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1 Introduction

The �eld of time series analysis and forecasting methods has signi�cantly changed in the last
decade due to the inuence of new knowledge in non-linear dynamics. New methods such
as arti�cial neural networks replaced traditional approaches which usually were appropriate
for linear models only.
Nevertheless, there are still applications where accurate estimations of linear processes,
such as ARMA models, are su�cient. However, the methods for this class of models were
developed more than 20 years ago, with the restrictions of those days' computers in mind.
The work described in this paper is an attempt to combine the ideas of the widely used Box-
Jenkins method [2] with new approaches to model identi�cation and parameter estimation
based on Evolutionary Algorithms, a class of probabilistic parameter optimization methods.

2 Traditional ARMA Process Estimation

The ARMA[p; q]- or Box-Jenkins-model is one of the most traditional techniques in statistical
time series analysis. The assumed model is of the form

xt = �1xt�1 + : : :�pxt�p + "t � �1"t�1 � : : :� �q"t�q ,

where p is the order of the autoregressive part, q is the order of the moving-average part,
�1; : : : ; �p are the autoregressive parameters and �1; : : : ; �q are the moving-average para-
meters. "t denotes the series of errors. The time series xt is supposed to be stationary.
The statistician's way of approaching the modeling of such an ARMA[p; q] process is to
�rst determine the model orders p and q. Therefore, it is necessary to calculate some basic
quantities of the time series, namely the empirical autocorrelation function and the empirical
partial autocorrelation function. The plots of these two functions give hints with respect to
the model orders. Nevertheless, this method is only useful for low model orders and does
not provide a reliable tool for model identi�cation.
Once the orders of the process are determined, it is necessary to estimate the model para-
meters. The two methods used for this problem are least-squares and maximum-likelihood
estimation. For both possibilities a corresponding function has to be established and op-
timized. The optimization itself is usually made by means of numerical methods which -



especially in problems of such complexity - do not guarantee a convergence to the global
optimum.
The necessary third step in the process of ARMA modeling is the veri�cation of the found
model's plausibility, called the model diagnosis. It covers - among others - the following
diagnosis tools:
The Ljung-Box statistic provides a useful tool to investigate the independence of the resid-
uals, which is an important assumption for the model. The statistic essentially contains the
sum of the squared residual correlations up to a speci�ed lag. This sum being too large
indicates that the model is not su�cient for the data.
To be sure that the �tted model is stationary, the zeroes of the characteristic polynomial
of the model's AR-part have to be evaluated. The model is stationary if all these zeroes lie
outside of the complex unit circle.
Furthermore, to avoid parameter redundancy the zeroes of the characteristic AR-polynomial
have to be compared to the zeroes of the characteristic MA-polynomial. Common zeroes
indicate parameter redundancy, which means that the model can be shortened by two para-
meters.
Since there are various reasons to keep the model order as low as possible, information criteria
can be introduced to combine the need for a good �t with the \principle of parsimony".
These criteria (e.g. Bayesian Information Criterion, Akaike's Information Criterion) join the
residual variance on the one hand and the model orders on the other hand. The analyst's
aim is then to minimize such a criterion.
If all these restrictions and conditions can be ful�lled, the found model can be accepted.
On the other hand, if one of them is violated, the whole process of model identi�cation,
parameter estimation and model diagnosis has to be repeated until an appropriate model
has been found.

3 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are adaptation and optimization methods based on the
Darwinian model of natural evolution. Although developed independently, all variants of
EAs (Genetic Algorithms[5, 4], Evolution Strategies[7, 9], Evolutionary Programming[3])
can be seen as particular realizations of the same idea. In fact, EAs are not algorithms in
the usual meaning, but form a class of methods based on similar principles.
By far the most applications of EAs are parameter optimization tasks: For a given objective
function

f : D 7! IR; D � IRn

where n is the number of problem parameters, �nd the point

x� 2 D : f(x�) � f(x) 8x 2 D:

In EAs, points in the search space are modeled as individuals in an arti�cial environment. In
contrast to most other optimization methods, a set of points (population) is handled in each
iteration rather than just a single point. The chance of being selected as a parent of the next
generation depends on the �tness of an individual, which is usually a simple transformation
of the objective function. New search points are generated by

� Reproduction:
Create o�spring from one parent (asexual reproduction), or from two or more parents
(sexual reproduction, recombination, crossing over).

� Mutation:
Apply small random changes to new search points.



� Selection:
Individuals with a high �tness are more likely to be selected for reproduction.

The major advantage of EAs is that they do not require any knowledge of the characteristics
of a given optimization problem. They do not depend on certain properties of the objective
function, such as convexity, di�erentiability, or smoothness. EAs are especially useful for
global optimization tasks, where deterministic methods su�er from being attracted by local
minima. For a comprehensive introduction to EAs, the reader is referred to [1]. In the
following, we focus on the di�erences between the EA used for the work described here and
the traditional implementations.

3.1 Internal Representation

An important aspect in the de�nition of a �tness function for an EA is the so-called genotype

to phenotype mapping. Following the model of natural evolution, the genotype is the internal
representation of an individual, like a blueprint. The phenotype is a particular realization
of this blueprint, so two individuals with identical genes may look di�erent due to environ-
mental inuences. Likewise, the internal representation used in EAs must be transformed
in a problem speci�c form to evaluate the �tness. E.g., the traditional encoding of an indi-
vidual in Genetic Algorithms is a binary string. In order to evaluate such a string as a set
of �xed point numbers, bits must be grouped together, interpreted as integer numbers, and
scaled to the application-dependent parameter range.
For almost every successful real-world application, the homogeneous internal representations
used in the basic EAs is not well suited. Instead, a problem speci�c internal representation
must be de�ned in order to avoid domain restrictions and repair operators. For a discussion
of non-standard representations, see [6].
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Fig. 1: Mapping from a �xed dimensional internal representation to a variable length AR parameter

vector. The resulting order is p = 5

Since the AR and MA models orders are variable, the number of real values required for
an evaluation is not �xed. A mapping that transforms a �xed dimensional internal rep-
resentation to variable dimensional problem instances was introduced in [8]. The gen-
ome in the EA consists of a vector of real values xi 2 IR; i = 1; : : : ; n, and a bit string
b; bi 2 f0; 1g; i = 1; : : : ; n. Real variables are summed up as long as the corresponding bits
are equal. Obviously, n is an upper bound for the dimension of the resulting parameter
vector.



3.2 Genetic Operators

Mutation and recombination of the real variables are taken from the Evolution Strategy as
described in [10]. For the binary strings, the standard Genetic Algorithms operators, i.e. bit
ip mutation and two point crossover, are used.
The selection operators for the experiments described here are local variants of the (�; �)
Evolution Strategy selection, as suggested in [11].

4 Estimation of the Error Series

The main problem of the error series estimation lies in the fact that the quality of the
parameter estimation depends very much on the accuracy of the estimated error series. The
simple traditional way of obtaining the errors is to �t a very long AR-process to the given
time series by means of the Levinson-Durbin recursion and to use the residual series of this
process as an estimate for the error series.
In this approach, another idea of error estimation is used: Instead of using the suggested
AR-process to gain the residuals, the residuals of the currently best �tting ARMA-model
are used as error series for the next iteration:

^̂"t = xt � (�1xt�1 + : : :+ �pxt�p � �1"̂t�1 � : : :� �q "̂t�q):

As a preliminary estimate for the �rst step, all elements are set to their expected value zero.
This technique leads to a permanent improvement of the �t of the error series as well as of
the model itself. This means that the same set of parameters can result in di�erent �tness
values depending on the current error estimation.
The approach takes advantage of one of the features of Evolutionary Algorithms: They are
robust against noise and therefore enable the whole method to estimate the error series
on-the-y.

5 De�nition of the Fitness Function

The aim of combining traditional ARMA modeling with Evolutionary Algorithms is to
provide a tool that o�ers model identi�cation as well as parameter estimation and model
diagnosis without needing the help of a user in the �rst place. Therefore, the Evolutionary
Algorithm has to optimize the model order and the parameters simultaneously with respect
to the restrictions made available by the di�erent model diagnosis tests.
As a �tness function both least squares and likelihood function can be taken into considera-
tion. For the least squares estimation at �rst the series of errors has to be estimated, which
is done as described above. After this the least squares function

P
[xt � (�1xt�1 + : : :+ �pxt�p � �1"̂t�1 � : : :� �q "̂t�q)]2

can be calculated for each individual to evaluate its �tness.
It is now possible to add the di�erent statistical model diagnosis tools to improve the es-
timation's quality:
To decide, whether or not a parameter is signi�cantly di�erent from zero, the statistical t-test
with hypothesis \The parameter equals zero" can be applied to each estimated parameter.
Alternatively, con�dence-intervals for the parameters can be constructed to make sure that
all estimated parameters are needed for the model. If the test did not reject the hypothesis
for a parameter or a parameter's con�dence-interval contained zero, this parameter would
be removed from the parameter set.
To make sure that there is no parameter redundancy and that the suggested model is
stationary, the zeroes of the characteristic functions of the AR- and the MA-part have to be



evaluated and compared as described above. All these criteria can be used as restrictions to
the parameter space.
The Ljung-Box statistic on the other hand could be used both as restriction or as part of
the �tness function: For a restriction the statistic would be compared with the 95%-quantile
of the corresponding �2-distribution. The test would reject the hypothesis of independent
residuals, if the value of the statistic was larger than the quantile. On the other hand the
statistic's value could be looked at as another criterion to minimize, since a low correlation
of the residuals is desirable.
The information criteria naturally can not be used as restrictions, but since they contain
the model orders as well as the �t, they could be used as �tness functions.
After all, there is more than one function that would be desirable to optimize and so it is
necessary to take multi-criteria optimization into consideration.

6 First Results

Although the practical work is still in the beginning, a few experiments have been made
to show the feasibility of the approach. In order to be able to proof the correctness of the
results, synthetic ARMA[p; q] time series up to p; q = 3 were used for this study.
As a �rst positive result it can be said that the estimation of the error series is very successful,
the estimates approach the true simulated series rapidly, as can be seen in �gure 2.
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Fig. 2: Typical decrease of the mean absolute di�erence between the real errors from the synthet-

ically generated time series and the errors estimated by the EA over the �rst 18 generations. The

standard deviation of the real errors is 1:0.

As far as the achieved �t is concerned, the �gures are also convincing. Though the model
orders are not always correctly identi�ed, the least squares distance reaches values compar-
able to those reached by the Statistical Analysis System (SAS) [12]. For the latter one, of
course, the correct model orders must be given.
As already mentioned, the identi�cation of the model orders is not reliable yet. The fre-
quency of correct identi�cations depends very strongly on the given time series. As an
average over all tested models it can be said that a quota of about 20% of the models have
been identi�ed correctly.
To improve the frequency of correct identi�cations, di�erent diagnosis tools have been in-
troduced and tested: The t-test on signi�cant di�erence of the parameters from zero was
thought to be useful to reduce the estimated model orders, but turned out to be unable



to improve the former results since it eliminated not many parameters. Better results are
expected from the introduction of con�dence-intervals instead of the test, since they do not
depend on an �-level which is almost impossible to control for such a large number of tests.
As well as the t-test, the test for stationarity turned out to be not necessary, the algorithm
automatically estimates stationary models. This result is not surprising since the algorithm
would be expected to produce stationary models when there is no trend or season in the
simulated time series.
The �2-test on uncorrelated residuals behaved contrary to the t-test: Introduced as a re-
striction to the model, the Evolutionary Algorithm turned out to be unable to �nd solutions
in the feasible region. The approach to introduce the statistic as part of the �tness function
or as a further optimization criterion therefore seems to be more promising.

7 Conclusions

A new approach to parameter estimation in statistical applications has been introduced.
From the �rst results it can be seen that EAs are suitable tools for the given problem,
although they cannot compete with 20 years of experience which is integrated in the tradi-
tional methods. However, the ARMA estimation problem is only one example to show the
feasibility of the use of EAs in this �eld. As soon as the given problem is either not well
analyzed or too complex to develop a corresponding heuristic, EAs may be the last resort.
It can also be concluded from the �rst experiments with various statistical tests that multi-
criteria optimization should be preferred to penalty functions when the quality of the solution
depends on additional statistical quantities.
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