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Evolution by variation and natural selection is often viewed as an optimization process that
favors those organisms which are best adapted to their environment. This leaves open the issue
of how to measure adaptation and what criterion is implied for optimization. This problem has
been framed and analysed mathematically under the assumption that individuals compete to
minimize expected losses across a series of decisions (e.g. choice of behavior), where each
decision o!ers a stochastic payo!. But the fact that a particular analysis is tractable for
a speci"ed criterion does not imply the "delity of that criterion. Computer simulations
involving a version of the k-armed bandit problem can address the veracity of the hypothesis
that individuals are selected to minimize expected losses. The results o!ered here do not
support this hypothesis.
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Introduction

Evolution is commonly viewed as an optimizing
process (Mayr, 1988; Alexander, 1996; and others).
The question of what is being optimized has
remained open to interpretation. One idea is that
selection favors those behaviors which minimize
expected losses over a series of decisions, where
each decision receives a stochastic payo!
(Holland, 1975). Such a criterion is convenient
mathematically because it is amenable to an
analysis of optimal strategies. But such mathe-
matics cannot address the principal question of
the suitability of the criterion itself; it merely
assumes the criterion as given. However, the apt-
ness of this criterion can be modeled by computer
simulations in which individuals compete for sur-

vival based on the reward they receive while
employing di!erent strategies for sampling from
a k-armed bandit.

The k-armed bandit serves as a familiar anal-
ogy that can provide insight into animal behavior
in diverse environments (Alexander, 1996). Vari-
ations of the analogy are typical in optimality
models that presume individuals can adopt alter-
native behavioral strategies, each having a range
of payo!s with certain likelihoods, much like
pulling a one-armed bandit (a slot machine).
These payo!s can be measured in terms of food
obtained, shelter, reproductive success, or other
suitable standards (Krebs et al., 1978; Green,
1980; Bateson & Kacelnik, 1997). In traditional
evolutionary game theory, expected payo!s
translate linearly into reproductive success or
&&"tness'' (Maynard Smith, 1982). When interest
is focused on the speci"c behaviors that
provide the foundation for that reproductive suc-
cess, however, the relationship between behaviors
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and "tness may be nonlinear. Alternative behav-
ioral strategies can be compared in light of
a chosen mathematical criterion, with those
that are found to be optimal in turn being com-
pared to those observed in nature. It is hoped
that with appropriate abstraction, this math-
ematical device can provide insight into the fun-
damental dynamics that underlie the observed
behaviors.

One widespread abstraction of the k-armed
bandit problem to adaptation in natural settings
is found in the canonical genetic algorithm
(Holland, 1975), in which the problem of adapta-
tion is framed as a series of decisions on how to
best allocate trials to alternative bandits in light
of payo!s received from previous trials. The prin-
cipal assumption underlying the mathematical
framework of genetic algorithms is that the natu-
ral selection minimizes expected losses while
sampling from alternative bandits [described as
&&schemata'' (Holland, 1975)]. Under this assump-
tion, Holland (1975) o!ered what was presumed
to be an optimal sampling strategy of devoting an
exponentially increasing number of trials to the
observed best bandit (the one with the greatest
observed average payo! ). Recent independent
analyses (Rudolph, 1997; Macready & Wolpert,
1998) have, however, proved that the develop-
ment by Holland is mathematically #awed: the
preferred strategy of the genetic algorithm is not,
in truth, optimal for the criterion of minimizing
expected losses.

Rather than seek to "x this circumstance by
discovering alternative strategies that are indeed
optimal for this criterion, a more fundamental
question can be raised: does selection in fact favor
those behavioral strategies which seek to minim-
ize expected losses, and if not, what are the condi-
tions that determine which tactics will be favored
by selection? A "rst answer to this question can
be obtained by studying a two-armed bandit
problem using a simulated population of com-
peting strategies that are subject to random
variation and selection. The hypothesis that se-
lection favors minimizing expected losses can
then be tested statistically by examining the strat-
egies that survive over a large number of genera-
tions. As will be seen, the results of these simula-
tions do not o!er general support for this
hypothesis.

Methods

A population of N individuals was constructed
where each faced the choice of sampling from
either of two slot machines. The "rst machine
o!ered a payo! that was Gaussian distributed
with a mean of 1.0 and standard deviation (S.D.)
of 1.0, while the second was also Gaussian dis-
tributed but with zero mean and a standard devi-
ation that was parameterized by the symbol p

2
.

After each individual sampled from either of the
bandits, all individuals were ranked in order of
decreasing payo! and the subset K of these with
the greatest payo!s were selected to generate
subsequent progeny. In this way, K represented
the carrying capacity of the environment. This
process was then iterated over several thousands
of &&generations''.

The behavior of each individual was de"ned by
a single parameter, p

i
, i"1,2 , N, which corre-

sponded to the probability that it would sample
from the "rst bandit (i.e. the one with the greater
mean). This protocol is typical of phenotypic
optimality models where the underlying genetics
of a particular behavior is abstracted out of con-
sideration (Maynard Smith, 1982). A surplus of
o!spring was generated from surviving indi-
viduals through slight random variation of each
parent's parameter. Each surviving individual
was given an equal probability of being selected
to generate each next o!spring (i"1,2 , N).
Speci"cally, each o!spring's parameter, p@

i
was set

equal to its parent's parameter p
i
with the addi-

tion of zero mean Gaussian noise with standard
deviation of 0.01. This choice was deemed rea-
sonable for representing a small amount of per-
sistent random variation. If any o!spring's p@

i
became greater than 1.0 or less than 0.0 it was set
to the limit it exceeded, thereby maintaining its
interpretation as a probability. Note that each
parent could generate more than one o!spring.

Consideration was given to cases where the
maximum population size, N, was signi"cantly
larger than the carrying capacity, K. This repres-
ents the case of stringent selection pressure where
a great percentage of o!spring do not survive
to reproduce and the reproductive strategy of
generating a tremendous surplus of o!spring is
adopted, rather than having parental investment
be constrained to only a small number of
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FIG. 1. The mean probability of choosing the bandit with
greater average payo! as a function of the standard devi-
ation of the bandit with lower average payo!. (a) K"1 and
N"100, and (b) K"100 and N"10 000. Sampling was
conducted from generation 100 000 to 10 million for case (a),
and 20 000 to 120 000 for case (b), so as to avoid transient
e!ects that might result from the uniform initialization of
strategies. Under the hypothesis that selection would favor
strategies that minimize expected losses, the anticipated re-
sult would be a #at line indicating complete certainty of
choosing the "rst bandit regardless of the value of p

2
. In

contrast, the results indicate not only a lack of convergence
to strategies which always choose the "rst bandit when p

2
is

small but also a consistent shift that favors strategies which
choose the second bandit with lower mean payo! as p

2
is

increased. Each datum is the average on the order of 105 or
107 trials and thus the 95% con"dence limits around each
point are not visible at the scale shown. The results indicate
statistically signi"cant evidence rejecting the hypothesis that
selection favors strategies which minimize the expected
losses (p;10~6).

o!spring. Experiments were conducted for
the cases where (1) K"1 and N"100, and
(2) K"100 and N"10 000 (i.e. on average, each
parent generated 100 o!spring) at various set-
tings of p

2
ranging from 0.01 to 5.0 at selected

intervals. Each individual was de"ned to have
a maximum lifespan of only one generation, that
is, all parents were removed from the population
at each iteration, and only the best K out of the
N o!spring were selected for further reproductive
attention. In both the (1, 100) and (100, 10 000)
cases, the initial population of N individuals was
selected with each individual's probability para-
meter being chosen uniformly at random over the
interval [0, 1].

Attention was focused on the mean of all
surviving parents' probability parameters at each
generation. To avoid initial transient e!ects, data
were recorded from generations 100 000 to 10
million for the case of (1, 100) and from genera-
tions 20 000 to 120 000 for the case of (100,
10 000). The mean probability parameters over
these generations were then averaged to generate
a single datum representing the mean probability
of choosing the "rst bandit for each investigated
setting of p

2
. ;nder the hypothesis that selection

favors strategies that minimize expected losses,
the anticipated results would indicate a strong
tendency to sample from the ,rst bandit regardless
of p

2
because it has the higher average payo+

(Holland, 1975).

Results

Figure 1(a) and (b) show the results for both
cases. The "gures indicate a clear shift in optimal
(i.e. selected) behavior away from sampling the
bandit with the higher mean as the standard
deviation of the second bandit was increased
beyond a particular threshold in the range of
1(p

2
(2. (The threshold point is analysed

mathematically below.) The natural outcome of
these simple evolutionary systems was a selection
for risky behavior even when the average payo!
for that risk was lower than that o!ered by the
less variable option. Note also that even at very
low values of p

2
there was a saturation of the

mean probability of selecting the "rst bandit at
values signi"cantly lower than 1.0. That is, even
when the second bandit had very low variance,

there was insu$cient selection pressure to drive
the mean probability of choosing the bandit with
a higher average payo! to complete certainty.
Even under these conditions, selection did not
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favor strategies that minimized expected losses
exclusively.

Analysis

It is of interest to determine a mathematical
description of the relationship between the mean
probability of choosing the "rst bandit given the
means and standard deviations of the two ban-
dits (k

1
, k

2
, p

1
, p

2
, respectively), and the values

of N and K. Closed-form mathematical analysis
was undertaken but the result was intractable.
Analysis of the case of N o!spring where the
carrying capacity is K"1 also appears intrac-
table except for the trivial case of N"2. It is,
however, possible to o!er useful formulas for
identifying the transition point where the mean
probability of choosing the "rst bandit shifts
from high to low values as a function of the
parameters of the two bandits.

It was noted by observing simulations for
various values of N and K that the variability of
the (selected) p

i
parameters (recall, p

i
is the para-

meter of the i-th individual de"ning their prob-
ability of choosing the bandit with the greater
mean) decreases with the increasing N and K.
That is, for N large and 1;K;N/2, the distri-
bution of p

i
becomes so concentrated that a use-

ful "rst approximation is to replace the random
variate de"ned by the p

i
events by its expected

value, say q. The expected numbers of individuals
sampling from the two bandits are then qN and
(1!q)N, respectively. Assuming the bandits are
described by the random variables

>&k
1
#p

1
N (0, 1), Z&k

2
#p

2
N (0, 1), (1)

respectively. The qN samples from > and the
(1!q)N samples from Z can be ordered accord-
ing to the standard notation from order statistics:

f
1 :j)f

2 :j)2)fj~1 :j)fj :j , (2)

where j is the number of samples to be ordered
with respect to the payo! values f that they
earned. The values received from each arm can be
ordered as

>
1 :qN)>2 :qN)2)>qN :qN ,

Z
1 :(1~q)N)Z

2 : (1~q)N)2)Z
(1~q)N :(1~q)N . (3)

The K best individuals (i.e. those with the largest
payo!s) are selected. Let q@ be the portion of these
individuals that come from > and (1!q@)K be
the resulting number of selected individuals that
come from Z.

Assuming without loss of generality that
a sample from Z is the worst of the K selected
individuals. Then,

>qN~q{K`1:qN*Z
(1~q)N~(1~q{)K`1:(1~q)N

and

>qN~q{K :qN(Z
(1~q)N~(1~q{)K`1:(1~q)N. (4)

Under stationary conditions, the portion q@ of
individuals selected from > must be equal to the
portion q of those actually sampled from>. Thus,
setting q@"q yields:

>q(N~K)`1 :qN*Z
(1~q)(N~K)`1 :(1~q)N

and

>q(N~K) :qN(Z
(1~q)(N~K)`1 :(1~q)N. (5)

While these inequalities can only hold statist-
ically, it is reasonable to assume that they hold
approximately for the expected values of the sam-
pled random variables. That is, in the limit case
as N gets large, stationarity is characterized by

E[>q(N~K)`1 :qN]"E[Z
(1~q)(N~K)`1:(1~q)N]. (6)

With > and Z de"ned as in eqn (1):

k
1
#p

1
cq(N~K) 1̀ :qN"k

2
#p

2
c
(1~q) (N~K)`1:(1~q)N ,

(7)

where c
a :b

is the expected value of the a : b order
statistics of the N (0, 1) normal variate (Arnold
et al., 1992):

c
a :b

"a A
b
aB (2n)~0.5 P

=

~=

x exp(!x2/2) (U (x))a~1

](1!U (x))b~a dx, (8)
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FIG. 2. The observed average payo! S f T (which esti-
mates E[S f T]) earned by the surviving parents for the case
of N"1000 and K"10 as a function of p

2
found by

simulation. The data were obtained by averaging S f T over
200 000 generations after an initial phase of 10 000 genera-
tions. The progress coe$cient needed in eqns (13) and (17) is
c
10@10,1000

+2.64695. As detailed in the text, analysis ex-
plains the observations in terms of two distinct regimes. The
"rst occurs when p

2
is less than the threshold value where

sampling switches between the "rst and second bandit. In
this regime, the surviving parents have nearly constant aver-
age payo!s regardless of p

2
. When p

2
increases beyond the

threshold value, the average payo! earned by the surviving
parents increases linearly with p

2
. The two lines superim-

posed on the data indicate the expected mean payo! in each
regime derived by analysis. The lines are extended to provide
convenient comparison.

where U(x) is the cumulative distribution
function of the N(0, 1) standard normal random
variable (c

a:b
is the expected value of the a-th

highest number drawn from a sample of b). Given
the bandit parameters k

1
, k

2
, p

1
, and p

2
in

eqn (7), p
2

can be expressed as a function of q:

p
2
"

k
1
!k

2
#p

1
cq(N~K)`1:qN

c
(1~q) (N~K)`1:(1~q)N

. (9)

Equation (9) can be further simpli"ed by consid-
ering the asymptotic behavior of c

a :b
. From the

theory of order statistics (Arnold et al., 1992), for
a and b su$ciently large:

c
a :b

KU~1A
a

b#1B , (10)

where U~1(x) is the inverse of the cumulative
distribution function of N(0, 1). Thus, eqn (9)
becomes

p
2
K

k
1
!k

2
#p

1
U~1[q(N!K)#1/qN#1]

U~1[(1!q) (N!K)#1/(1!q)N#1]
.

(11)
For NPR:

p
2
Kp

1
#

k
1
!k

2
U~1[(N!K)/N]

. (12)

This surprisingly simple formula can predict the
phase transition point well, especially as N gets
large and K being not too small. For example, for
the case shown in Fig. 1(b) with N"10 000 and
K"100, eqn (12) yields p@"1.4292 as the thres-
hold value of p

2
. We have tested eqns (9), (11),

and (12) in simulations using N"1000 and
K"5, 10, 50, 100, 200, 300, 400, and 450 (note
that 1;K;N/2 as was assumed in the above
derivation) and found good agreement between
the predicted and observed behavior [as is also
observed in Fig. 1(a)].

In addition to predicting the threshold of
transitioning between the two bandits, analysis
can be performed to indicate the expectation of
the average payo! to the surviving parents as
a function of p

2
for large N and 1;K;N/2. As

seen in Fig. 2 for the case of N"1000 and

K"10, the empirical mean parental "tness takes
on two distinct regimes: when p

2
(p@, the mean

threshold value when the observed behavior
shifts, the mean parental "tness is constant but
when p

2
'p@, the mean parental "tness increases

linearly. For the assumed conditions on N and
K, when p

2
(p@, q+1. Assuming that almost

all surviving parents sample from >&k
1
#

p
1
N(0, 1), their expected average payo! is

E[S f T]"E C
1
K

K
+
i/1

(k
1
#p

1
N(0, 1))

N~i`1:ND
"k

1
#p

1

1
K

K
+
i/1

c
N~i`1:N

"k
1
#p

1
c
K@K,N

, (13)

where

c
K@K,N

"

1
K

K
+
i/1

c
N~i`1:N

, (14)
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which is known in the literature of evolutionary
algorithms as the so-called progress coe.cient.
This can be expressed by the integral (Beyer,
1995)

c
K@K,N

"

N!K
2n A

N
KB P

=

~=

e~t2(U (t))N~K~1

](1!U(t))K~1 dt, (15)

which has asymptotic behavior:

c
K@K,N

K

N
K

1

J2n
expC

1
2 AU~1 A

N!K
N BB

2

D . (16)

Note that eqn (13) does not vary as a function of
p
2

(i.e. it exhibits constant behavior).
For p

2
'p@, q+0. Assuming almost all

samples of the surviving parents are from
Z&k

2
#p

2
N(0, 1) yields

E[S f T]"E C
1
K

K
+
i/1

(k
2
#p

2
N(0, 1))

N~i`1 :ND
"k

2
#p

2

1
K

K
+
i/1

c
N~i`1 :N

"k
2
#p

2
c
K@K,N

. (17)

This con"rms that the expected average parental
"tness increases linearly with p

2
for p

2
'p@.

Deriving formulae for the mean probability of
selecting from the "rst bandit in the limiting cases
of p

2
P0 and R as a function of N and K re-

mains for future work.

Discussion

Several design choices were made for the
current simulations that may a!ect the observed
shift in behavior toward the more risky strategy
of sampling from the bandit with a lower mean
but larger variance. Chief among these is the
stringency of selection pressure coupled with
a large surplus of o!spring. This situation neces-
sitates risky behavior because as the possible
reward for taking that risk becomes greater, the
conservative strategy of opting for the less vari-
able but greater average payo! becomes unten-

able. Given a su$cient number of risk takers,
a su$cient subset of those will get lucky and gain
a payo! that is larger than is likely when choos-
ing conservatively. Most risk takers will be losers,
but at the same time most of the winners in this
lottery will also be risk takers.

It is of interest to identify conditions in natural
settings that are similar to those incorporated in
the models studied here. The situation of a high
selection pressure and large surplus of o!spring is
not uncommon in nature (r-selection). Individual
mortality rates are often di$cult to estimate, but
there have been some assessments. The daily rate
of larval mortality in northern anchovies has
been estimated between 16 and 20% (Hewitt,
1981; Blaxter & Hunter, 1982). It has also been
estimated that 70% of the eggs of Atlantic her-
ring in a patch o! the Canadian Coast were eaten
by predatory #ounders (one examined #ounder
contained 16 000 eggs) (Tibbo et al., 1963). These
rates concern only immature "shes and therefore
the percentage of individuals that survive to ma-
turity and further go on to reproduce must be
even lower. Similar observations can be made for
a great number of insect species and #ora [e.g.
ferns generate billions of spores annually (Gould
& Gould, 1989)], in contrast with, say, mammals
which are often K-selected; however, even in this
latter case, predation is often a serious threat
(Cheney et al., 1988; Boesch, 1991; Stanford et al.,
1994), and sexual selection may be very stringent,
with few of the males actually taking part in
reproduction (e.g. with the intense competition
between male elephant seals less than one-third
of the beach-resident males copulate during
a breeding season and most matings are accomp-
lished by only a few males (McCann, 1981;
Andersson, 1994); moreover, only about 10% of
male pups are still alive when they are mature
enough to compete seriously for rookeries with
other males (Gould & Gould, 1989).

The idea that the variability of payo!s plays
a role in choosing optimal behavioral strategies
has been examined in depth by animal behavior-
ists in di!erent settings (Stephens & Krebs, 1986;
McNamara & Houston, 1992). For example,
Caraco et al. (1980) o!ered juncos choices
between being fed with a "xed or variable num-
ber of seeds, with both choices constrained to
have the same mean number of seeds (i.e. 2 vs.
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0 or 4). The juncos were observed to prefer the
more variable choice after being deprived of food
for a prolonged period of time. Similar tendencies
toward more variable payo!s when under stress,
even though the mean payo! for each choice was
identical, have been observed in other studies
(Caraco et al., 1990; Cartar & Dill, 1990). This is
prima facie evidence contradicting the explana-
tion that the behaviors have evolved to minimize
expected losses, for if this criterion held true there
would be no expected bias for making either
choice given identical mean payo!s.

The results presented here goes further by
indicating that risky behavior can be preferred
even when the mean payo! is sacri"ced if
the potential rewards are su$ciently high and
su$ciently likely. Moreover, selection may not
completely eliminate behaviors that yield a lower
expected reward even when the variance of this
subpar payo! is small. Quantifying the relation-
ships between the di!erence in mean reward be-
tween two or more alternative choices and their
associated variability remains for future work,
but the results are clear: evolution does not, in
general, minimize the expected losses. When
payo!s do not translate linearly into reproduc-
tive success, minimizing expected losses does not
imply maximizing reproductive success. Con-
clusions derived from models of adaptation in
natural and arti"cial systems that adopt this
criterion should be viewed with appropriate
skepticism.
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