Approximate Nearest Neighbors

Low Dimensions

Welcome!

Overview

1. Introduction
2. ANN with quadtree (bounded spread)
3. Why low-quality approximation helps for unbounded spread

(4. Low-quality approximation)

Many Applications

e Pattern recognition — in particular for optical character recognition httpS . //en . wikipedia . org/wiki/
e Statistical classification — see k-nearest neighbor algorithm Nearest_neighbor_search
e Computer vision

e Computational geometry — see Closest pair of points problem

e Databases — e.g. content-based image retrieval

e Coding theory — see maximum likelihood decoding

e Data compression — see MPEG-2 standard

» Robotic sensingl?]

e Recommendation systems, e.g. see Collaborative filtering

e Internet marketing — see contextual advertising and behavioral targeting

e DNA sequencing

e Spell checking — suggesting correct spelling

e Plagiarism detection

e Similarity scores for predicting career paths of professional athletes.

e Cluster analysis — assignment of a set of observations into subsets (called clusters) so that
observations in the same cluster are similar in some sense, usually based on Euclidean distance

e Chemical similarity

e Sampling-based motion planning

Exact nearest neighbor

Problem statement

Preprocess set P of n points in RY such that
given a query point g, we can find the closest point in P to g quickly.

Exact nearest neighbor

Problem statement

Preprocess set P of n points in RY such that
given a query point g, we can find the closest point in P to g quickly.

Exact nearest neighbor

Problem statement

Preprocess set P of n points in RY such that
given a query point g, we can find the closest point in P to g quickly.

Exact nearest neighbor

Problem statement

Preprocess set P of n points in RY such that
given a query point g, we can find the closest point in P to g quickly.

. notation:
Nearest neighbor of g: nn(q) = nn(q, P)

d(g. P) = ||g — nn(q)|]

Exact nearest neighbor

Exact nearest neighbor

Voronoi diagram

Exact nearest neighbor

Voronoi diagram

Exact nearest neighbor

Voronoi diagram

Computing the Voronoi diagram of P and
preprocessing it for point-location queries
requires roughly O(n'%/2! + nlog n) time.

Exact nearest neighbor

Voronoi diagram

Computing the Voronoi diagram of P and
preprocessing it for point-location queries
requires roughly O(n'%/2! + nlog n) time.

Faster approximation?

Exact nearest neighbor

Computing the Voronoi diagram of P and
preprocessing it for point-location queries
requires roughly O(n'%/2! + nlog n) time.

Faster approximation?

How about quadtrees?

Approximate nearest neighbor (Bounded spread)

Approximate nearest neighbor (Bounded spread)

s € Pisa (1 + e)-approximate nearest neighbor (ANN) of g
if [|g — s|| < (1+¢e)d(g, P).

Approximate nearest neighbor (Bounded spread)

s € Pisa (1 + e)-approximate nearest neighbor (ANN) of g
if [|g — s|| < (1+¢e)d(g, P).

Spread: (D(P) _ _MaXpgerp llp—q||

Minpgcr.p=4 |1P—4ql

Approximate nearest neighbor (Bounded spread)

s € Pisa (1 + e)-approximate nearest neighbor (ANN) of g
if [|g — s|| < (1+¢e)d(g, P).

Spread: (D(P) _ _MaXpgerp llp—q||

minygepp=6 | IP—q]
Setting:

« P C [0,119, diameter(P) = Q(1), ®(P) = O(n°), for constant c.
» T quadtree of P

rep, € P: representative of nodeu € T

e >0
guery point q

Approximate nearest neighbor (Bounded spread)

Approximate nearest neighbor (Bounded spread)

Approximate nearest neighbor (Bounded spread)

Approximate nearest neighbor (Bounded spread)

Approximate nearest neighbor (Bounded spread)

Approximate nearest neighbor (Bounded spread)

Approximate nearest neighbor (Bounded spread)

© @® @012 MLOO
(9@ W @@ W)L
24 2

9

Approximate nearest neighbor (Bounded spread)

Algorithm ideas

recursive: start at root (like point location).

Approximate nearest neighbor (Bounded spread)

Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance r. . = d(q, p)

q

P

Approximate nearest neighbor (Bounded spread)

Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance r., = d(qg, p)
only recurse on nodes/squares that could decrease distance significantly

Approximate nearest neighbor (Bounded spread)

Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance r., = d(qg, p)
only recurse on nodes/squares that could decrease distance significantly

could contains € Pwith ||g — s|| < (1 — &/2)reun

Approximate nearest neighbor (Bounded spread)

Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance r., = d(qg, p)
only recurse on nodes/squares that could decrease distance significantly

could contains € Pwith ||g — s|| < (1 — &/2)reun

v

Approximate nearest neighbor (Bounded spread)

Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance r., = d(qg, p)
only recurse on nodes/squares that could decrease distance significantly

could contains € Pwith ||g — s|| < (1 — &/2)reun

v

Approximate nearest neighbor (Bounded spread)

Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance r., = d(qg, p)
only recurse on nodes/squares that could decrease distance significantly

could contains € Pwith ||g — s|| < (1 — &/2)reun

Approximate nearest neighbor (Bounded spread)

Algorithm ideas

recursive: start at root (like point location).
maintain best candidate p for nearest neighbor and distance r., = d(qg, p)
only recurse on nodes/squares that could decrease distance significantly

could contains € Pwith ||g — s|| < (1 — &/2)reun

ignore cell wif ||g—repy|| — diam(Ld,) > (1 — €/2)rcy,

Approximate nearest neighbor (Bounded spread)

© @® @012 MLOO
(9@ W @@ W)L
24 2

9

Approximate nearest neighbor (Bounded spread)

(4) (5)

© @ ® @ Q012 4 2

R0 3 @ @9 @9) @
24 2

9

Approximate nearest neighbor (Bounded spread)

(4) (5)

© @ ® @ Q012 4 2

3 @ @9 @9) @
24 2

9

[l ——

2,3,4, 5}
7,reps =10, reps =15

Approximate nearest neighbor (Bounded spread)

© @ ® @ Q012 4 2

(19 @ W 3 @ @9 @9) @
24 2

9

A1 =42,3,4,5}
reps =/, reps =10, reps =15
p =10

Approximate nearest neighbor (Bounded spread)

© @ ® @ Q012 4 2

(19 @ W 3 @ @9 @9) @
24 2

9

A, ={8,10,11,14}
repiq =21, rep4 = 26
p =10

Approximate nearest neighbor (Bounded spread)

© @® @012 MLOO
(9@ W @@ W)L
24 2

9

A, ={8,10,11,14}
repiq =21, rep4 = 26
p =21

Approximate nearest neighbor (Bounded spread)

© @® @012 MLOO
(9@ W @@ W)L
24 2

9

As ={21,19, 26}

p =21

Approximate nearest neighbor (Bounded spread)

© @® @012 MLOO
(9@ W @@ W)L
24 2

9

As ={21,19, 26}

p=19

Approximate nearest neighbor (Bounded spread)

© @® @012 MLOO
(9@ W @@ W)L
24 2

9

How do we analyze the
running time?

Approximate nearest neighbor (Bounded spread)

Running time main ideas

Approximate nearest neighbor (Bounded spread)

Running time main ideas

1. as long as cells > d(q, P) only O(1) cells per level

Approximate nearest neighbor (Bounded spread)

Running time main ideas

1. as long as cells > d(q, P) only O(1) cells per level
such cells = O(height) = O(log ®(P))

Approximate nearest neighbor (Bounded spread)

Running time main ideas

1. as long as cells > d(q, P) only O(1) cells per level
such cells = O(height) = O(log ®(P))

2. ends when cells have size d(q, P)

cell size
~ d(q, P)

cell size
~ cd(q, P)

Approximate nearest neighbor (Bounded spread)

Running time main ideas

1. as long as cells > d(q, P) only O(1) cells per level
such cells = O(height) = O(log ®(P))

2. ends when cells have size d(q, P)
cells in last levels = O(1/&7)

cell size
~ d(q, P)

cell size

Approximate nearest neighbor (Bounded spread)

Running time
r .= d(q, P)
Claim: node w with square o with diam(o) < (5/4)r Is not further considered

Approximate nearest neighbor (Bounded spread)

Running time
r.=d(q,P)
Claim: node w with square o with diam(o) < (5/4)r Is not further considered

g — repy || — diam(c,,) > ||g — repy|| — (€/d)r

Approximate nearest neighbor (Bounded spread)

Running time
r.=d(q,P)
Claim: node w with square o with diam(o) < (5/4)r Is not further considered

|\g — repw || — diam(o,) > ||q — repy|| — (€/8)r
2 Feurr — (5/4)rcurr Z (1 T cc’:/4')rcurr

Approximate nearest neighbor (Bounded spread)

Running time
r.=d(q,P)
Claim: node w with square o with diam(o) < (5/4)r Is not further considered

|\g — repw || — diam(o,) > ||q — repy|| — (€/8)r
Z Feurr — (5/4)rcurr Z (1 T cc’:/4')rcurr

side length at depth j: 27’

Approximate nearest neighbor (Bounded spread)

Running time
r.=d(q,P)
Claim: node w with square o with diam(o) < (5/4)r Is not further considered

|\g — repw || — diam(o,) > ||q — repy|| — (€/8)r
Z Feurr — (5/4)rcurr Z (1 T cc’:/4')rcurr

side length at depth j: 27’
diameter at depth i: v/d2 ™'

Approximate nearest neighbor (Bounded spread)

Running time
r.=d(q,P)
Claim: node w with square o with diam(o) < (5/4)r Is not further considered

|\g — repw || — diam(o,) > ||q — repy|| — (€/8)r
Z Feurr — (5/4)rcurr Z (1 T cc’:/4')rcurr

side length at depth i: 27
diameter at depth i: \/d2~' > (/4)r

Approximate nearest neighbor (Bounded spread)

Running time
r.=d(q,P)
Claim: node w with square o with diam(o) < (5/4)r Is not further considered

|\g — repw || — diam(o,) > ||q — repy|| — (€/8)r
Z Feurr — (5/4)rcurr Z (1 T cc’:/4')rcurr

side length at depth j: 27’
diameter at depth i: \/d2~' > (/4)r
only levels with i < —[log((e /4)r)/+/d] considered

Approximate nearest neighbor (Bounded spread)

Running time
+ only levels with j < | — Iog((5/4)r)/\/m < —llog((e/4)r)| =: h considered

Approximate nearest neighbor (Bounded spread)

Running time
+ only levels with j < | — Iog((5/4)r)/\/m < —llog((e/4)r)| =: h considered

Let u be node of depth i/ containing nn(q)

Approximate nearest neighbor (Bounded spread)

Running time
+ only levels with j < | — Iog((5/4)r)/\/m < —llog((e/4)r)| =: h considered

Let u be node of depth i/ containing nn(q)

l; = d(qg, rep,) < diam, + r = after iteration i: re,, < diamy +r =r++/d2™’

Approximate nearest neighbor (Bounded spread)

Running time
+ only levels with j < | — Iog((5/4)r)/\/m < —llog((e/4)r)| =: h considered

Let u be node of depth i/ containing nn(q)

l; = d(qg, rep,) < diam, + r = after iteration i: re,, < diamy +r =r++/d2™’

iteration i + 1: only cells at distance rq,,, < ¥; to g considered.

Approximate nearest neighbor (Bounded spread)

Running time
+ only levels with j < | — Iog((5/4)r)/\/m < —llog((e/4)r)| =: h considered

Let u be node of depth i/ containing nn(q)

l; = d(qg, rep,) < diam, + r = after iteration i: re,, < diamy +r =r++/d2™’

iteration i + 1: only cells at distance rq,,, < ¥; to g considered.

Approximate nearest neighbor (Bounded spread)

Running time
+ only levels with j < | — Iog((5/4)r)/\/m < —llog((e/4)r)| =: h considered
Let u be node of depth i/ containing nn(q)

l; = d(qg, rep,) < diam, + r = after iteration i: re,, < diamy +r =r++/d2™’

iteration i + 1: only cells at distance rq,,, < ¥; to g considered.

at most n; = (2| 4])d

Approximate nearest neighbor (Bounded spread)

Running time
+ only levels with j < | — Iog((5/4)r)/\/m < —llog((e/4)r)| =: h considered
Let u be node of depth i/ containing nn(q)

l; = d(qg, rep,) < diam, + r = after iteration i: re,, < diamy +r =r++/d2™’

iteration i + 1: only cells at distance rq,,, < ¥; to g considered.

at most n; = (2[2_6,."_1])d= O ((1 + r+\/_82’>d>

Approximate nearest neighbor (Bounded spread)

Running time
+ only levels with j < | — Iog((5/4)r)/\/m < —llog((e/4)r)| =: h considered
Let u be node of depth i/ containing nn(q)

l; = d(qg, rep,) < diam, + r = after iteration i: re,, < diamy +r =r++/d2™’

iteration i + 1: only cells at distance rq,,, < ¥; to g considered.

at most n; = (2[2_6,."_1])d= O ((1 + r+\/_82’>d>

Approximate nearest neighbor (Bounded spread)

Running time
+ only levels with j < | — Iog((5/4)r)/\/m < —llog((e/4)r)| =: h considered
» cells further considered at depthi: n; = O (1 + (Z'r)d)

Approximate nearest neighbor (Bounded spread)

Running time
+ only levels with j < | — Iog((5/4)r)/\/m < —llog((e/4)r)| =: h considered
» cells further considered at depthi: n; = O (1 + (Z'r)d)

h
Z n; = Oth + 2"r) = O(— log(er) + 1/50’)
=0

Approximate nearest neighbor (Bounded spread)

Running time
+ only levels with j < | — Iog((5/4)r)/\/m < —llog((e/4)r)| =: h considered
» cells further considered at depthi: n; = O (1 + (Z'r)d)

h
Z n; = Oth + 2"r) = O(— log(er) + 1/50’)
- - O(log(1/r) + 1 /&%

Approximate nearest neighbor (Bounded spread)

Running time
+ only levels with j < | — Iog((5/4)r)/\/m < —llog((e/4)r)| =: h considered
» cells further considered at depthi: n; = O (1 + (Z'r)d)

Zn, O(h +2"r) = O(— log(er) + 1 /%
= O(log(1/r) + 1/€%)

Alternative bound on i: i < log ®(P)

Approximate nearest neighbor (Bounded spread)

Running time
+ only levels with j < | — Iog((5/4)r)/\/a} < —llog((e/4)r)| =: h considered
» cells further considered at depthi: n; = O (1 + (Z'r)d)

Zn, O(h +2"r) = O(— log(er) + 1 /%
= O(log(1/r) + 1/€%)

Alternative bound on i: i < log ®(P)

sSummary:
A (1 + £)-ANN query on a quadtree takes O(1 /5" + log ®(P)) time.

Approximate nearest neighbor (Bounded spread)

Running time
+ only levels with j < | — Iog((5/4)r)/\/m < —llog((e/4)r)| =: h considered
» cells further considered at depthi: n; = O (1 + (Z’r)d)

Zn, O(h +2"r) = O(— log(er) + 1 /%
= O(log(1/r) + 1/€%)

Alternative bound on i: i < log ®(P)

sSummary:
A (1 + £)-ANN query on a quadtree takes O(1 /5" + log ®(P)) time.

Overview

1. Introduction
2. ANN with quadtree (bounded spread)
3. Why low-quality approximation helps for unbounded spread

4. Low-quality approximation

low-quality approximation — unbounded spread

Assume we can compute p that is 4n-ANN of q.

low-quality approximation — unbounded spread

Assume we can compute p that is 4n-ANN of q.

R:=|lp —qll. L := [logR]
Algorithm

1. Compute 4n-approximation

2. Find cells of grid G,: at distance < R from g

3. Use algorithm for bounded spread (extended to compressed
guadtrees) on these cells

low-quality approximation — unbounded spread

Assume we can compute p that is 4n-ANN of q.

R:=|lp —qll. L := [logR]

Algorithm

1. Compute 4n-approximation

2. Find cells of grid G,: at distance < R from g

3. Use algorithm for bounded spread (extended to compressed
guadtrees) on these cells

in short:
running time (without step 1) = O(/52 + Iog(R/r)) = O(/52 + log n)

Overview

1. Introduction
2. ANN with quadtree (bounded spread)
3. Why low-quality approximation helps for unbounded spread
4. Low-quality approximation:
ring separator tree
shifting

