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ABSTRACT

Global selection in panmictic evolutionary algorithms often causes premature con-
vergence. Approaches with non-panmictic populations have been made mostly in
parallel implementations to eliminate global control. This results in new types of
selection, which may also improve the reliability of sequential evolutionary algo-
rithms. Most previous approaches in the past were based on genetic algorithms
(GA), but this paper focuses evolution strategies (ES). Three ES-based approaches
with a ring topology are introduced, one with a GA-like kind of mating selection,
and two which are very close to the standard (�; �)-ES and (� + �)-ES. They
have been compared to traditional ES in numerical experiments. The results show
the dependence of convergence reliability and neighborhood sizes, and that local
selection can improve the exploitation facility of ES with only a linear slow-down
in exploration.

1. Parallel Evolutionary Algorithms

1.1. Interaction Models

There are at least two di�erent approaches to parallel evolutionary algorithms

(EA). The �rst is called the migration model and results in coarse grain distributed

applications. A couple of instances of a standard EA are running on di�erent proces-

sors, providing a migration facility to exchange genetic material between populations.

The travelers can be chosen in many ways { you can allow the best to travel, urge

the worst, choose travelers randomly or anything else.

Communication can be accomplished asynchronously to prevent the processors

from being idle. By tuning the local population sizes and migration frequencies

these algorithms can be scaled to a balanced usage of processing and communication

resources.

The subpopulations are still panmictic: for each individual, any other individual

in the same population is a potential mating partner.

The second approach is known as di�usion model , plant pollination model5 or

neighborhood model . The individuals are placed in an arbitrary space, e.g., on a

two-dimensional grid. On top of this topology it is easy to de�ne some kind of neigh-



borhood. By constraining evolutionary processes to this neighborhood, the need for

any kind of global knowledge is eliminated. Mapping this to a grid of processors

results in a �ne grain approach for parallel EAs. In contrast to migration, these algo-

rithms lack the feature of scalability. Nevertheless, because of their regular structure,

they are well-suited for data parallel computers, such as the Connection Machine.

The neighborhood model is not only an approach for parallelism, it is as well a

better model of nature. The existence of a global selection authority is a very strong

simpli�cation in classic EA.

To implement the two-dimensional neighborhood model on MIMD-machines, the

processors themselves are connected to a torus, and a subgrid of individuals is placed

on every processor. Now the borders must be exchanged between adjacent subgrids

after every generation. Because EAs are very robust, there is no need for synchroni-

zation of the tasks placed on di�erent processors.

An implementation like this, based on a genetic algorithm (GA), is DIOGENES11.

It has shown that the size of the subgrids is the parameter to balance computation and

communication, thus the parallelism is scalable as in the migration model. Numerical

results from DIOGENES have shown that local selection can improve the ability of

EAs to �nd the global optimum of multi-modal problems.

1.2. Local Selection in Genetic Algorithms

There are many parallel EAs using the neighborhood model, and most are GA-

based. These approaches have in common that a new selection operator had to be

introduced.

To generate the successor of an individual for the next generation, Collins and

Je�erson4 took two series of samples from the neighborhood and chose the best of

each series as parents for the new individual.

Sprave11 made experiments with di�erent selection strategies. The best results we-

re achieved by a deterministic selection: each individual was replaced by the o�spring

of itself and its �ttest neighbor.

Spiessens and Manderick10 took a selection scheme as close as possible to sequen-

tial GA, a local proportionate selection: �rst, each individual is replaced by one of its

neighbors, selected according to the local �tness distribution. After that, each indi-

vidual selects a mating partner from its neighborhood (which itself has been selected

by local proportionate selection in the step before), to produce a successor for this

position in next generation.

All neighborhood GAs have shown that the diversity in a population can be pre-

served for many generations. Thus, exploration of the search space is improved, and



the exploitation is not necessarily worse than in a panmictic GA.

2. Linear Neighborhood Evolution Strategy

Using local selection also in sequential EAs should lead to more diversity during

the optimization process, and thus increase the probability of discovering the global

optimum of multimodal objective functions. This approach looks very much like

a Cellular Automaton~(CA). There are two violations of the rules which Wolfram12

de�ned a CA to possess: the transitions are not deterministic, and, in case of an ES,

the states are not discrete.

In the theory of cellular automata, most analysis concerns one-dimensional or

linear cellular automata, because they are simple but have nearly all the properties of

multi-dimensional CA. So, the linear topology seems to be a good choice for analyzing

cellular EA, too.

2.1. Local Selection Schemes

The next three sections describe three local selection schemes for ES. Although

they are described for a ring topology in this paper, they are well-suited for any kind

of topology as long as a neighborhood of more than two individuals is de�ned for each

place in the population.

The Linear-Neighborhood-ES (LNES) is an ES with a neighborhood de�ned by

using the index of each individual. The neighborhood with radius � of the individual

ai consists of

NB�(i) := fa(i��); ::; a(i+�)g (1)

where the indices are calculated modulo population size so that the result is a ring

topology.

2.2. Local Mating Selection

The di�erence of selection schemes of GA-like proportionate selection, ranking and

so on, and the ES's (�; �)-selection can be reduced to di�erent acceptance probability

functions. Nevertheless, selection in GA is more or less intended as amating selection,

wherein the best individuals have most o�spring. In ES, a surplus of o�spring is

produced and only the best of them survive and each has the same chance to be

chosen as a parent.

While it is easy to constrain the GA's mating selection to a neighborhood, the

extinctive selection used in ES is inherently global. Of course, it is possible to transfer

the GA's selection scheme to ES by choosing two parents from the neighborhood by



proportionate selection, and replace the central individual by their o�spring in the

next generation.

The neighborhood size is typically small to maximize local e�ects. Therefore, the

simple mating selection described below should produce similar results like ranking

or proportionate selection, except for the fact that, as long as the neighborhood size

is not greater than the population size, one individual cannot be chosen twice to

produce one o�spring.

For each individual ai, do synchronously (in parallel or pseudo-parallel):

� Choose the two best from its neighborhood.

� Recombine them to one o�spring named a0i.

� Mutate a0i.

� Replace ai by a0i.

Recombination and mutation operators are the same as in traditional ES (for de-

tails see Schwefel and B�ack2). Note that if the neighborhood is the whole population,

this selection becomes a (2; P )-ES (where P is the size of the ring topology) and, if

� is at least P , a (1; P ).

2.3. Local (�; �)-Selection

To make comparison to standard ES easy, a (�; �)-selection was combined with

the neighborhood model. Assuming that � is a multiple of the population size �, the

calculation of a new generation in a (�; �)-LNES works as follows:

For each individual ai, do synchronously (in parallel or pseudo-parallel):

� Choose �=� times two parents randomly from NB�(i) and recombine them to

a0i;j; 1 � j � �=�.

� Replace ai by a0i which is chosen as the best of the a0i;j.

� Mutate a0i as in a panmictic ES.

Now there are two extreme values for �:



� � = b�=2c

This case is very close to a (�; �)-ES, but not the � best are the parents of

the next generation. Instead, there are � sets of �=� individuals created, and

the best of each set is taken to the next generation. The selection pressure is

weaker, but because the parents are taken randomly from the whole population,

it should be still su�cient to generate an e�cient search.

� � = 0

This is nothing but a (1; �=�)-ES, started � times in parallel.

Another interesting case is � = 1, the smallest symmetrical neighborhood which is

possible. It is expected to be slower in unimodal problems, and better in multimodal

functions.

2.4. Local (�+ �)-Selection

If the o�spring is only accepted when it is better than its local predecessor, the

algorithm behaves very much like a (� + �)-ES. The quality function value of each

position in the population is monotonic decreasing (in case of minimization). If there

is a lower boundary for the step sizes, the proof of global convergence for the panmictic

(+)-ES3 is valid for this kind of ES, too.

3. Results

All test functions are minimization problems taken from a comparison of genetic

algorithms and evolution strategies by Ho�meister and B�ack6. For the sphere model,

all evaluations are averaged over 50 runs with di�erent seed values for the random

number generator, and n di�erent step sizes �i were used (where n is the dimension

of the test function). For all test functions discrete recombination was taken for

xi, and intermediate recombination for the step sizes �i. All step sizes are varied

self-adaptive, correlated mutations have not been used at all.

The main objective of the experiments was to observe the e�ects produced by

local selection. A given parameter setting was tested with neighborhood radius �

varying from 1 to �=2.

3.1. Sphere Model

The �rst test function is the sphere model



f1(~x) =
nX

i=1

x2i ;~x 2 Rn (2)

n = 30; �5:12 � xi � 5:12

This function can show the ability of the algorithms to proceed straight to the

optimum in unimodal environments. Figure 1 shows the best function value found

after 500; 000 function evaluations varying the neighborhood radius from 1 to 50.

Population size � was set to 100 for LNES. The (+) and (; ) strategies produced

six children per position each generation, while the mating-LNES does not need to

produce a surplus. For comparison, a (100; 600)-ES and a (10; 60)-ES were run with

the same initialization.
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Figure 1: Evaluation of f1

The local (� + �)-strategy fails to make any progress towards the optimum (the

worst initial value which is possible is 768:2). It is di�cult already for a panmictic

(� + �) strategy to learn n step sizes, but it is obviously impossible for the local

variant.

Mating selection works well with a neighborhood radius of six or more. This is a

strong hint that this kind of selection also needs a ratio of at least six children per



parent to learn individual step sizes, as suggested by Schwefel8. Beyond that ratio, it

has a strong emphasis on local search.

Although the (�; �)-LNES is much slower than traditional ES, it has the same kind

of linear convergence in quadratic environments. In contrast to the former strategy, it

performs much better with very small neighborhood sizes, which is very advantageous

for parallel implementations: the smaller the neighborhoods, the less communication

is required.

3.2. Generalized Rastrigin Function

The generalized Rastrigin function is a very di�cult problem for panmictic ES,

as shown by Ho�meister and B�ack6, and it was used by Rudolph7 to show the ability

of the migration model ES to �nd the global optimum in multimodal environments.

f7(~x) = nA+
nX

i=1

x2i �A cos(!xi) ; ~x 2 Rn (3)

n = 20; A = 10; ! = 2�; �5:12 � xi � 5:12
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Figure 2 shows the percentage of successful runs (from 250 runs in total) dependent

on the neighborhood radius. Because all variants with multiple step sizes failed to

�nd the global optimum within 100 runs, they are not drawn.

The most successful runs, about 65%, were performed by the (100; 600)-LNES

with one step size for all xi and small neighborhood sizes. Larger neighborhood

sizes are worse, but nevertheless nearly as good as the panmictic (100; 600)-ES. A

(10; 60)-ES did not �nd the optimum even once in 150 runs.

The mating-LNES su�ers from premature convergence: its emphasis on local

search is too strong even with only one step size: very few runs were successful.

3.3. Shekel's Foxholes

Shekel's Foxholes9 is known as a hard problem for ES. It consists of a large plateau

with a few holes of di�erent depths. On the plateau, an ES gets no hint which direction

to go to. Once the population falls into one of the holes, it is nearly impossible for

the procedure to leave it and search for another.

1

f5(~x)
=

1

K
+

25X

j=1

1

cj +
P2

i=1(xi � aij)6
; ~x 2 R2 (4)

K = 500; f5(a1j; a2j) � cj = j

a1j = 16 (j mod 5 � 2); a2j = 16 (bj=5c � 2)

To avoid that some initial points are already placed in holes, the start population

is not sampled from an interval including the holes as in the comparison of Ho�meister

and B�ack6, but initialized far away from the holes: xi = 10; 000 for all individuals.

A (100; 500)-LNES with neighborhood size 1 is still able to �nd the global optimum

with a high probability.

To understand the internal process, a visualization method has been applied to

LNES which is very often used for Cellular Automata: each objective function value

is mapped to a color, so each generation can be displayed as a line of dots. Drawing

these lines one below the other shows the �tness distribution inside the population

over the time. Figure 3 shows a typical run of LNES on Shekel's Foxholes. In the

beginning, the entire population is white, which indicates individuals searching on

the plateau. Every hole is mapped to a greyscale, the darker the deeper. It can be

seen that, while some points of the population are already in holes, the rest of the

population keeps on creeping around on the plateau. The global optimum, painted

in black, has been found several times and is expanding slowly but steadily over the

population. Eventually, after a number of generations depending on neighborhood

sizes, the optimal solution would take over the whole population.



Figure 3: Typical �tness distribution for Shekel's Foxholes

4. Summary

Linear neighborhood ES have properties that are similar to traditional ES. Ex-

cept for the mating selection, the emphasis on local search is much weaker than in

traditional ES, but the exploration facility is much better instead, because they are

able to explore a set of attractive areas in parallel.

LNES are free of global evolutionary operators, and are therefore well-suited for

parallel implementations. The granularity of parallel implementations can be tu-

ned by the local population size and the neighborhood radius. As already shown11,

the neighborhood model for evolutionary algorithms also works with asynchronous

communication to exchange the overlapping neighborhoods.

The local mating selection introduced here is an alternative approach to provide

the selection pressure which is necessary for self adaption of step sizes, but it is not

suited for global optimization.

1. Richard K. Belew and Lashon B. Booker, editors. Proceedings of the Fourth

International Conference on Genetic Algorithms and their Applications, Uni-

versity of California, San Diego, USA, 1991. Morgan Kaufmann Publishers.

2. Thomas B�ack and Hans-Paul Schwefel. An overview of evolutionary algorithms

for parameter optimization. Evolutionary Computation, 1(1):1{23, 1993.

3. Joachim Born. Evolutionsstrategien zur numerischen L�osung von Adaptati-

onsaufgaben. Doctoral dissertation A, Humboldt-University, Berlin, 1978.



4. Robert J. Collins and David R. Je�erson. Selection in massively parallel ge-

netic algorithms. In Belew and Booker1, pages 249{256.

5. David E. Goldberg. Genetic algorithms in search, optimization and machine

learning. Addison Wesley, 1989.

6. Frank Ho�meister and Thomas B�ack. Genetic algorithms and evolution stra-

tegies | similarities and di�erences. Papers on Economics & Evolution

9103, European Study Group for Evolutionary Economics (ESGEE), Novem-

ber 1991.

7. G�unter Rudolph. Globale Optimierung mit Parallelen Evolutionsstrategien.

Diploma thesis, University of Dortmund, Department of Computer Science,

Dortmund, Germany, July 1990.

8. Hans-Paul Schwefel. Collective phenomena in evolutionary systems. In Pre-

prints of the 31st Annual Meeting of the International Society for General

System Research, Budapest, volume 2, pages 1025{1033, June 1987.

9. J. Shekel. Test functions for multimodal search techniques. In Fifth Annual

Princeton Conference on Information Schience and Systems, 1971.

10. Piet Spiessens and Bernard Manderick. A massively parallel genetic algorithm:

Implementation and �rst analysis. In Belew and Booker1, pages 279{286.

11. Joachim Sprave. Parallelisierung Genetischer Algorithmen zur Suche und Op-

timierung. Diploma thesis, University of Dortmund, December 1990.

12. Stephen Wolfram. Statistical mechanics of cellular automata. In S. Wolfram,

editor, Theory and Applications of Cellular Automata, chapter 1, pages 7 { 50.

World Scienti�c Publishing, Singapore, 1986.


