Approximate Nearest Neighbors

Low Dimensions
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Many Applications

e Pattern recognition — in particular for optical character recognition httpS . //en . wikipedia . org/wiki/
e Statistical classification — see k-nearest neighbor algorithm Nearest_neighbor_search
e Computer vision

e Computational geometry — see Closest pair of points problem

e Databases — e.g. content-based image retrieval

e Coding theory — see maximum likelihood decoding

e Data compression — see MPEG-2 standard

» Robotic sensingl?]

e Recommendation systems, e.g. see Collaborative filtering

e Internet marketing — see contextual advertising and behavioral targeting

e DNA sequencing

e Spell checking — suggesting correct spelling

e Plagiarism detection

e Similarity scores for predicting career paths of professional athletes.

e Cluster analysis — assignment of a set of observations into subsets (called clusters) so that
observations in the same cluster are similar in some sense, usually based on Euclidean distance

e Chemical similarity

e Sampling-based motion planning
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Exact nearest neighbor

Problem statement

Preprocess set P of n points in RY such that
given a query point g, we can find the closest point in P to g quickly.

. notation:
Nearest neighbor of g: nn(q) = nn(q, P)

d(g. P) = ||g — nn(q)|]
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Exact nearest neighbor

Computing the Voronoi diagram of P and
preprocessing it for point-location queries
requires roughly O(n'%/2! + nlog n) time.

Faster approximation?

How about quadtrees?
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Approximate nearest neighbor (Bounded spread)

s € Pisa (1 + e)-approximate nearest neighbor (ANN) of g
if [|g — s|| < (1+¢e)d(g, P).

Spread: (D(P) _ _MaXpgerp llp—q||

minygepp=6 | IP—q]
Setting:

« P C [0,119, diameter(P) = Q(1), ®(P) = O(n°), for constant c.
» T quadtree of P

rep, € P: representative of nodeu € T

e >0
guery point q
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Approximate nearest neighbor (Bounded spread)

Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance r., = d(qg, p)
only recurse on nodes/squares that could decrease distance significantly

could contains € Pwith ||g — s|| < (1 — &/2)reun

ignore cell wif ||g—repy|| — diam(Ld,) > (1 — €/2)rcy,




Approximate nearest neighbor (Bounded spread)

© @® @012 MLOO
(9@ W @@ W)L
24 2

9




Approximate nearest neighbor (Bounded spread)

(4) (5)

© @ ® @ Q012 4 2

R0 3 @ @9 @9 ) @
24 2

9




Approximate nearest neighbor (Bounded spread)

(4) (5)

© @ ® @ Q012 4 2

3 @ @9 @9 ) @
24 2

9

[l ——

2,3,4, 5}
7,reps =10, reps =15




Approximate nearest neighbor (Bounded spread)

© @ ® @ Q012 4 2

(19 @ W 3 @ @9 @9 ) @
24 2

9

A1 =42,3,4,5}
reps =/, reps =10, reps =15
p =10




Approximate nearest neighbor (Bounded spread)

© @ ® @ Q012 4 2

(19 @ W 3 @ @9 @9 ) @
24 2

9

A, ={8,10,11,14}
repiq =21, rep4 = 26
p =10




Approximate nearest neighbor (Bounded spread)

© @® @012 MLOO
(9@ W @@ W)L
24 2

9

A, ={8,10,11,14}
repiq =21, rep4 = 26
p =21




Approximate nearest neighbor (Bounded spread)

© @® @012 MLOO
(9@ W @@ W)L
24 2

9

As ={21,19, 26}

p =21



Approximate nearest neighbor (Bounded spread)

© @® @012 MLOO
(9@ W @@ W)L
24 2

9

As ={21,19, 26}

p=19



Approximate nearest neighbor (Bounded spread)

© @® @012 MLOO
(9@ W @@ W)L
24 2

9

How do we analyze the
running time?
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Running time main ideas

1. as long as cells > d(q, P) only O(1) cells per level
# such cells = O(height) = O(log ®(P))

2. ends when cells have size d(q, P)
# cells in last levels = O(1/&7)

cell size
~ d(q, P)

cell size
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Approximate nearest neighbor (Bounded spread)

Running time
r.=d(q,P)
Claim: node w with square o with diam(o) < (5/4)r Is not further considered

|\g — repw || — diam(o,) > ||q — repy|| — (€/8)r
Z Feurr — (5/4)rcurr Z (1 T cc’:/4')rcurr

side length at depth j: 27’
diameter at depth i: \/d2~' > (/4)r
only levels with i < —[log((e /4)r)/+/d] considered
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low-quality approximation — unbounded spread

Assume we can compute p that is 4n-ANN of q.

R:=|lp —qll. L := [logR]

Algorithm

1. Compute 4n-approximation

2. Find cells of grid G,: at distance < R from g

3. Use algorithm for bounded spread (extended to compressed
guadtrees) on these cells

in short:
running time (without step 1) = O( /52 + Iog(R/r)) = O( /52 + log n)
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1. Introduction
2. ANN with quadtree (bounded spread)
3. Why low-quality approximation helps for unbounded spread
4. Low-quality approximation:
ring separator tree
shifting



