread)
Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance rcurr = d(q, p)
only recurse on nodes/squares that could decrease distance significantly

q

p rcurr

Approximate nearest neighbor (Bounded spread)
Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance rcurr = d(q, p)
only recurse on nodes/squares that could decrease distance significantly

q

p rcurr

could contain s ∈ P with ||q− s|| < (1− ε/2)rcurr

Approximate nearest neighbor (Bounded spread)
Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance rcurr = d(q, p)
only recurse on nodes/squares that could decrease distance significantly

q

p rcurr

could contain s ∈ P with ||q− s|| < (1− ε/2)rcurr

Approximate nearest neighbor (Bounded spread)
Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance rcurr = d(q, p)
only recurse on nodes/squares that could decrease distance significantly

q

p rcurr

could contain s ∈ P with ||q− s|| < (1− ε/2)rcurr

Approximate nearest neighbor (Bounded spread)
Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance rcurr = d(q, p)
only recurse on nodes/squares that could decrease distance significantly

q

p rcurr

could contain s ∈ P with ||q− s|| < (1− ε/2)rcurr

Approximate nearest neighbor (Bounded spread)
Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance rcurr = d(q, p)
only recurse on nodes/squares that could decrease distance significantly

q

p rcurr

could contain s ∈ P with ||q− s|| < (1− ε/2)rcurr
ignore cell w if ||q−repw|| − diam(�w) > (1− ε/2)rcurr

Approximate nearest neighbor (Bounded spread)

1

2 3 4 5

6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23
24

25 26 27 28
29

Approximate nearest neighbor (Bounded spread)

1

2 3 4 5

6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23
24

25 26 27 28
29

A0 = {1}
rep1 = 2
p = 2

Approximate nearest neighbor (Bounded spread)

1

2 3 4 5

6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23
24

25 26 27 28
29

A1 = {2, 3, 4, 5}
rep3 = 7, rep4 = 10, rep5 = 15
p = 2

Approximate nearest neighbor (Bounded spread)

1

2 3 4 5

6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23
24

25 26 27 28
29

A1 = {2, 3, 4, 5}
rep3 = 7, rep4 = 10, rep5 = 15
p = 10

Approximate nearest neighbor (Bounded spread)

1

2 3 4 5

6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23
24

25 26 27 28
29

A2 = {8, 10, 11, 14}
rep11 = 21, rep14 = 26
p = 10

Approximate nearest neighbor (Bounded spread)

1

2 3 4 5

6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23
24

25 26 27 28
29

A2 = {8, 10, 11, 14}
rep11 = 21, rep14 = 26
p = 21

Approximate nearest neighbor (Bounded spread)

1

2 3 4 5

6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23
24

25 26 27 28
29

A3 = {21, 19, 26}

p = 21

Approximate nearest neighbor (Bounded spread)

1

2 3 4 5

6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23
24

25 26 27 28
29

A3 = {21, 19, 26}

p = 19

Approximate nearest neighbor (Bounded spread)

1

2 3 4 5

6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23
24

25 26 27 28
29

Question: How do we analyze the
running time?

Approximate nearest neighbor (Bounded spread)

Running time main ideas

Approximate nearest neighbor (Bounded spread)

Running time main ideas

1. as long as cells > d(q, P) only O(1) cells per level

Approximate nearest neighbor (Bounded spread)

Running time main ideas

1. as long as cells > d(q, P) only O(1) cells per level
such cells = O(height) = O(logΦ(P))

Approximate nearest neighbor (Bounded spread)

Running time main ideas

1. as long as cells > d(q, P) only O(1) cells per level
such cells = O(height) = O(logΦ(P))

2. ends when cells have size εd(q, P)

cell size
≈ d(q, P)

cell size
≈ εd(q, P)

Approximate nearest neighbor (Bounded spread)

Running time main ideas

1. as long as cells > d(q, P) only O(1) cells per level
such cells = O(height) = O(logΦ(P))

2. ends when cells have size εd(q, P)

cell size
≈ d(q, P)

cell size
≈ εd(q, P)

cells in last levels = O(1/εd)

= O(1/εd)

Approximate nearest neighbor (Bounded spread)

Running time
r := d(q, P)
Claim: node w with square σ with diam(σ) < (ε/4)r is not further considered

Approximate nearest neighbor (Bounded spread)

Running time
r := d(q, P)
Claim: node w with square σ with diam(σ) < (ε/4)r is not further considered
‖q− repw‖ − diam(σw) ≥ ‖q− repw‖ − (ε/4)r

Approximate nearest neighbor (Bounded spread)

Running time
r := d(q, P)
Claim: node w with square σ with diam(σ) < (ε/4)r is not further considered
‖q− repw‖ − diam(σw) ≥ ‖q− repw‖ − (ε/4)r

≥ rcurr − (ε/4)rcurr ≥ (1− ε/4)rcurr

Approximate nearest neighbor (Bounded spread)

Running time
r := d(q, P)
Claim: node w with square σ with diam(σ) < (ε/4)r is not further considered
‖q− repw‖ − diam(σw) ≥ ‖q− repw‖ − (ε/4)r

≥ rcurr − (ε/4)rcurr ≥ (1− ε/4)rcurr

side length at depth i: 2−i

Approximate nearest neighbor (Bounded spread)

Running time
r := d(q, P)
Claim: node w with square σ with diam(σ) < (ε/4)r is not further considered
‖q− repw‖ − diam(σw) ≥ ‖q− repw‖ − (ε/4)r

≥ rcurr − (ε/4)rcurr ≥ (1− ε/4)rcurr

side length at depth i: 2−i

diameter at depth i:
√
d2−i

Approximate nearest neighbor (Bounded spread)

Running time
r := d(q, P)
Claim: node w with square σ with diam(σ) < (ε/4)r is not further considered
‖q− repw‖ − diam(σw) ≥ ‖q− repw‖ − (ε/4)r

≥ rcurr − (ε/4)rcurr ≥ (1− ε/4)rcurr

side length at depth i: 2−i

diameter at depth i:
√
d2−i ≥ (ε/4)r

Approximate nearest neighbor (Bounded spread)

Running time
r := d(q, P)
Claim: node w with square σ with diam(σ) < (ε/4)r is not further considered
‖q− repw‖ − diam(σw) ≥ ‖q− repw‖ − (ε/4)r

≥ rcurr − (ε/4)rcurr ≥ (1− ε/4)rcurr

side length at depth i: 2−i

diameter at depth i:
√
d2−i ≥ (ε/4)r

only levels with i ≤ −dlog((ε/4)r)/
√
de considered

Approximate nearest neighbor (Bounded spread)

Running time
• only levels with i ≤ d− log((ε/4)r)/

√
de ≤ −dlog((ε/4)r)e =: h considered

Approximate nearest neighbor (Bounded spread)

Running time
• only levels with i ≤ d− log((ε/4)r)/

√
de ≤ −dlog((ε/4)r)e =: h considered

Let u be node of depth i containing nn(q)

Approximate nearest neighbor (Bounded spread)

Running time
• only levels with i ≤ d− log((ε/4)r)/

√
de ≤ −dlog((ε/4)r)e =: h considered

Let u be node of depth i containing nn(q)
`i := d(q, repu) ≤ diamu + r⇒ after iteration i: rcurr ≤ diamu + r = r +

√
d2−i

Approximate nearest neighbor (Bounded spread)

Running time
• only levels with i ≤ d− log((ε/4)r)/

√
de ≤ −dlog((ε/4)r)e =: h considered

Let u be node of depth i containing nn(q)
`i := d(q, repu) ≤ diamu + r⇒ after iteration i: rcurr ≤ diamu + r = r +

√
d2−i

iteration i + 1: only cells at distance rcurr ≤ `i to q considered.

Approximate nearest neighbor (Bounded spread)

Running time
• only levels with i ≤ d− log((ε/4)r)/

√
de ≤ −dlog((ε/4)r)e =: h considered

Let u be node of depth i containing nn(q)
`i := d(q, repu) ≤ diamu + r⇒ after iteration i: rcurr ≤ diamu + r = r +

√
d2−i

iteration i + 1: only cells at distance rcurr ≤ `i to q considered.

How many? (upper bound)

Approximate nearest neighbor (Bounded spread)

Running time
• only levels with i ≤ d− log((ε/4)r)/

√
de ≤ −dlog((ε/4)r)e =: h considered

Let u be node of depth i containing nn(q)
`i := d(q, repu) ≤ diamu + r⇒ after iteration i: rcurr ≤ diamu + r = r +

√
d2−i

iteration i + 1: only cells at distance rcurr ≤ `i to q considered.

How many? (upper bound)

at most ni =
(
2d `i

2−i−1 e
)d

Approximate nearest neighbor (Bounded spread)

Running time
• only levels with i ≤ d− log((ε/4)r)/

√
de ≤ −dlog((ε/4)r)e =: h considered

Let u be node of depth i containing nn(q)
`i := d(q, repu) ≤ diamu + r⇒ after iteration i: rcurr ≤ diamu + r = r +

√
d2−i

iteration i + 1: only cells at distance rcurr ≤ `i to q considered.

How many? (upper bound)

at most ni =
(
2d `i

2−i−1 e
)d
= O
((

1 + r+
√
d2−i

2−i−1

)d)

Approximate nearest neighbor (Bounded spread)

Running time
• only levels with i ≤ d− log((ε/4)r)/

√
de ≤ −dlog((ε/4)r)e =: h considered

Let u be node of depth i containing nn(q)
`i := d(q, repu) ≤ diamu + r⇒ after iteration i: rcurr ≤ diamu + r = r +

√
d2−i

iteration i + 1: only cells at distance rcurr ≤ `i to q considered.

How many? (upper bound)

at most ni =
(
2d `i

2−i−1 e
)d
= O
((

1 + r+
√
d2−i

2−i−1

)d)
= O
(
1 +
(
2ir
)d)

Approximate nearest neighbor (Bounded spread)

Running time
• only levels with i ≤ d− log((ε/4)r)/

√
de ≤ −dlog((ε/4)r)e =: h considered

• cells further considered at depth i: ni = O
(
1 +
(
2ir
)d)

Approximate nearest neighbor (Bounded spread)

Running time
• only levels with i ≤ d− log((ε/4)r)/

√
de ≤ −dlog((ε/4)r)e =: h considered

• cells further considered at depth i: ni = O
(
1 +
(
2ir
)d)

h∑
i=0

ni = O(h + 2hr) = O(− log(εr) + 1/εd)

Approximate nearest neighbor (Bounded spread)

Running time
• only levels with i ≤ d− log((ε/4)r)/

√
de ≤ −dlog((ε/4)r)e =: h considered

• cells further considered at depth i: ni = O
(
1 +
(
2ir
)d)

h∑
i=0

ni = O(h + 2hr) = O(− log(εr) + 1/εd)

= O(log(1/r) + 1/εd)

Approximate nearest neighbor (Bounded spread)

Running time
• only levels with i ≤ d− log((ε/4)r)/

√
de ≤ −dlog((ε/4)r)e =: h considered

• cells further considered at depth i: ni = O
(
1 +
(
2ir
)d)

h∑
i=0

ni = O(h + 2hr) = O(− log(εr) + 1/εd)

= O(log(1/r) + 1/εd)

Alternative bound on i: i ≤ logΦ(P)

Approximate nearest neighbor (Bounded spread)

Running time
• only levels with i ≤ d− log((ε/4)r)/

√
de ≤ −dlog((ε/4)r)e =: h considered

• cells further considered at depth i: ni = O
(
1 +
(
2ir
)d)

h∑
i=0

ni = O(h + 2hr) = O(− log(εr) + 1/εd)

= O(log(1/r) + 1/εd)

Alternative bound on i: i ≤ logΦ(P)
Summary:
A (1 + ε)-ANN query on a quadtree takes O(1/εd + logΦ(P)) time.

Approximate nearest neighbor (Bounded spread)

Running time
• only levels with i ≤ d− log((ε/4)r)/

√
de ≤ −dlog((ε/4)r)e =: h considered

• cells further considered at depth i: ni = O
(
1 +
(
2ir
)d)

h∑
i=0

ni = O(h + 2hr) = O(− log(εr) + 1/εd)

= O(log(1/r) + 1/εd)

Alternative bound on i: i ≤ logΦ(P)
Summary:
A (1 + ε)-ANN query on a quadtree takes O(1/εd + logΦ(P)) time.

How about unbounded spread?

Overview

1. Introduction
2. ANN with quadtree (bounded spread)
3. Why low-quality approximation helps for unbounded spread
4. Low-quality approximation

low-quality approximation→ unbounded spread

Assume we can compute p that is 4n-ANN of q.

low-quality approximation→ unbounded spread

Assume we can compute p that is 4n-ANN of q.

R := ‖p− q‖, L := blog Rc

Algorithm

1. Compute 4n-approximation

2. Find cells of grid G2L at distance≤ R from q

3. Use algorithm for bounded spread (extended to compressed
quadtrees) on these cells

low-quality approximation→ unbounded spread

Assume we can compute p that is 4n-ANN of q.

R := ‖p− q‖, L := blog Rc

Algorithm

1. Compute 4n-approximation

2. Find cells of grid G2L at distance≤ R from q

3. Use algorithm for bounded spread (extended to compressed
quadtrees) on these cells

in short:
running time (without step 1) = O(1/ε2 + log(R/r)) = O(1/ε2 + log n)

Overview

1. Introduction
2. ANN with quadtree (bounded spread)
3. Why low-quality approximation helps for unbounded spread
4. Low-quality approximation:

ring separator tree
later lecture: shifting

Low-quality approximate nearest
neighbour search

The Ring Separator Tree

A binary tree T having the points of P as leaves is a t-ring tree for P iff:

The Ring Separator Tree

A binary tree T having the points of P as leaves is a t-ring tree for P iff:
• Every node v ∈ T, with corresponding subset Pv ⊆ P is associated with a ‘ring’ that

separates the points of Pv into two sets

The Ring Separator Tree

A binary tree T having the points of P as leaves is a t-ring tree for P iff:
• Every node v ∈ T, with corresponding subset Pv ⊆ P is associated with a ‘ring’ that

separates the points of Pv into two sets
• The interior of the ring has no points inside it

The Ring Separator Tree

A binary tree T having the points of P as leaves is a t-ring tree for P iff:
• Every node v ∈ T, with corresponding subset Pv ⊆ P is associated with a ‘ring’ that

separates the points of Pv into two sets
• The interior of the ring has no points inside it
• The interior of the ring is of width t

The Ring Separator Tree

A binary tree T having the points of P as leaves is a t-ring tree for P iff:
• Every node v ∈ T, with corresponding subset Pv ⊆ P is associated with a ‘ring’ that

separates the points of Pv into two sets
• The interior of the ring has no points inside it
• The interior of the ring is of width t

The Ring Separator Tree

For every node v we ensure the following:

The Ring Separator Tree

For every node v we ensure the following:
• There is a ball bv = b(cv, rv) such that all points of such that all the points of Pv

in = Pv ∩ bv
are in one child of v (the ‘inner’ child)

The Ring Separator Tree

For every node v we ensure the following:
• There is a ball bv = b(cv, rv) such that all the points of Pv

in = Pv ∩ bv are in one child of v
(the ‘inner’ child)

• All other points of Pv are outside the enlarged ball b(cv, (1+t)∙rv) and are stored in the
other child (the ‘outer’ child)

The Ring Separator Tree

For every node v we ensure the following:
• There is a ball bv = b(cv, rv) such that all the points of Pv

in = Pv ∩ bv are in one child of v
(the ‘inner’ child)

• All other points of Pv are outside the enlarged ball b(cv, (1+t)∙rv) and are stored in the
other child (the ‘outer’ child)

• We store an arbitrary repv ∈ Pv
in in v

The Ring Separator Tree

For every node v we ensure the following:
• There is a ball bv = b(cv, rv) such that all the points of Pv

in = Pv ∩ bv are in one child of v
(the ‘inner’ child)

• All other points of Pv are outside the enlarged ball b(cv, (1+t)∙rv) and are stored in the
other child (the ‘outer’ child)

• We store an arbitrary repv ∈ Pv
in in v

Search procedure

Given query point q:

Search procedure

Given query point q:
v ← root of T, rcurr ← ∞

Search procedure

Given query point q:
v ← root of T, rcurr ← ∞
while v is not a leaf:

Search procedure

Given query point q:
v ← root of T, rcurr ← ∞
while v is not a leaf:

L ←||q – repv||

Search procedure

Given query point q:
v ← root of T, rcurr ← ∞
while v is not a leaf:

L ←||q – repv||
if L < rcurr then rcurr ← L

Search procedure

Given query point q:
v ← root of T, rcurr ← ∞
while v is not a leaf:

L ←||q – repv||
if L < rcurr then rcurr ← L
rmid ← (1 + t/2) ∙ rv

Search procedure

Given query point q:
v ← root of T, rcurr ← ∞
while v is not a leaf:

L ←||q – repv||
if L < rcurr then rcurr ← L
rmid ← (1 + t/2) ∙ rv

if ||q – cv|| ≤ rmid then
v ← ‘inner’ child of v

Search procedure

Given query point q:
v ← root of T, rcurr ← ∞
while v is not a leaf:

L ←||q – repv||
if L < rcurr then rcurr ← L
rmid ← (1 + t/2) ∙ rv

if ||q – cv|| ≤ rmid then
v ← ‘inner’ child of v

else
v ← ‘outer’ child of v

Search procedure

Given query point q:
v ← root of T, rcurr ← ∞
while v is not a leaf:

L ←||q – repv||
if L < rcurr then rcurr ← L
rmid ← (1 + t/2) ∙ rv

if ||q – cv|| ≤ rmid then
v ← ‘inner’ child of v

else
v ← ‘outer’ child of v

return rcurr

Intuition

Case distinction:
query point is inside the inner ball
query point is outside the enlarged ball
query point is in the ring

Intuition

Case distinction:
query point is inside the inner ball

There must be a nearby point, ignore the outside

query point is outside the enlarged ball
query point is in the ring

Intuition

Case distinction:
query point is inside the inner ball

There must be a nearby point, ignore the outside

query point is outside the enlarged ball
The inner points are far away, ignore the inside

query point is in the ring

Intuition

Case distinction:
query point is inside the inner ball

There must be a nearby point, ignore the outside

query point is outside the enlarged ball
The inner points are far away, ignore the inside

query point is in the ring
Split the ring halfway, group with inner or outer set
Slightly worse constants

Proof outline

Let P be a set of n points in Rd. One can preprocess it in O(n log n) time, such that
given a query point q ∈ Rd, one can return a (1 + 4n)-ANN of q in P in O(log n)
time.

Proof outline

Let P be a set of n points in Rd. One can preprocess it in O(n log n) time, such that
given a query point q ∈ Rd, one can return a (1 + 4n)-ANN of q in P in O(log n)
time.

Step 1: prove that the approximation factor is met by the search, which takes
O(depth(tree)) time

Proof outline

Let P be a set of n points in Rd. One can preprocess it in O(n log n) time, such that
given a query point q ∈ Rd, one can return a (1 + 4n)-ANN of q in P in O(log n)
time.

Step 1: prove that the approximation factor is met by the search, which takes
O(depth(tree)) time
Step 2: prove that the tree of depth O(log n) can be built in O (n log n) time

Proof outline

Let P be a set of n points in Rd. One can preprocess it in O(n log n) time, such that
given a query point q ∈ Rd, one can return a (1 + 4n)-ANN of q in P in O(log n)
time.

Step 1: prove that the approximation factor is met by the search, which takes
O(depth(tree)) time
Step 2: prove that the tree of depth O(log n) can be built in O (n log n) time
Step 3: combine previous steps to reach above goal

	ANN-1a
	ANN-1b
	Low-quality approximate nearest neighbour search
	The Ring Separator Tree
	The Ring Separator Tree
	The Ring Separator Tree
	The Ring Separator Tree
	The Ring Separator Tree
	The Ring Separator Tree
	The Ring Separator Tree
	The Ring Separator Tree
	The Ring Separator Tree
	The Ring Separator Tree
	Search procedure
	Search procedure
	Search procedure
	Search procedure
	Search procedure
	Search procedure
	Search procedure
	Search procedure
	Search procedure
	Intuition
	Intuition
	Intuition
	Intuition
	Proof outline
	Proof outline
	Proof outline
	Proof outline

