Approximate Nearest Neighbors

Low Dimensions

Approximate Nearest Neighbors

Low Dimensions

Overview

1. Introduction
2. ANN with quadtree (bounded spread)
3. Why low-quality approximation helps for unbounded spread
4. Low-quality approximation

Many Applications

- Pattern recognition - in particular for optical character recognition
- Statistical classification - see k-nearest neighbor algorithm
- Computer vision
- Computational geometry - see Closest pair of points problem
- Databases - e.g. content-based image retrieval
- Coding theory - see maximum likelihood decoding
- Data compression - see MPEG-2 standard
- Robotic sensing ${ }^{[2]}$
- Recommendation systems, e.g. see Collaborative filtering
- Internet marketing - see contextual advertising and behavioral targeting
- DNA sequencing
- Spell checking - suggesting correct spelling
- Plagiarism detection
- Similarity scores for predicting career paths of professional athletes.
- Cluster analysis - assignment of a set of observations into subsets (called clusters) so that observations in the same cluster are similar in some sense, usually based on Euclidean distance
- Chemical similarity
- Sampling-based motion planning

Exact nearest neighbor

Problem statement

Preprocess set P of n points in \mathbb{R}^{d} such that given a query point q, we can find the closest point in P to q quickly.

Exact nearest neighbor

Problem statement

Preprocess set P of n points in \mathbb{R}^{d} such that given a query point q, we can find the closest point in P to q quickly.

Exact nearest neighbor

Problem statement

Preprocess set P of n points in \mathbb{R}^{d} such that given a query point q, we can find the closest point in P to q quickly.

Exact nearest neighbor

Problem statement

Preprocess set P of n points in \mathbb{R}^{d} such that given a query point q, we can find the closest point in P to q quickly.
notation:
Nearest neighbor of $q: n n(q)=n n(q, P)$ $d(q, P)=\|q-n n(q)\|$

Exact nearest neighbor

Exact nearest neighbor

Voronoi diagram

Exact nearest neighbor

Voronoi diagram

Exact nearest neighbor

Voronoi diagram

Computing the Voronoi diagram of P and preprocessing it for point-location queries requires roughly $O\left(n^{\lceil d / 2\rceil}+n \log n\right)$ time.

Exact nearest neighbor

Voronoi diagram

Computing the Voronoi diagram of P and preprocessing it for point-location queries requires roughly $O\left(n^{\lceil d / 2\rceil}+n \log n\right)$ time.

Faster approximation?

Exact nearest neighbor

Computing the Voronoi diagram of P and preprocessing it for point-location queries requires roughly $O\left(n^{\lceil d / 2\rceil}+n \log n\right)$ time.

Faster approximation?
How about quadtrees?

Approximate nearest neighbor (Bounded spread)

Approximate nearest neighbor (Bounded spread)

```
s\inP is a (1 + &)-approximate nearest neighbor (ANN) of q
    if ||-s|
```


Approximate nearest neighbor (Bounded spread)

$s \in P$ is a $(1+\varepsilon)$-approximate nearest neighbor (ANN) of q if $\|q-s\| \leq(1+\varepsilon) d(q, P)$.

Spread: $\Phi(P)=\frac{\max _{p, q \in P}\|p-q\|}{\min _{p, q \in p, p=a}\|p-q\|}$

Approximate nearest neighbor (Bounded spread)

$s \in P$ is a $(1+\varepsilon)$-approximate nearest neighbor (ANN) of q if $\|q-s\| \leq(1+\varepsilon) d(q, P)$.

Spread: $\Phi(P)=\frac{\max _{p, q \in P}\|p-q\|}{\min _{p, q \in P, p=q}\|p-q\|}$

Setting:

- $P \subset[0,1]^{d}$, diameter $(P)=\Omega(1), \Phi(P)=O\left(n^{c}\right)$, for constant c.
- \mathcal{T} : quadtree of P
- $\operatorname{rep}_{u} \in P$: representative of node $u \in \mathcal{T}$
- $\varepsilon>0$
- query point q

Approximate nearest neighbor (Bounded spread)

Approximate nearest neighbor (Bounded spread)

Approximate nearest neighbor (Bounded spread)

Approximate nearest neighbor (Bounded spread)

Questions:

How long does point location
take in a quadtree? How long in
a compressed quadtree?

Approximate nearest neighbor (Bounded spread)

Approximate nearest neighbor (Bounded spread)

Approximate nearest neighbor (Bounded spread)

Ideas for ANN?

Approximate nearest neighbor (Bounded spread)

Algorithm ideas
recursive: start at root (like point location).

Approximate nearest neighbor (Bounded spread)

Algorithm ideas
recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance $r_{\text {curr }}=d(q, p)$

Approximate nearest neighbor (Bounded spread)

Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance $r_{\text {curr }}=d(q, p)$ only recurse on nodes/squares that could decrease distance significantly

Approximate nearest neighbor (Bounded spread)

Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance $r_{\text {curr }}=d(q, p)$ only recurse on nodes/squares that could decrease distance significantly
 could contain $s \in P$ with $\|q-s\|<(1-\varepsilon / 2) r_{\text {curr }}$

Approximate nearest neighbor (Bounded spread)

Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance $r_{\text {curr }}=d(q, p)$ only recurse on nodes/squares that could decrease distance significantly

Approximate nearest neighbor (Bounded spread)

Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance $r_{\text {curr }}=d(q, p)$ only recurse on nodes/squares that could decrease distance significantly

Approximate nearest neighbor (Bounded spread)

Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance $r_{\text {curr }}=d(q, p)$ only recurse on nodes/squares that could decrease distance significantly
 could contain $s \in P$ with $\|q-s\|<(1-\varepsilon / 2) r_{\text {curr }}$

Approximate nearest neighbor (Bounded spread)

Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance $r_{\text {curr }}=d(q, p)$ only recurse on nodes/squares that could decrease distance significantly

$$
\begin{aligned}
& \text { could contain } s \in P \text { with }\|q-s\|<(1-\varepsilon / 2) r_{\text {curr }} \\
& \text { ignore cell } w \text { if }\left\|q-\operatorname{rep}_{w}\right\|-\operatorname{diam}\left(\square_{w}\right)>(1-\varepsilon / 2) r_{\text {curr }}
\end{aligned}
$$

Approximate nearest neighbor (Bounded spread)

Approximate nearest neighbor (Bounded spread)

$$
\begin{aligned}
& A_{0}=\{1\} \\
& \text { rep }_{1}=2 \\
& p=2
\end{aligned}
$$

Approximate nearest neighbor (Bounded spread)

$$
\begin{aligned}
& A_{1}=\{2,3,4,5\} \\
& \mathrm{rep}_{3}=7, \mathrm{rep}_{4}=10, \mathrm{rep}_{5}=15 \\
& p=2
\end{aligned}
$$

Approximate nearest neighbor (Bounded spread)

$$
\begin{aligned}
& A_{1}=\{2,3,4,5\} \\
& \mathrm{rep}_{3}=7, \mathrm{rep}_{4}=10, \mathrm{rep}_{5}=15 \\
& p=10
\end{aligned}
$$

Approximate nearest neighbor (Bounded spread)

$$
\begin{aligned}
& A_{2}=\{8,10,11,14\} \\
& \operatorname{rep}_{11}=21, \operatorname{rep}_{14}=26 \\
& p=10
\end{aligned}
$$

Approximate nearest neighbor (Bounded spread)

$$
\begin{aligned}
& A_{2}=\{8,10,11,14\} \\
& \operatorname{rep}_{11}=21, \operatorname{rep}_{14}=26 \\
& p=21
\end{aligned}
$$

Approximate nearest neighbor (Bounded spread)

$$
\begin{aligned}
& A_{3}=\{21,19,26\} \\
& p=21
\end{aligned}
$$

Approximate nearest neighbor (Bounded spread)

$$
\begin{aligned}
& A_{3}=\{21,19,26\} \\
& p=19
\end{aligned}
$$

Approximate nearest neighbor (Bounded spread)

Question: How do we analyze the running time?

Approximate nearest neighbor (Bounded spread)

Running time main ideas

Approximate nearest neighbor (Bounded spread)

Running time main ideas

1. as long as cells $>d(q, P)$ only $O(1)$ cells per level

Approximate nearest neighbor (Bounded spread)

Running time main ideas

1. as long as cells $>d(q, P)$ only $O(1)$ cells per level $\#$ such cells $=O($ height $)=O(\log \Phi(P))$

Approximate nearest neighbor (Bounded spread)

Running time main ideas

1. as long as cells $>d(q, P)$ only $O(1)$ cells per level $\#$ such cells $=O($ height $)=O(\log \Phi(P))$
2. ends when cells have size $\varepsilon d(q, P)$

Approximate nearest neighbor (Bounded spread)

Running time main ideas

1. as long as cells $>d(q, P)$ only $O(1)$ cells per level $\#$ such cells $=O($ height $)=O(\log \Phi(P))$
2. ends when cells have size $\varepsilon d(q, P)$ \# cells in last levels $=O\left(1 / \varepsilon^{d}\right)$

Approximate nearest neighbor (Bounded spread)

Running time
$r:=d(q, P)$
Claim: node w with square σ with $\operatorname{diam}(\sigma)<(\varepsilon / 4) r$ is not further considered

Approximate nearest neighbor (Bounded spread)

Running time

$r:=d(q, P)$
Claim: node w with square σ with $\operatorname{diam}(\sigma)<(\varepsilon / 4) r$ is not further considered $\left\|q-r e p_{w}\right\|-\operatorname{diam}\left(\sigma_{w}\right) \geq\left\|q-r e p_{w}\right\|-(\varepsilon / 4) r$

Approximate nearest neighbor (Bounded spread)

Running time

$r:=d(q, P)$
Claim: node w with square σ with $\operatorname{diam}(\sigma)<(\varepsilon / 4) r$ is not further considered $\left\|q-r e p_{w}\right\|-\operatorname{diam}\left(\sigma_{w}\right) \geq\left\|q-r e p_{w}\right\|-(\varepsilon / 4) r$

$$
\geq r_{\text {curr }}-(\varepsilon / 4) r_{\text {curr }} \geq(1-\varepsilon / 4) r_{\text {curr }}
$$

Approximate nearest neighbor (Bounded spread)

Running time

$r:=d(q, P)$
Claim: node w with square σ with $\operatorname{diam}(\sigma)<(\varepsilon / 4) r$ is not further considered $\left\|q-r e p_{w}\right\|-\operatorname{diam}\left(\sigma_{w}\right) \geq\left\|q-r e p_{w}\right\|-(\varepsilon / 4) r$

$$
\geq r_{\text {curr }}-(\varepsilon / 4) r_{\text {curr }} \geq(1-\varepsilon / 4) r_{\text {curr }}
$$

side length at depth $i: 2^{-i}$

Approximate nearest neighbor (Bounded spread)

Running time

$r:=d(q, P)$
Claim: node w with square σ with $\operatorname{diam}(\sigma)<(\varepsilon / 4) r$ is not further considered $\left\|q-\operatorname{rep}_{w}\right\|-\operatorname{diam}\left(\sigma_{w}\right) \geq\left\|q-\operatorname{rep}_{w}\right\|-(\varepsilon / 4) r$

$$
\geq r_{\text {curr }}-(\varepsilon / 4) r_{\text {curr }} \geq(1-\varepsilon / 4) r_{\text {curr }}
$$

side length at depth $i: 2^{-i}$
diameter at depth $i: \sqrt{d} 2^{-i}$

Approximate nearest neighbor (Bounded spread)

Running time

$r:=d(q, P)$
Claim: node w with square σ with $\operatorname{diam}(\sigma)<(\varepsilon / 4) r$ is not further considered $\left\|q-\operatorname{rep}_{w}\right\|-\operatorname{diam}\left(\sigma_{w}\right) \geq\left\|q-\operatorname{rep}_{w}\right\|-(\varepsilon / 4) r$

$$
\geq r_{\text {curr }}-(\varepsilon / 4) r_{\text {curr }} \geq(1-\varepsilon / 4) r_{\text {curr }}
$$

side length at depth $i: 2^{-i}$
diameter at depth $i: \sqrt{d} 2^{-i} \geq(\varepsilon / 4) r$

Approximate nearest neighbor (Bounded spread)

Running time

$r:=d(q, P)$
Claim: node w with square σ with $\operatorname{diam}(\sigma)<(\varepsilon / 4) r$ is not further considered $\left\|q-\operatorname{rep}_{w}\right\|-\operatorname{diam}\left(\sigma_{w}\right) \geq\left\|q-\operatorname{rep}_{w}\right\|-(\varepsilon / 4) r$

$$
\geq r_{\text {curr }}-(\varepsilon / 4) r_{\text {curr }} \geq(1-\varepsilon / 4) r_{\text {curr }}
$$

side length at depth $i: 2^{-i}$
diameter at depth $i: \sqrt{d} 2^{-i} \geq(\varepsilon / 4) r$
only levels with $i \leq-\lceil\log ((\varepsilon / 4) r) / \sqrt{d}\rceil$ considered

Approximate nearest neighbor (Bounded spread)

Running time

- only levels with $i \leq\lceil-\log ((\varepsilon / 4) r) / \sqrt{d}\rceil \leq-\lceil\log ((\varepsilon / 4) r)\rceil=: h$ considered

Approximate nearest neighbor (Bounded spread)

Running time

- only levels with $i \leq\lceil-\log ((\varepsilon / 4) r) / \sqrt{d}\rceil \leq-\lceil\log ((\varepsilon / 4) r)\rceil=: h$ considered

Let u be node of depth i containing $n n(q)$

Approximate nearest neighbor (Bounded spread)

Running time

- only levels with $i \leq\lceil-\log ((\varepsilon / 4) r) / \sqrt{d}\rceil \leq-\lceil\log ((\varepsilon / 4) r)\rceil=: h$ considered

Let u be node of depth i containing $n n(q)$
$\ell_{i}:=d\left(q, r e p_{u}\right) \leq \operatorname{diam}_{u}+r \Rightarrow$ after iteration $i: r_{\text {curr }} \leq \operatorname{diam}_{u}+r=r+\sqrt{d} 2^{-i}$

Approximate nearest neighbor (Bounded spread)

Running time

- only levels with $i \leq\lceil-\log ((\varepsilon / 4) r) / \sqrt{d}\rceil \leq-\lceil\log ((\varepsilon / 4) r)\rceil=: h$ considered

Let u be node of depth i containing $n n(q)$
$\ell_{i}:=d\left(q, \operatorname{rep}_{u}\right) \leq \operatorname{diam}_{u}+r \Rightarrow$ after iteration $i: r_{\text {curr }} \leq \operatorname{diam}_{u}+r=r+\sqrt{d} 2^{-i}$
iteration $i+1$: only cells at distance $r_{\text {curr }} \leq \ell_{i}$ to q considered.

Approximate nearest neighbor (Bounded spread)

Running time

- only levels with $i \leq\lceil-\log ((\varepsilon / 4) r) / \sqrt{d}\rceil \leq-\lceil\log ((\varepsilon / 4) r)\rceil=: h$ considered

Let u be node of depth i containing $n n(q)$
$\ell_{i}:=d\left(q, \operatorname{rep}_{u}\right) \leq \operatorname{diam}_{u}+r \Rightarrow$ after iteration $i: r_{\text {curr }} \leq \operatorname{diam}_{u}+r=r+\sqrt{d} 2^{-i}$
iteration $i+1$: only cells at distance $r_{\text {curr }} \leq \ell_{i}$ to q considered.
How many? (upper bound)

Approximate nearest neighbor (Bounded spread)

Running time

- only levels with $i \leq\lceil-\log ((\varepsilon / 4) r) / \sqrt{d}\rceil \leq-\lceil\log ((\varepsilon / 4) r)\rceil=: h$ considered

Let u be node of depth i containing $n n(q)$
$\ell_{i}:=d\left(q, r e p_{u}\right) \leq \operatorname{diam}_{u}+r \Rightarrow$ after iteration $i: r_{\text {curr }} \leq \operatorname{diam}_{u}+r=r+\sqrt{d} 2^{-i}$
iteration $i+1$: only cells at distance $r_{\text {curr }} \leq \ell_{i}$ to q considered.

How many? (upper bound)

at most $n_{i}=\left(2\left\lceil\frac{\ell_{i}}{2^{-i-1}}\right\rceil\right)^{d}$

Approximate nearest neighbor (Bounded spread)

Running time

- only levels with $i \leq\lceil-\log ((\varepsilon / 4) r) / \sqrt{d}\rceil \leq-\lceil\log ((\varepsilon / 4) r)\rceil=: h$ considered

Let u be node of depth i containing $n n(q)$
$\ell_{i}:=d\left(q, r e p_{u}\right) \leq \operatorname{diam}_{u}+r \Rightarrow$ after iteration $i: r_{\text {curr }} \leq \operatorname{diam}_{u}+r=r+\sqrt{d} 2^{-i}$
iteration $i+1$: only cells at distance $r_{\text {curr }} \leq \ell_{i}$ to q considered.

How many? (upper bound)

at most $n_{i}=\left(2\left\lceil\frac{\ell_{i}}{2^{-i-1}}\right\rceil\right)^{d}=O\left(\left(1+\frac{r+\sqrt{d 2}-i}{2^{-i-1}}\right)^{d}\right)$

Approximate nearest neighbor (Bounded spread)

Running time

- only levels with $i \leq\lceil-\log ((\varepsilon / 4) r) / \sqrt{d}\rceil \leq-\lceil\log ((\varepsilon / 4) r)\rceil=: h$ considered

Let u be node of depth i containing $n n(q)$
$\ell_{i}:=d\left(q, \operatorname{rep}_{u}\right) \leq \operatorname{diam}_{u}+r \Rightarrow$ after iteration $i: r_{\text {curr }} \leq \operatorname{diam}_{u}+r=r+\sqrt{d} 2^{-i}$
iteration $i+1$: only cells at distance $r_{\text {curr }} \leq \ell_{i}$ to q considered.

How many? (upper bound)

$$
\text { at } \begin{aligned}
\operatorname{most} n_{i}=\left(2\left\lceil\frac{\ell_{i}}{2^{-i-1}}\right\rceil\right)^{d} & =O\left(\left(1+\frac{r+\sqrt{d} 2^{-i}}{2^{-i-1}}\right)^{d}\right) \\
& =O\left(1+\left(2^{i} r\right)^{d}\right)
\end{aligned}
$$

Approximate nearest neighbor (Bounded spread)

Running time

- only levels with $i \leq\lceil-\log ((\varepsilon / 4) r) / \sqrt{d}\rceil \leq-\lceil\log ((\varepsilon / 4) r)\rceil=: h$ considered
- cells further considered at depth $i: n_{i}=O\left(1+\left(2^{i} r\right)^{d}\right)$

Approximate nearest neighbor (Bounded spread)

Running time

- only levels with $i \leq\lceil-\log ((\varepsilon / 4) r) / \sqrt{d}\rceil \leq-\lceil\log ((\varepsilon / 4) r)\rceil=: h$ considered
- cells further considered at depth $i: n_{i}=O\left(1+\left(2^{i} r\right)^{d}\right)$

$$
\sum_{i=0}^{h} n_{i}=O\left(h+2^{h} r\right)=O\left(-\log (\varepsilon r)+1 / \varepsilon^{d}\right)
$$

Approximate nearest neighbor (Bounded spread)

Running time

- only levels with $i \leq\lceil-\log ((\varepsilon / 4) r) / \sqrt{d}\rceil \leq-\lceil\log ((\varepsilon / 4) r)\rceil=: h$ considered
- cells further considered at depth $i: n_{i}=O\left(1+\left(2^{i} r\right)^{d}\right)$

$$
\begin{aligned}
\sum_{i=0}^{h} n_{i}=O\left(h+2^{h} r\right) & =O\left(-\log (\varepsilon r)+1 / \varepsilon^{d}\right) \\
& =O\left(\log (1 / r)+1 / \varepsilon^{d}\right)
\end{aligned}
$$

Approximate nearest neighbor (Bounded spread)

Running time

- only levels with $i \leq\lceil-\log ((\varepsilon / 4) r) / \sqrt{d}\rceil \leq-\lceil\log ((\varepsilon / 4) r)\rceil=: h$ considered
- cells further considered at depth $i: n_{i}=O\left(1+\left(2^{i} r\right)^{d}\right)$

$$
\begin{aligned}
\sum_{i=0}^{h} n_{i}=O\left(h+2^{h} r\right) & =O\left(-\log (\varepsilon r)+1 / \varepsilon^{d}\right) \\
& =O\left(\log (1 / r)+1 / \varepsilon^{d}\right)
\end{aligned}
$$

Alternative bound on $i: i \leq \log \Phi(P)$

Approximate nearest neighbor (Bounded spread)

Running time

- only levels with $i \leq\lceil-\log ((\varepsilon / 4) r) / \sqrt{d}\rceil \leq-\lceil\log ((\varepsilon / 4) r)\rceil=: h$ considered
- cells further considered at depth $i: n_{i}=O\left(1+\left(2^{i} r\right)^{d}\right)$

$$
\begin{aligned}
\sum_{i=0}^{h} n_{i}=O\left(h+2^{h} r\right) & =O\left(-\log (\varepsilon r)+1 / \varepsilon^{d}\right) \\
& =O\left(\log (1 / r)+1 / \varepsilon^{d}\right)
\end{aligned}
$$

Alternative bound on $i: i \leq \log \Phi(P)$

Summary:

A $(1+\varepsilon)$-ANN query on a quadtree takes $O\left(1 / \varepsilon^{d}+\log \Phi(P)\right)$ time.

Approximate nearest neighbor (Bounded spread)

Running time

- only levels with $i \leq\lceil-\log ((\varepsilon / 4) r) / \sqrt{d}\rceil \leq-\lceil\log ((\varepsilon / 4) r)\rceil=: h$ considered
- cells further considered at depth $i: n_{i}=O\left(1+\left(2^{i} r\right)^{d}\right)$

$$
\begin{aligned}
\sum_{i=0}^{h} n_{i}=O\left(h+2^{h} r\right) & =O\left(-\log (\varepsilon r)+1 / \varepsilon^{d}\right) \\
& =O\left(\log (1 / r)+1 / \varepsilon^{d}\right)
\end{aligned}
$$

Alternative bound on $i: i \leq \log \Phi(P)$
Summary:
A $(1+\varepsilon)$-ANN query on a quadtree takes $O\left(1 / \varepsilon^{d}+\log \Phi(P)\right)$ time.

Overview

1. Introduction
2. ANN with quadtree (bounded spread)
3. Why low-quality approximation helps for unbounded spread
4. Low-quality approximation

low-quality approximation \rightarrow unbounded spread

Assume we can compute p that is $4 n$-ANN of q.

low-quality approximation \rightarrow unbounded spread

Assume we can compute p that is $4 n-\mathrm{ANN}$ of q.

$$
R:=\|p-q\|, L:=\lfloor\log R\rfloor
$$

Algorithm

1. Compute $4 n$-approximation
2. Find cells of grid $G_{2^{\iota}}$ at distance $\leq R$ from q
3. Use algorithm for bounded spread (extended to compressed quadtrees) on these cells

low-quality approximation \rightarrow unbounded spread

Assume we can compute p that is $4 n$-ANN of q.

$$
R:=\|p-q\|, L:=\lfloor\log R\rfloor
$$

Algorithm

1. Compute $4 n$-approximation
2. Find cells of grid $G_{2^{\llcorner }}$at distance $\leq R$ from q
3. Use algorithm for bounded spread (extended to compressed quadtrees) on these cells

in short:

running time $($ without step 1$)=O\left(1 / \varepsilon^{2}+\log (R / r)\right)=O\left(1 / \varepsilon^{2}+\log n\right)$

Overview

1. Introduction
2. ANN with quadtree (bounded spread)
3. Why low-quality approximation helps for unbounded spread
4. Low-quality approximation:
ring separator tree
later lecture: shifting

Low-quality approximate nearest neighbour search

The Ring Separator Tree

A binary tree T having the points of P as leaves is a t-ring tree for P iff:

The Ring Separator Tree

A binary tree T having the points of P as leaves is a t-ring tree for P iff:

- Every node $v \in T$, with corresponding subset $P_{v} \subseteq P$ is associated with a 'ring' that separates the points of P_{v} into two sets

The Ring Separator Tree

A binary tree T having the points of P as leaves is a t-ring tree for P iff:

- Every node $v \in T$, with corresponding subset $P_{v} \subseteq P$ is associated with a 'ring' that separates the points of P_{v} into two sets
- The interior of the ring has no points inside it

The Ring Separator Tree

A binary tree T having the points of P as leaves is a t-ring tree for P iff:

- Every node $v \in T$, with corresponding subset $P_{v} \subseteq P$ is associated with a 'ring' that separates the points of P_{v} into two sets
- The interior of the ring has no points inside it
- The interior of the ring is of width t

The Ring Separator Tree

A binary tree T having the points of P as leaves is a t-ring tree for P iff:

- Every node $v \in T$, with corresponding subset $P_{v} \subseteq P$ is associated with a 'ring' that separates the points of P_{v} into two sets
- The interior of the ring has no points inside it
- The interior of the ring is of width t

The Ring Separator Tree

For every node v we ensure the following:

The Ring Separator Tree

For every node v we ensure the following:

- There is a ball $b_{v}=b\left(c_{v}, r_{v}\right)$ such that all points of such that all the points of P_{v} in $=P_{v} \cap b_{v}$ are in one child of v (the 'inner' child)

The Ring Separator Tree

For every node v we ensure the following:

- There is a ball $b_{v}=b\left(c_{v}, r_{v}\right)$ such that all the points of P_{v} in $=P_{v} \cap b_{v}$ are in one child of v (the 'inner' child)
- All other points of P_{v} are outside the enlarged ball $b\left(c_{v},(1+t) \cdot r_{v}\right)$ and are stored in the other child (the 'outer' child)

The Ring Separator Tree

For every node v we ensure the following:

- There is a ball $b_{v}=b\left(c_{v}, r_{v}\right)$ such that all the points of P_{v} in $=P_{v} \cap b_{v}$ are in one child of v (the 'inner' child)
- All other points of P_{v} are outside the enlarged ball $b\left(c_{v},(1+t) \cdot r_{v}\right)$ and are stored in the other child (the 'outer' child)
- We store an arbitrary rep ${ }_{v} \in P_{v}{ }^{\text {in }}$ in v

The Ring Separator Tree

For every node v we ensure the following:

- There is a ball $b_{v}=b\left(c_{v}, r_{v}\right)$ such that all the points of P_{v} in $=P_{v} \cap b_{v}$ are in one child of v (the 'inner' child)
- All other points of P_{v} are outside the enlarged ball $b\left(c_{v},(1+t) \cdot r_{v}\right)$ and are stored in the other child (the 'outer' child)
- We store an arbitrary rep $_{v} \in P_{v}$ in in v

Search procedure

Given query point q:

Search procedure

Given query point q:
$v \leftarrow$ root of $\mathrm{T}, \mathrm{r}_{\text {curr }} \leftarrow \infty$

Search procedure

Given query point q:
$v \leftarrow$ root of $\mathrm{T}, \mathrm{r}_{\text {curr }} \leftarrow \infty$
while v is not a leaf:

Search procedure

Given query point q:
$v \leftarrow$ root of $\mathrm{T}, \mathrm{r}_{\text {curr }} \leftarrow \infty$ while v is not a leaf:
$L \leftarrow\left|\mid q-\operatorname{rep}_{v} \|\right.$

Search procedure

Given query point q:
$v \leftarrow$ root of $\mathrm{T}, \mathrm{r}_{\text {curr }} \leftarrow \infty$
while v is not a leaf:

$$
\begin{aligned}
& L \leftarrow \| q-\text { rep }_{v} \| \\
& \text { if } L<r_{\text {curr }} \text { then } r_{\text {curr }} \leftarrow L
\end{aligned}
$$

Search procedure

Given query point q:
$v \leftarrow$ root of $\mathrm{T}, \mathrm{r}_{\text {curr }} \leftarrow \infty$
while v is not a leaf:

$$
\begin{aligned}
& L \leftarrow \| q-\text { rep }_{v} \| \\
& \text { if } L<r_{\text {curr }} \text { then } r_{\text {curr }} \leftarrow L \\
& r_{\text {mid }} \leftarrow(1+t / 2) \cdot r_{v}
\end{aligned}
$$

Search procedure

Given query point q:
$v \leftarrow$ root of T, $\mathrm{r}_{\text {curr }} \leftarrow \infty$
while v is not a leaf:

$$
\begin{aligned}
& L \leftarrow \| q-\text { rep }_{v} \| \\
& \text { if } L<r_{\text {curr }} \text { then } r_{\text {curr }} \leftarrow L \\
& r_{\text {mid }} \leftarrow(1+t / 2) \cdot r_{v} \\
& \text { if }\left\|q-c_{v}\right\| \leq r_{\text {mid }} \text { then } \\
& \quad v \leftarrow \text { 'inner' child of } v
\end{aligned}
$$

Search procedure

Given query point q:
$v \leftarrow$ root of T, $\mathrm{r}_{\text {curr }} \leftarrow \infty$
while v is not a leaf:

$$
\begin{aligned}
& L \leftarrow \| q-\text { rep }_{v} \| \\
& \text { if } L<r_{\text {curr }} \text { then } r_{\text {curr }} \leftarrow L \\
& r_{\text {mid }} \leftarrow(1+t / 2) \cdot r_{v} \\
& \text { if }\left\|q-c_{v}\right\| \leq r_{\text {mid }} \text { then } \\
& \quad v \leftarrow \text { 'inner' child of } v
\end{aligned}
$$

else
$v \leftarrow$ 'outer' child of v

Search procedure

Given query point q:
$v \leftarrow$ root of T, $\mathrm{r}_{\text {curr }} \leftarrow \infty$
while v is not a leaf:

$$
\begin{aligned}
& L \leftarrow \| q-\text { rep }_{v} \| \\
& \text { if } L<r_{\text {curr }} \text { then } r_{\text {curr }} \leftarrow L \\
& r_{\text {mid }} \leftarrow(1+t / 2) \cdot r_{v} \\
& \text { if }\left\|q-c_{v}\right\| \leq r_{\text {mid }} \text { then } \\
& \quad v \leftarrow \text { 'inner' child of } v
\end{aligned}
$$

else
$v \leftarrow$ 'outer' child of v
return $\mathrm{r}_{\text {curr }}$

Intuition

Case distinction:
query point is inside the inner ball query point is outside the enlarged ball query point is in the ring

Intuition

Case distinction:
query point is inside the inner ball
There must be a nearby point, ignore the outside
query point is outside the enlarged ball query point is in the ring

Intuition

Case distinction:
query point is inside the inner ball
There must be a nearby point, ignore the outside
query point is outside the enlarged ball
The inner points are far away, ignore the inside
query point is in the ring

Intuition

Case distinction:
query point is inside the inner ball
There must be a nearby point, ignore the outside
query point is outside the enlarged ball
The inner points are far away, ignore the inside
query point is in the ring
Split the ring halfway, group with inner or outer set
Slightly worse constants

Proof outline

Let P be a set of n points in R^{d}. One can preprocess it in $O(n \log n)$ time, such that given a query point $q \in R^{d}$, one can return a $(1+4 n)$-ANN of q in P in $O(\log n)$ time.

Proof outline

Let P be a set of n points in R^{d}. One can preprocess it in $O(n \log n)$ time, such that given a query point $q \in R^{d}$, one can return a $(1+4 n)$-ANN of q in P in $O(\log n)$ time.

Step 1: prove that the approximation factor is met by the search, which takes O(depth(tree)) time

Proof outline

Let P be a set of n points in R^{d}. One can preprocess it in $O(n \log n)$ time, such that given a query point $q \in R^{d}$, one can return a $(1+4 n)$-ANN of q in P in $O(\log n)$ time.

Step 1: prove that the approximation factor is met by the search, which takes O(depth(tree)) time
Step 2: prove that the tree of depth $O(\log n)$ can be built in $O(n \log n)$ time

Proof outline

Let P be a set of n points in R^{d}. One can preprocess it in $O(n \log n)$ time, such that given a query point $q \in R^{d}$, one can return a $(1+4 n)$-ANN of q in P in $O(\log n)$ time.

Step 1: prove that the approximation factor is met by the search, which takes O(depth(tree)) time
Step 2: prove that the tree of depth $O(\log n)$ can be built in $O(n \log n)$ time Step 3: combine previous steps to reach above goal

