
A Cellular Genetic Algorithm with Self–Adjusting
Acceptance Threshold

Günter Rudolph
Informatik Centrum Dortmund e.V

Joseph-von-Fraunhofer-Str. 20
D–44227 Dortmund

Rudolph@LS11.Informatik.Uni-Dortmund.de

Joachim Sprave
Universität Dortmund

Fachbereich Informatik XI
D–44221 Dortmund

Sprave@LS11.Informatik.Uni-Dortmund.de

Abstract

We present a genetic algorithm (GA) whose pop-
ulation possesses a spatial structure. The GA
is formulated as a probabilistic cellular auto-
maton: The individuals are distributed over a
connected graph and the genetic operators are
applied locally in some neighborhood of each
individual. By adding a self–organizing accept-
ance threshold schedule to the proportionate re-
production operator we can prove that the al-
gorithm converges to the global optimum. First
results for a multiple knapsack problem indicate
a significant improvement in convergence beha-
vior. The algorithm can be mapped easily onto
parallel computers.

1 Introduction

Evolutionary algorithms (EAs) form a class
of stochastic optimization algorithms in which
principles of organic evolution are regarded as
rules for optimization. They are often applied to
parameter optimization problems [1] when spe-
cialized techniques are not available or stand-
ard methods fail to give satisfactory answers
due to multimodality, nondifferentiabilityor dis-
continuities of the problem under consideration.
Here we focus on pseudoboolean optimization
and a special class of EAs, namely genetic al-
gorithms (GAs) [6]. Since GAs use bit strings
to encode elements of the search space, they are
natural candidates for pseudoboolean optimiza-
tion.

In traditional realizations of GAs the popula-

tion of individuals is just a multiset of feasible
trial points in the search space. The exchange
of information between two individuals by im-
itating the principle of inheritance may occur
everywhere within the population, i.e., the pop-
ulation does not possess a spatial structure.

Recent experiences, however, reveal that GAs
with a spatial population structure are not only
easily to map onto massively parallel computers
but also offer a better solution quality than tra-
ditional GAs [11, 5, 17, 12, 16]. Recently, this
approach was also used for continuous search
spaces in the framework of evolution strategies
[13, 14, 18] as well as for hybrid parallel versions
of evolutionary algorithms and simulated an-
nealing [10, 14]. It was recognized several times
that these fine–grained parallel algorithms may
be regarded as cellular automata [17, 19, 21].
To provide a theoretical framework to study the
differences we formally present a GA as a prob-
abilistic cellular automaton, in which all genetic
operators are applied locally in a certain neigh-
borhood. This requires a modification of the
proportionate reproduction or selection mech-
anism of traditional GAs.

Since proportionate reproduction prevents
global convergence [15] we added a self–
adjusting acceptance threshold which is related
to the Great Deluge algorithm presented in [3].
This rising threshold ensures that the algorithm
converges to the global optimum in finite expec-
ted time regardless of the objective function and
the initialization of the algorithm.

The remainder of the paper is organized as
follows: Section 2 presents a description of the

1

cellular genetic algorithm as well as its formal
model. The proof of convergence to the global
optimum can be found in Section 3. First com-
putational results are given in Section 4. Finally,
we draw our conclusions in Section 5.

2 Cellular Genetic
Algorithms

In principle, evolutionary algorithms can be de-
signed to operate on arbitrary search spaces. But
to facilitate theoretical considerations in later
sections we restrict the search space to the finite
binary space. Consequently, GAs are appro-
priate candidates to tackle the resulting pseudo-
boolean optimization problems of the type

maxff(x) : x 2 IBlg ; (1)

where the real–valued function f(:) denotes the
objective function and IBl = f0; 1gl the search
space. In general, a transformation of the ob-
jective function, the fitness function F = g � f ,
is used for the selection process in a GA.

2.1 Description of the Algorithm

A common feature of EAs is that they maintain
a population of n individuals. In case of a GA
each individual is represented by a binary vector
x 2 IBl. The essential difference to traditional
GAs is that each individual is regarded to ‘live’
on a node of a connected graph and that inter-
actions between the individuals are restricted to
their nearest neighbors in the graph. Clearly, the
graph of a population of a traditional GA is fully
connected. Here, the population is arranged on
a ring, so that each individual has at least three
neighbors: a left neighbor, a right neighbor and
itself.

At each iteration (generation) of the algorithm
all individuals are modified simultaneously by
three genetic operators: reproduction, crossover
and mutation. Since these operators are applied
locally to the neighborhood of each individual,
some of them have to be modified.

2.1.1 Local Reproduction

With regard to parallelism, the need of global
knowledge should be kept small to allow effi-
cient and scalable implementations. The most
important global operator in traditional GAs is
reproduction, because the sum of all fitness val-
ues F (xk), k = 1; 2; : : : ; n, in the population is
used to calculate the relative fitness p(xk) of in-
dividual k. Assuming f(x) > 0 for all x 2 IBl,
we may set F (x) = f(x), so that the relative
fitness of individual k is defined by

p(xk) :=
F (xk)Pn

i=1 F (xi)

and the cumulative relative fitness CRF(xk)
as

CRF(xk) :=
kX
i=1

p(xi) :

The reproduction probability of each indi-
vidual is made proportionate to its relative fit-
ness by picking a uniformly distributed random
number � 2 [0; 1) and choosing the individual
number k with

CRF(xk) = min
1�i�n

fCRF(xi) : CRF(xi) � � g:

There are two major problems in proportion-
ate reproduction: first, only positive objective
function values are allowed. Second, when the
population is near an optimum and relatively
close together, all relative fitnesses are nearly
the same. A common solution is the introduc-
tion of windowing techniques and scaling.

Windowing means that a history is tracked of
the worst individuals’ objective function value
over a certain number of generations in the past,
the so-called evolution window. The fitness now
is defined as the objective function value re-
duced by the worst value from the history. This
technique, however, does not solve the problem
completely, because the current objective value
may be worse than the worst value from the his-
tory, so that a negative relative fitness may occur.
This can be avoided by restricting the evolution
window to the current generation.

Proportionate reproduction even with win-
dowing does not prefer good individuals enough

2

to get satisfactory results in numerical optimiza-
tion problems. Therefore, sometimes the selec-
tion pressure is increased by applying a scal-
ing function to the evaluations, e.g. F (x) =
exp(f(x)).

In case of a neighborhoodapproach reproduc-
tion is slightly different: only individuals from
the neighborhood of an individual can be selec-
ted as parents to produce its successor. There-
fore, all calculations are restricted to the neigh-
borhood.

Let r � 1 denote the neighborhood radius,
i.e., the neighborhood size is 2r + 1. Then the
fitness value of individual k at generation t is
obtained by a normalized linear scaling1

F (x
(t)
k) := 1 + c �

f(x(t)k)�m
(t)
k

M
(t)
k �m

(t)
k

;

where c > 0 and

m
(t)
k = minf f(x(t)i) : i = k � r; : : : ; k+ r g

and

M
(t)
k = maxf f(x(t)i) : i = k� r; : : : ; k+ r g:

Here and in the sequel all index calculations
are performed modulo n. The local CRF of
individual k can now be defined as

CRFr(xk) :=
k+rX

i=k�r

pr(xi) ;

where

pr(xk) :=
F (xk)Pk+r

i=k�r F (xi)
: (2)

2.1.2 Crossover and Mutation

The crossover and mutation operator do not
need a modification. Crossover operates on
two individuals (parents), that are selected from
the neighborhood, by picking a position � 2
f 1; 2; : : :; l � 1 g at random and creating a new
individual by taking the first � bits from the first
parent and the remaining bits from the second.

Each bit position of the new created individual
is mutated by inverting the actual bit position,

1We define 0=0 := 0.

if the fixed mutation probability pm 2 (0; 1) is
larger than a random number uniformly distrib-
uted over [0; 1), which is drawn anew for each
bit position.

2.1.3 Threshold acceptance

Since the current generation also belongs to the
evolution window, there is no lower boundary
for the quality of new offspring, so if you don’t
use an elitist strategy the algorithm will not be
globally convergent [15].

To achieve global convergence a threshold
technique is introduced in this GA: each indi-
vidual has to be better than the tidal value, which
is defined as the maximum of the worst evalu-
ation a certain number in the past and the tidal
value of the last generation. As one can see,
the tidal value is monotone rising by its defini-
tion. To keep the population size constant, for
each place in the population the generation of
offspring is iterated until either the generated
offspring is above the current tide or a certain
number of unsuccessful trials is exceeded. In
this case the individual in this place remains un-
changed.

Again, in order to avoid a global knowledge, a
tidal value exists for each place in the population,
as well as a history of the evaluations in the past.
Let be t the generation number, k the position
in the population, � the window size. Then the
tide of individual k at generation t is defined as

�
(t)
k :=

(
f(x(0)

k
) , if t < �

maxf�
(t�1)
k ; f(x

(t��)
k)g , else.

(3)

2.1.4 Outline of the Algorithm

The following pseudo code gives a sketch of the
algorithm:

Initialize
REPEAT
FOR EACH node
Select two neighbors
Recombine them
Mutate resulting offspring
Evaluate offspring

3

IF F(offspring) > threshold
THEN

accept offspring
ENDIF
Update local threshold

ENDFOR
UNTIL max. number of generations

Because all offspring is generated simultan-
eously, an implementation of must manage a
second population to store the accepted off-
spring. The above outline shows a sequential
implementation, but the body of the FOR-loop
can be evaluated in parallel, with a synchroniz-
ation point at the start of the FOR-loop.

2.2 Modeling the cellular genetic
algorithm

Locally interacting systems can be studied in
the general framework of probabilistic automata
networks (PAN). Special cases of PANs are cel-
lular automata, neural networks [4] and, as we
shall demonstrate, locally interacting evolution-
ary algorithms. The following definition is ex-
tracted from [20]:

DEFINITION 1:
Let V denote the set of nodes of an undirected
graphG = (V;E)with edgesE � V �V . Each
node v 2 V is called an automaton, which pos-
sesses a finite state space Sv. The product space
S =
N

v2V Sv is called the system state space.
Each s 2 S denotes a system state, whereas
sv denotes the state of automaton v. The set
Na = fv 2 V : (v; a) 2 Eg is called the neigh-
borhood of automaton a. For each automaton
a there exists a well–defined transition matrix
Pa of size

Q
v2Na

jSvj � jSaj, that gathers the
probabilities that state sa with neighborhoodNa

transitions to a state s0a 2 Sa. The new system
state s(t+ 1) at step t+1 depends on the previ-
ous system state s(t) and the transition matrices
Pv; v 2 V :

s(t+ 1) = g(s(t); (Pv : v 2 V)) ;

where g(:) symbolizes the synchronous update
rule. A probabilistic automata network is com-
pletely determined by the tuple (V; (Sv : v 2
V); (Nv : v 2 V); (Pv : v 2 V); s(0)). �

The algorithm presented in this paper is a spe-
cial case of a PAN and may be viewed as a
probabilistic cellular automaton. The graph of a
PCA is more “regular” than the graph of a PAN,
which we like to express as follows:

DEFINITION 2:
Let G = (V;E) be a graph with V � ZZd; d 2
IN. The neighborhoodNv of vertex v is determ-
ined by the neighborhood structure N s � ZZd,
which is a finite set of offsets:

Nv = v +N s = fv + a : a 2 N sg :

The cardinality ofN s is called the neighborhood
size. If V =

Nd

i=1 ZZ=ZZmi
;mi 2 IN, then the

offsets are added by modulo arithmetic. �

Wolfram [22, p. 1] summarized the basic char-
acteristics of cellular automata. We differ from
his definition only by allowing probabilistic up-
date rules:

DEFINITION 3:
A probabilistic automata network with a graph
as in Definition 2, where each automaton pos-
sesses the same neighborhood structureN s, the
same state space S0 and the same transition mat-
rixP is called a probabilisticcellular automaton
(PCA). A PCA is completely determined by the
tuple (V;S0;N s; P; s(0)). �

Now we can formulate the cellular genetic al-
gorithm in the framework of cellular automata:
The graph of the network is defined by the set of
nodes V = ZZ=ZZn and the neighborhood struc-
ture N s = f�r; : : : ;�1; 0; 1; : : : ; rg, where
r > 0 denotes the neighborhood radius. The
state space of each individual isS = IB(2r+1)�l�
H � T , where T = ff(x) : x 2 IBlg denotes
the set of possible threshold values andH = T �

denotes all possible histories of size �. Since
jT j � 2l the state space is finite.

The transition matrix P can be decom-
posed into a probabilistic and a deterministic
part. The probabilistic part describes the
probabilities to generate an intermediate indi-
vidual y

(t+1)
k 2 IBl from the neighborhood

(x
(t)
k�r; : : : ; x

(t)
k ; : : :x

(t)
k+r) 2 IB(2r+1)�l. Let

transition matrix G : 2(2r+1)�l � 2l gather these
probabilities. Matrix G may be decomposed
into the product G = S � C �M of transition

4

matrices, where S : 2(2r+1)�l � 22l contains the
probabilities to select two specific individuals
from the neighborhood, C : 22l � 2l contains
the probabilities for the outcome of crossover
and M : 2l � 2l contains the probabilities for
the outcome of mutation. Clearly, matrices S,
C andM are stochastic matrices, i.e., each entry
is non-negative and the entries in each row sum
up to one.

The probability to generate a bit string x0 2
IBl from x 2 IBl by mutation is

Pfx! x0g = pH(x;x0)
m (1� pm)

l�H(x;x0) > 0

if pm 2 (0; 1) and where H(x; x0) denotes
the Hamming distance between string x and x0.
Therefore, all entries in matrix M are positive.
This leads to:

LEMMA 1:
All entries of transition matrix G = S � C �M
are positive.

PROOF:
Since matrix multiplication is associative we
first consider the product C �M . As previously
mentioned, the nonnegative entries of each row
of matrix C sum up to one. Therefore, there is
at least one positive entry in each row. Since
matrix M is positive, multiplication of a row of
C with a column of M gives a positive value.
Consequently, the product C � M is positive.
The same argumentation can be applied to the
product G = S � (C �M). �

Although it is possible to derive formulas for
the entries of the transitionmatrices S andC, we
omit these here, because these expressions are
not necessary for our global convergence proof
in the next section.

It remains to model the deterministic part of
the update rule. Let (h(t)k;1; h

(t)
k;2; : : : ; h

(t)
k;�) be

the history and �
(t)
k be the threshold value of

individual k at step t. Then

(h
(t+1)
k;1 ; h

(t+1)
k;2 ; : : : ; h

(t+1)
k;�) =

(f(x
(t)
k); h

(t)
k;1; : : : ; h

(t)
k;��1)

and

�
(t+1)
k =

(
maxf�

(t)
k ; h

(t+1)
k;� g , if t � �

f(x(0)k) , otherwise.

3 Global Convergence Proof

At first, we have to define a criterion to decide
whether the cellular genetic algorithm converges
to the global optimum. Clearly, the best object-
ive function value within a population should
converge to the maximum value. Since the best
objective function value is a random variable,
it is useful to distinguish between the different
modes of convergence of random sequences:

DEFINITION 4:
If fDt; t � 0 g are random variables on a prob-
ability space (
;A; P), then the random se-
quence (Dt)t�1 is said to

(a) converge in probability toD0, denotedDt
P
!

D0, if 8� > 0

lim
t!1

Pf jDt �D0j � � g = 1;

(b) converge almost surely to D0, denoted
Dt

a:s:
! D0, if

Pf lim
t!1

Dt = D0 g = 1 ;

(c) converge completely to D0, denoted Dt
c
!

D0, if 8� > 0
1X
t=1

Pf jDt�D0j > �g <1 : �

The following Lemma 2 summarizes some
dependencies between the different modes of
stochastic convergence.
LEMMA 2:
(a) Dt

c
! D0) Dt

a:s:
! D0) Dt

P
! D0. The

converse is not true in general.

(b) If
 countable, then Dt
P
! D0 , Dt

a:s:
!

D0.

PROOF: (a) [9]; (b) [2]. �

Now we can state the criterion for global con-
vergence:

DEFINITION 5:
Let f� = maxf f(x) : x 2 IBl g and Dt =

f� � maxf f(x
(t)
k) : k = 0; 1; : : : ; n � 1 g.

The cellular genetic algorithms converges to the

global optimum if Dt
P
! 0. �

We note that convergence in probability
should be the minimum requirement. A Markov
chain analysis leads to the following result:

5

THEOREM 1:
The cellular genetic algorithm converges to the
global optimum regardless of the initialization.
Even more: Dt

c
! 0.

PROOF:
It is sufficient to show that f(x(t)k)

c
! f� for any

k = 0; 1; : : :; n � 1. We therefore choose one
specific k and omit the subscript in the sequel.

Since we are only interested in the objective
function value, we may condense the state space
of each individual to T �+2, so that we have to
investigate the behavior of the random sequence
(f(x(t)); � (t); h

(t)
1 ; h

(t)
2 ; : : : ; h

(t)
�).

We shall demonstrate that the above sequence
may be described as a homogeneous absorbing
Markov chain, whose only absorbing state is
(f�; f�; f�; : : : ; f�). In this case it is known
(see e.g. [7]) that the probability to transition to
the absorbing state at step t can be bounded from
below by 1�C ��t, whereC > 0 and � 2 (0; 1).
That means, thatPff(x(t))�f� > �g � C ��t.
Thus,X
t�0

Pff(x(t))� f� > �g � C �
X
t�0

�t <1 :

Consequently, we get Dt
c
! 0 and the proof is

completed.
It remains to prove that the above sequence

forms a homogeneous absorbing Markov chain.
First, let us define some subsets of the state space
T �+2:

A1 = f(a; b; �; �; : : :; �) : a; b < f�g ;

A2 = f(f�; c; �; �; : : :; �) : c � bg ;

A3 = f(�; d; f�; �; : : : ; �); : c � d � f�g ;

A4 = f(�; f�; �; �; : : : ; �)g ;

A5 = f(f�; f�; �; �; : : :; �)g ;

A6 = f(f�; f�; f�; f�; : : : ; f�)g ;

where the symbol � is used to denote any value
from the set T . Second, note that it follows
from Lemma 1 that there exists a minimal pos-
itive probability pmin to generate any state in
one step. This probability is just pmin =
minfgijg > 0, where gij denote the entries of
the transition matrix G in Lemma 1.

Now assume that the chain at step2 t � � is
in a state that belongs to A1. Either the chain

2Since the threshold adjustment rule (3) depends on the

remains in class A1 or it transitions to A2 with
a probability of at least pmin > 0. If the latter
occurs then the next state belongs to the set A3,
because the optimal value f� is saved in the his-
tory. After at most � steps the optimal value f�

becomes the threshold value, so that the chain
reaches a state in A4. Now the chain either re-
mains in A4 or it transitions to A5 with a prob-
ability not less than pmin > 0. From now on
individuals with lower objective function value
than the optimal one (below the threshold) are
not accepted. Therefore, the chain remains in
the set A5. After at most � steps all history
values become f� and the chain has reached its
only absorbing point. This always happens re-
gardless of the initialization of the algorithm.
Consequently, the Markov chain is absorbing
and the proof is completed. �

4 First Computational
Results

Just to achieve a first assessment of the beha-
vior of the Great Deluge GA (GDGA), exper-
iments were run on a NP–hard multiple knap-
sack problem with varying neighborhood and
window size. The problem can be formalized as
follows:

f(x) = cTx ! max
s.t. Ax � b

with x 2 IBl, c 2 IRl
+, b 2 IRm

+ and A 2

IRm;l
+ . The constraints were included into the

objective function by a penalty technique in the
same manner as in [8]:

f(x) = cTx� v � cmax ! max ;

where v denotes the number of violated con-
straints and cmax the largest entry in the cost
vector c.

Here, the problem had dimension l = 50 and
m = 5 constraints. Figure 1 summarizes the

time parameter for the first � steps, the Markov chain is not
homogeneous for the first steps. But we are interested in
asymptotic results, so we regard the first steps as a mechan-
ism to generate the initial distribution and let the chain start
at step �.

6

success frequency of the GDGA with 500 indi-
viduals after at most 500 generations for neigh-
borhoodsizes varying from1 to 200 and window
sizes between 1 and 500. The mutation probab-
ilitywas pm = 1=l and the crossover probability
for one point crossover was pc = 1 for all runs.
For each setting 200 runs were made resulting
in more than 50,000 runs in total.

Fig. 1: Success frequency of GDGA for a multiple
knapsack problem of dimension 50 with 5 constraints
for varying neighborhood size and window size �.

The above figure indicates that this problem
was solved significantly more often with a neigh-
borhood size at about 20 and and a window size
at about 100 than with other parameter settings.
The GDGA with neighborhood size 200 and
window size � = 500 should behave similar
to a traditional GA, because reproduction then
considers almost the entire population and the
threshold rule is switched off effectively.

For safety experiments were run with a tradi-
tional GA. The results were obtained by using
the software package Genesis 5.0 that uses two–
point–crossover and stochastic universal selec-
tion by default.

The tests were conducted with mutation prob-
abilities pm 2 f:001; :005; :010; :015; :200g
and crossover probabilities pc 2 f:6; 1:0g, us-
ing 200 runs per parameter setting. None of the
runs succeeded in finding the optimum within

500 generations – as expected.

5 Conclusions

The GA with spatially local interactions and
self-adapting acceptance threshold shows a sig-
nificant better convergence behavior than its tra-
ditional counterpart with global (panmictic) in-
teractions and without acceptance threshold, if
the parameters are set appropriate. Although the
tests were run for one problem instance only,
we expect similar results for other problem in-
stances. The relatively large neighborhood ra-
dius necessary to produce good results is a little
bit counter–intuitive and disappointing with re-
spect to the suitabilityof the approach for SIMD
parallel computers. A possible route to reduce
the communication effort might rely on other
spatial topologies.

Finally, different selection operators like
ranking etc. could produce a different conver-
gence behavior with smaller optimal neighbor-
hood radii. These investigations, the test of other
problem instances and the understanding of the
search dynamics remain for future work.

References

[1] T. Bäck and H.-P. Schwefel. An overview
of evolutionary algorithms for parameter
optimization. Evolutionary Computation,
1(1):1–23, 1993.

[2] Y.S. Chow and H. Teicher. Probability
Theory. Springer, New York, 1978.

[3] G. Dueck, T. Scheuer, and H.-M. Wall-
meier. Toleranzschwelle und Sintflut: neue
Ideen zur Optimierung. Spektrum der Wis-
senschaft, pages 165–171, March 1993.

[4] E. Goles and S. Martinez. Neural and auto-
mata networks. Kluwer, Dordrecht, 1990.

[5] M. Gorges-Schleuter. ASPARAGOS: an
asynchronous parallel genetic optimiza-
tion strategy. In J.D. Schaffer, editor, Ge-
netic Algorithms, Proceedings of the 3rd

7

International Conference on Genetic Al-
gorithms, pages 422–427. Morgan Kauf-
man, San Mateo, 1989.

[6] J.H. Holland. Adaptation in natural and
artificial systems. The University of
Michigan Press, Ann Arbor, 1975.

[7] M. Iosifescu. Finite Markov Processes
and Their Applications. Wiley, Chichester,
1980.

[8] S. Khuri, Th. Bäck, and J. Heitkötter. The
zero/one multiple knapsack problem and
genetic algorithms. In E. Deaton, D. Op-
penheim, J. Urban, and H. Berghel, ed-
itors, Proceedings of the 1994 ACM Sym-
posium on Applied Computing, pages 188–
193. ACM Press, New York, 1994.

[9] E. Lukacs. Stochastic Convergence. Aca-
demic Press, New York, 2nd edition, 1975.

[10] S.W. Mahfoud and D.E. Goldberg. A ge-
netic algorithm for parallel simulated an-
nealing. In R. Männer and B. Mander-
ick, editors, Parallel Problem Solving from
Nature, 2, pages 301–310. North Holland,
Amsterdam, 1992.

[11] H. Mühlenbein, M. Gorges-Schleuter, and
O. Krämer. Evolution algorithms in com-
binatorial optimization. Parallel Comput-
ing, 7:65–88, 1988.

[12] M.E. Palmer and S.J. Smith. Improved
evolutionary optimizationof difficult land-
scapes: Control of premature convergence
through scheduled sharing. Complex Sys-
tems, 5:443–458, 1991.

[13] G. Rudolph. Parallel approaches to
stochastic global optimization. In
W. Joosen and E. Milgrom, editors, Par-
allel Computing: From Theory to Sound
Practice, Proceedings of the European
Workshop on Parallel Computing (EWPC
92), pages 256–267. IOS Press, Amster-
dam, 1992.

[14] G. Rudolph. Massively parallel simulated
annealing and its relation to evolutionary
algorithms. Evolutionary Computation,
1(4):361–382, 1993.

[15] G. Rudolph. Convergence properties of
canonical genetic algorithms. IEEE Trans-
action on Neural Networks, 5(1):96–101,
1994.

[16] P. Spiessens and B. Manderick. A
massively parallel genetic algorithm: Im-
plementation and first analysis. In R.K.
Belew and L.B. Booker, editors, Pro-
ceedings of the fourth Conference on Ge-
netic Algorithms, pages 279–286. Morgan
Kaufmann, San Mateo, 1991.

[17] J. Sprave. Parallelisierung Genetischer
Algorithmen zur Suche und Optimierung.
Diploma thesis, University of Dortmund,
Department of Computer Science, Decem-
ber 1990.

[18] J. Sprave. Linear neighborhood evolu-
tion strategies. In A.V. Sebald and L.J.
Fogel, editors, Proceedings of the 3rd
Annual Conference on Evolutionary Pro-
gramming, pages 42–51. World Scientific,
River Edge (NJ), 1994.

[19] M. Tomassini. The parallel genetic cellu-
lar automata: Application to global func-
tion optimization. In R.F. Albrecht, C.R.
Reeves, and N.C. Steele, editors, Artifi-
cial Neural Nets and Genetic Algorithms,
Proceedings of the International Confer-
ence in Innsbruck, Austria, pages 385–391.
Springer, Wien, 1993.

[20] A.L. Toom et al. Discrete local Markov
systems. In R.L. Dobrushin, V.I. Kryukov,
and A.L. Toom, editors, Stochastic cellular
systems: ergodicity, memory, morphogen-
esis, pages 1–182. Manchester University
Press, Manchester, 1990.

[21] D. Whitley. Cellular genetic algorithms.
In S. Forrest, editor, Proceedings of the
5th International Conference on Genetic
Algorithms, page 658. Morgan Kaufman,
San Manteo (CA), 1993.

[22] S. Wolfram, editor. Theory and Applic-
ations of Cellular Automata. World Sci-
entific, Singapore, 1986.

8

