PG 573: Blockseminar

Projektgruppen starten traditionell mit einem Blockseminar, das den Teilnehmern den Einstieg in das zugrundeliegende Thema erleichtern soll. Hier werden alle relevanten Informationen dazu gesammelt.

Fristen und Termine
Termin Zeit
Besprechung des Folienkonzepts mit dem Betreuer 25.02.-01.03.2013
Abgabe der Folien 27.03.2013
Vorträge 10./11.04.2013 im Raum U08, OH 16
Themenliste
Name Titel Zeit
1 Andreas Pauly Algorithm Engineering: Concepts and Practice [1] Mittwoch
10.04.13
14:00–17:00
2 Sebastian Witte A Parametric Approach to Solving Bicriterion Shortest Path Problems [5]
3 David Mezlaf On Spanning Tree Problems with Multiple Objectives [3]
4 Maryna Malyuga Theoretician's Guide to the Experimental Analysis of Algorithms [4]
5 Johannes Kowald Approximation of Pareto Optima in Multiple-Objective, Shortest-Path Problems [11] Donnerstag
11.04.13
9:30–12:30
6 Christopher Morris The Problem of the Optimal Biobjective Spanning Tree [7]
7 Michael Capelle A Label Correcting Approach for Solving Bicriterion Shortest-Path Problems [9]
8 Hendrik Fichtenberger Solving the Biobjective Minimum Spanning Tree Problem Using a k-Best Algorithm [10]
9 Jakob Bossek A Discussion of Scalarization Techniques for Multiple Objective Integer Programming [2] Donnerstag
11.04.13
14:00–17:00
10 Max Günther A Comparison of Solution Strategies for Biobjective Shortest Path Problems [6]
11 Sven Selmke Genetic Algorithm Approach on Multi-criteria Minimum Spanning Tree Problem [12]
12 Marco Kuhnke Agile Project Management with SCRUM [8] tba

Literatur

  1. Algorithm Engineering: Concepts and Practice
    M. Chimani, K. Klein
    Experimental Methods for the Analysis of Optimization Algorithms, Springer Berlin Heidelberg, 131–158, 2010
  2. A discussion of scalarization techniques for multiple objective integer programming
    M. Ehrgott
    Annals of Operations Research, 147(1):343–360, 2006
  3. On spanning tree problems with multiple objectives
    H.W. Hamacher, G. Ruhe
    Annals of Operations Research, 52:209–230, 1994
  4. Theoretician's Guide to the Experimental Analysis of Algorithms
    D. S. Johnson
    Data Structures, Near Neigbor Searches, and Methodology: Proceedings of the Fifth and Sixth DIMACS Implementation Challenges, 215–250, 2002
  5. A parametric approach to solving bicriterion shortest path problems
    J. Mote, I. Murthy, D.L. Olson
    European Journal of Operational Research, 53:81–92, 1991
  6. A Comparison of Solution Strategies for Biobjective Shortest Path Problems
    A. Raith, M. Ehrgott
    Technical Report, University of Auckland, New Zealand, 2007
  7. The problem of the optimal biobjective spanning tree
    R.M. Ramos, S. Alonso, J. Sicillia, C. Gonzales
    European Journal of Operational Research, 111:617–628, 1998
  8. Agile Project Management with SCRUM
    K. Schwaber
    Microsoft Press, 2004
  9. A label correcting approach for solving bicriterion shortest-path problems
    A.J.V. Skriver, K.A. Andersen
    Computers & Operations Research, 27:507–524, 2000
  10. Solving the biobjective minimum spanning tree problem using a k-best algorithm
    S. Steiner, T. Radzik
    Technical Report TR-03-06, King's College London, 2003
  11. Approximation of Pareto Optima in Multiple-Objective, Shortest-Path Problems
    A. Warburton
    Operations Research, 35(1):70–79, 1987
  12. Genetic algorithm approach on multi-criteria minimum spanning tree problem
    G. Zhou, M. Gen
    European Journal of Operational Research, 114:141–152, 1999