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Abstract

This paper presents the results of a parameter study of the Grand

Deluge Evolutionary Algorithm, whose special features consist of local

interactions between individuals within a spatially structured population

and a self{adjusting control mechanism of the selection pressure. Since

both ingrediences are parametrizable this study aims at the identi�cation

of the signi�cance and sensitivity of the parameter settings with regard

to the performance of the algorithm, especially under the transition from

one{ to two{dimensional neighborhood patterns.

1 Introduction

In [10] we presented the Grand Deluge Evolutionary Algorithm (GDEA), which
combines the traditional proportionate selection operator with a self{organizing
acceptance threshold schedule. The population of the GDEA possesses a spa-
tial structure to allow scalable parallel implementations, which means that the
individuals are distributed over the vertices of a connected graph and that the
genetic operators are applied locally in some neighborhood of each individual.
This algorithm was embedded in the framework of probabilistic automata net-
works and could be proven to be globally convergent with probability one under
the assumption that the genotypes of the individuals are binary strings. The
parameter study made in [10] employed a multiple knapsack problem as ob-
jective function and investigated the signi�cance of the parameters with regard
to performance by varying the delay of adjusting the threshold values (selec-
tion pressure) and the neighborhood size (locality) in a ring topology, i.e., with
one{dimensional neighborhood structures. While the overall performance of the
GDEA was great compared to a traditional genetic algorithm (GA), the results
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were disappointing with respect to parallelism, where small neighborhood sizes
are preferred to obtain low communication requirements. But instead the para-
meter study resulted in a relatively large optimal neighborhood size of about
40 individuals. Since the ring topology is only one possible implementation of
the GDEA, the next step was to run the same experiments with a di�erent to-
pology. We chose a toroid grid for two reasons: it seems to be the most natural
extension of a topology just to increase the dimension, and the torus is the most
popular structure for parallel implementations at all.

A description of the GDEA is given in section 2, with emphasis on the design
of local reproduction operators for individuals distributed over the vertices of a
connected graph and the realization of a self{adjusting threshold control. Sec-
tion 3 �rst presents our selection of neighborhood structures and test problems,
before the results of the parameter study are discussed. Finally, we draw some
conclusions in section 4.

2 Description of the Algorithm

It is assumed that the reader is familiar with the basics of evolutionary al-
gorithms (EA). For a recent comprehensive overview see the monograph by
B�ack [1]. The genetic operators of the GDEA for individuals with binary gen-
otype are based on those of the traditional GA as described by Goldberg [4].
Since mutation and crossover remain unchanged they are not explicitly de�ned
here. The changes only a�ect reproduction and o�spring acceptance.

2.1 Local Reproduction

Since all individuals in a population compete with each other for the chance to
produce o�spring, a traditional EA needs to know the �tnesses of all individuals
during the reproduction phase of the algorithm. This kind of global knowledge
makes an algorithm unsuitable for an e�cient parallel implementation. There-
fore, most parallel implementations of EAs base on local reproduction rules
[7, 5, 12, 8, 11] which can be applied simultaneously to smaller subsets of the
population.

In order to be comparable to a standard GA, in [10] a localized proportion-
ate selection was de�ned for a ring topology. In the following a more general
de�nition is given which does not even depend on homogeneous neighborhood
structures.

Let be n the population size, ` the dimension of the search space, P t = fxti 2
IB` : 0 � i < ng the population at generation t, and N� 2 Pf0; : : : ; n� 1g a set
of indices de�ning the neighborhood N� of the individual xt�. N� is a family (not
a set) consisting of all xtk with k 2 N� . The �tness function F : IB` 7! IR+ is
normally the result of windowing and scaling techniques applied to the objective
function. If the search space of the objective function is D 6= IB`, e.g. D � IRN ,
a mapping function m : IB` 7! D must be applied additionally.

The �-local relative �tness of an index � can now be de�ned as

pt�(�) :=
F (xt�)P

k2N�

F (xtk)
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and the �-local cumulative relative �tness of an index � as

CRFt�(�) :=
X

k2N� : k��

pt�(k):

Proportionate selection can now be applied in a canonical way. For each
parent to select, a random number � is drawn uniformly from [ 0; 1) and the
individual with index k is chosen with

CRFt�(k) = minfi 2 N� : CRF
t
�(i) � � g:

As an example, �gure 1 shows a small torus and the population indices of the
individuals. In case of a von{Neumann neighborhood structure, the individuals
inside of the dashed line belong to the neighborhood of the individual with index
7, so N7 would be f2; 6; 7; 8; 12g.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

Fig. 1: Example of a neighborhood structure on a torus.

The following table lists the (�ctional) �tness values and the resulting local
relative �tnesses:

� 2 6 7 8 12

F (xt�) 16 8 12 20 4

pt7(�) 4=15 2=15 3=15 5=15 1=15

CRFt7(�) 4=15 6=15 9=15 14=15 15=15

The generation of o�spring can be performed in parallel. For each position
in the population, two parents are chosen from the neighborhood by local pro-
portionate selection, and one child is generated by recombination and mutation.
The individual at the current position is replaced by the new child if the latter
is accepted, otherwise it remains unchanged.
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2.2 Threshold Adjustment

As shown in [9], a standard GA with proportionate selection is not globally con-
vergent to the optimum. Motivated by the Grand Deluge Algorithm of Dueck
[3], an adaptive threshold acceptance schedule was added in [10]. For the con-
vergence proof, the reader is referred to the original work. In the GDEA, the
local threshold � tk at index k and generation t is de�ned as

� tk :=

�
F (x0k) , if t < �

maxf� t�1k ; F (xt��k )g , otherwise.
(1)

The threshold delay � 2 IN speci�es the lag of generations that a current
�tness value will enter the threshold update rule (1). A new o�spring at a
given position in the population is only accepted if its �tness value exceeds
the local threshold � tk. This \tidal value" is the maximum of the �tness of the
predecessor at this position � generations in the past, and the tidal value of the
last generation. Evidently, the local tides are monotonic rising by de�nition.

Since the value of � determines how many generations without improvement
are tolerated at most, it is a control parameter of the selection pressure. For
� = 1, only improvements are accepted, whereas values beyond the maximum
number of generations turn o� the threshold acceptance. It conjunction with
large neighborhoods, the latter case is very close to a traditional GA.

2.3 Outline of the Algorithm

The following pseudo code gives a sketch of the algorithm:

initialize population

REPEAT

FOR EACH node

select two neighbors

recombine them

mutate resulting offspring

evaluate offspring

IF F(offspring) > threshold

THEN

accept offspring

ENDIF

update local threshold

ENDFOR

UNTIL maximum number of generations

3 Computational Experiments

3.1 Choice of Neighborhoods

In [10] we assumed that the population's directed graph G = (V;E) with edges
E = f(�; �) : � 2 V; � 2 N�g was embedded into a processor network with
bidirectional ring topology. To keep the (virtual) communication load low we
decided to use neighborhoods of the following type: Let R 2 IN denote the

4



neighborhood radius and O = fa 2 ZZ : jaj � Rg a set of o�sets. The neighbor-
hood set of the individual with label � is N� = f(� + n + a) mod n : a 2 Og
where n is the population size. We shall say (with some lack of precision) that
the population is living on a ring or that the optimization problem is treated
on a ring whenever a neighborhood of the above type is used.

After our initial experiments on the ring [10] we wondered whether two{
dimensional neighborhood patterns would result in a qualitative change of per-
formance or a change of signi�cance of the parameters controlling locality and
selection pressure. Therefore we imagined that the individuals are living on a
toroidal processor network and that each individual possesses the same two{
dimensional neighborhood pattern. These patterns can be de�ned by a mask
or matrix M = (mij) with an odd number of columns and rows whose central
element refers to the current individual with label � 2 V . An entry of M with
mij = 1 indicates that the corresponding individual on the torus belongs to the
neighborhood set of individual �, otherwise the entry is zero. This is enough to
calculate the neighborhood sets:

The matrix M = (mij) with r rows, c columns (r; c odd), mij 2 f0; 1g for
all i 2 I = f0; 1; : : : ; r � 1g, j 2 J = f0; 1; : : : ; c� 1g and mr=2;c=2 = 1 is called
the neighborhood mask. The set

OM =
n�

i �
r

2
; j �

c

2

�
2 ZZ2 : mij = 1; (i; j) 2 I � J

o

is termed the o�set set of neighborhood mask M . For example, the neighbor-
hood mask

M =

0
BBBB@

0 0 1 0 0
0 1 1 1 0
1 1 1 1 1
0 1 1 1 0
0 0 1 0 0

1
CCCCA

de�nes a neighborhood pattern that is related to the maximum norm in ZZ2,
i.e., the o�set set is OM = fw 2 ZZ2 : kwk1 � 2g or explicitly

OM = f(0; 0); (0;�1); (0;�2); (�1; 0); (�2; 0); (�1;�1); (�1;�1)g:

Let the pair (n; k) 2 IN2 such that n = k � q with q 2 IN and where n is
the population size. The function �k(�) = (� div k ; � mod k) with its inverse
��1k (a; b) = a � k+ b will serve to map the population into a grid and vice versa.
Now the neighborhood set can be de�ned easily:

N� = f��1k ((�k(�) + (i; j) + (q; k)) mod (q; k)) : (i; j) 2 OMg:

In this formalism the experiments made on the ring [10] can be described by
setting k = n and O = fw 2 ZZ2 : w1 = 0; kwk1 � Rg.

While the neighborhood size in a ring can be increased gradually the neigh-
borhood size de�ned by regular two{dimensional patterns increases in larger
steps when usual distance measures (norms in ZZ2) are used. Therefore, the com-
parability of the e�ects of locality between one{ and two{dimensional patterns
would be hardly possible. As a consequence, we de�ned neighborhood masks
whose patterns were inspired by chamfer{distances [2] in order to \smooth"
the transitions to larger neighborhood sizes. For example, the matrix C below

5



characterizes 9 di�erent neighborhood masks with neighborhood sizes ranging
between 5 and 49:

C =

0
BBBBBBBB@

9 8 7 5 7 8 9
8 6 4 3 4 6 8
7 4 2 1 2 4 7
5 3 1 0 1 3 5
7 4 2 1 2 4 7
8 6 4 3 4 6 8
9 8 7 5 7 8 9

1
CCCCCCCCA

The mask Md is de�ned via mij = 1 if cij � d for d = 1; : : : ; 9 and zero
otherwise. Our experiments were made with patterns of the above type resulting
in the neighborhood sizes f5; 9; 13; 21;25;29;37;45;49;81;121; 169;225g where
the steps between the last �ve sizes were enlarged intentionally to reduce the
computation time required for our study.

3.2 Objective Functions

Our experiments were made on two problems: a pseudo{boolean and a pseudo{
continuous one. The �rst one was a NP{hard multiple knapsack problem already
investigated for populations on a ring in [10]. The problem can be formalized
as follows:

f1(x) = cTx ! max!
s.t. Ax � b

with x 2 IB`, c 2 IR`
+, b 2 IRm

+ and A 2 IRm;`
+ . The constraints were included

into the objective function by a penalty technique in the same manner as in [6]:

f1(x) = cTx� � � cmax ! max! ;

where � denotes the number of violated constraints and cmax the largest entry
in the cost vector c. Here, the problem had dimension ` = 50 and m = 5
constraints.

The objective function of the second test problem was a version of the well{
known Rastrigin function:

f2(x) = 5000�
20X
i=1

fx2i + 10 [ 1� cos(2�xi)]g ! max!

where each xi was represented by a Gray{coded binary string of length 20
such that jxij � 5:24288 for each i = 1; : : : ; 20. Thus, the string length of an
individual is ` = 400.

3.3 Computational Results

The population size was set to 500 for both the ring and torus topology. While
the labels of the individuals in the ring were arranged in linear order, a grid of
20� 25 was the basis of the labeling in the torus.

For the multiple knapsack problem, the neighborhood size j N� j was varied
from 3 to 200 for the ring topology (results taken from [10]), and from 5 to 225
for the torus. In both cases, the threshold delay � ranged from 1, which can
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be seen as a local elitist selection, to 500 which was the maximum number of
generations. For each combination of � and j N� j the success frequency, which is
the ratio of the number of runs that found the global optimum to total number
of runs to the, was calculated from 200 independent experiments.

Fig. 2: Success frequency for the multiple knapsack problem with varying parameters.

Figure 2 summarizes the success frequencies depending on � and j N� j in
both ring and torus topology, i.e., for one{ and two{dimensional neighborhood
patterns. In contrast to the results of the same experiment in the ring topology,
the highest success rates in the torus were obtained by the smallest neighborhood
sizes. In fact, the optimal settings were approximately (j N� j; �) = (40; 100) for
the ring and (j N� j; �) = (5; 140) for the torus. These settings achieved a success
frequency of about 85 % and 95 %, respectively. An interesting observation
is the fact that the torus neighborhood yields better results when properly
tuned, whereas the ring topology behaves more robust against missetting of the
neighborhood sizes. But in both cases, it is obvious that selection pressure is
the key to success, because too large threshold delays decrease the success rate
almost independently of the neighborhood size.
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Fig. 3: Averaged best �tness for the Rastrigin test problem with varying parameters.

In contrast to the �rst test problem, success frequencies are not an appro-
priate quality measure for a continuous function such as the Rastrigin problem.
Instead, the best results after 500 generations were averaged out of 100 runs.
Figure 3 shows the response of the GDEA to the variation of � and j N� j for the
Rastrigin function using ring and torus topology. Again, the best performance
of the torus can be observed with the smallest neighborhood sizes and threshold
delays signi�cantly lower than half the number of generations. However, the
importance of the neighborhood sizes appears to be even lower than in the �rst
experiments.

The optimum neighborhood size for the ring is relatively large again, but
the changes to worse values are almost not signi�cant. Additionally, the ring is
quite robust against variations of the threshold delay.

4 Conclusions

Speaking in terms of biology, the parameters examined in this paper are selection
pressure (threshold delay) and locality (neighborhood size). Obviously, high
selection pressure causes a speed-up of the GDEA on its way to the global
optimum1. With respect to parallelism, we can state that locality does not
necessarily improve EAs. On the other hand, it does not harm as long as there
is su�cient selection pressure, so small neighborhood sizes should be used if
communication bandwidth matters.

The di�erent behaviors of the ring and the torus topology under the condi-
tion of equally sized neighborhoods means that locality is not provided by a the
number of neighbors, but by the connectivity of the neighborhood structure. In

1Remember that the GDEA is globally convergent, so eventually, it will �nd the optimum.
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order to examine this in a more general context, the authors are working on a
de�nition of locality by means of graph theory.
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