Exploration of Two-Objective Scenarios on Supervised Evolutionary Feature Selection: a Survey and a Case Study (Application to Music Categorisation) technische universität

Igor Vatolkin¹

¹Chair of Algorithm Engineering, Department of Computer Science, TU Dortmund, Germany

igor.vatolkin@tu-dortmund.de

Ονε	Prv	Iew

dortmund

• Almost all studies on feature selection for supervised classification are limited to single-objective optimisation.

- Typically classification performance measures are optimised (accuracy, classification error, precision, recall).
- Literature survey: past and recent studies on evolutionary multi-objective feature selection with the focus on the combinations of objectives (see the paper).

2. Experiments

2.1 Setup

- CATEGORISATION TASKS: 6 genres (Classic, Electronic, Jazz, Pop, Rap, R&B), 8 styles (AdultContemporary, AlbumRock, AlternativePopRock, ClubDance, etc.).
- DATA SETS FOR EACH TASK: 20 training tracks, 120 optimisation tracks.
- FEATURES: 636 audio signal characteristics.

3. Analysis of Results

3.1 Trade-offs between Objectives

- (a): Electronic, $\epsilon_{ID} = 33.90\%$, $\epsilon_{MAX} = 39.52\%$.
- (b): Classic, $\epsilon_{ID} = 4.20\%$, $\epsilon_{MAX} = 12.99\%$.
- (c): R&B, $\epsilon_{ID} = 21.48\%$, $\epsilon_{MAX} = 33.66\%$.
- (d): AdultContemporary, $\epsilon_{ID} = 24.14\%$, $\epsilon_{MAX} = 27.40\%$.
- (e): Rap, $\epsilon_{ID} = 0.02\%$, $\epsilon_{MAX} = 0.71\%$.
- (f): Rap, $\epsilon_{ID} = 0\%$, $\epsilon_{MAX} = 0.14\%$.

- Case study: exploration of 28 pairs of objectives for supervised music classification.
- Measurement of suitability for multi-objective optimisation with the help of two hypervolume-based statistics.

1. Introduction and Background

1.1 Definition of Feature Selection Problem

Given

and for

- q: binary vector to indicate selected features,
- q^* : optimal index vector,
- \mathcal{F} : set of all features,
- $\Phi(\mathcal{F}, q)$: set of features indicated in q,
- y: true labels,
- \hat{y} : predicted labels,
- m: relevance measure (objective function to optimise), the SINGLE-OBJECTIVE FEATURE SELECTION is defined as:

 $\boldsymbol{q}^* = \arg\min_{\boldsymbol{q}} \left[m\left(\boldsymbol{y}, \hat{\boldsymbol{y}}, \Phi(\mathcal{F}, \boldsymbol{q})\right) \right],$

• K relevance measures (objective functions) $m_1, ..., m_K$, the MULTI-OBJECTIVE FEATURE SELECTION is defined as:

- CLASSIFICATION INSTANCES: 4 s time windows with 50% overlap.
- CLASSIFICATION METHODS: random forest, naive Bayes, linear SVM.
- OPTIMISATION ALGORITHM: (50+1) SMS-EMOA (for details see [2]), 3,000 generations, 28 pairs of 8 evaluation measures (see Sect. 2.2).
- OVERALL NUMBER OF EXPERIMENTS: 28 evaluation scenarios · 14 categorisation tasks · 3 classifiers · 5 statistical repetitions = 5,880.

2.2 Evaluation Measures

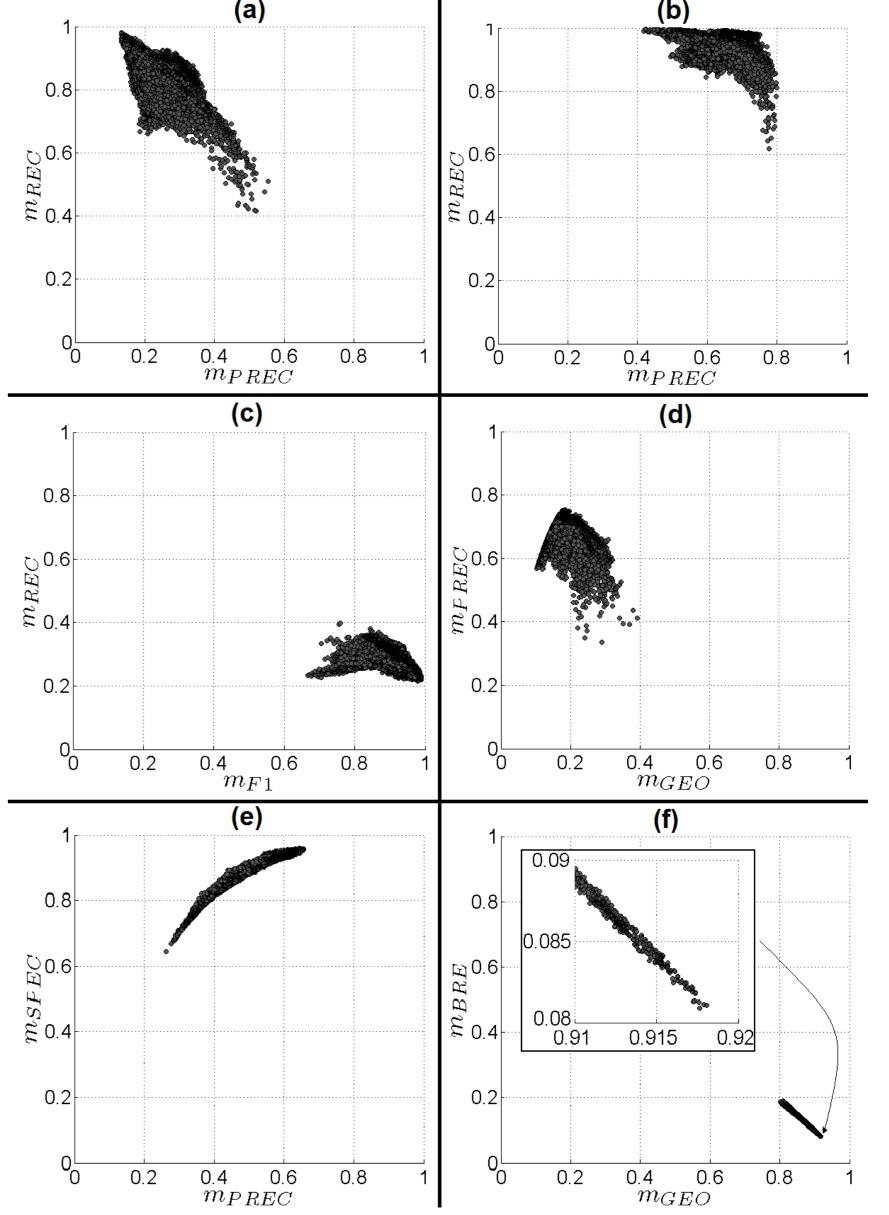
Given

(1)

- TP: true positives, TN: true negatives,
- FP: false positives, FN: false negatives,
- T: number of classification instances,
- $R(\cdot)$: the rank after the sorting of instances,
- the following measures to optimise
- m_{BRE} : balanced relative error, m_{FR} : feature rate,
- m_{PREC} : precision, m_{REC} : recall,
- m_{SPEC} : specificity, m_{F1} : F1-measure,
- m_{GEO} : geometric mean,
- m_{SPEAR} : Spearman's correlation coefficient between true and predicted labels are defined as:

$$m_{BRE} = \frac{1}{2} \left(\frac{FN}{TP + FN} + \frac{FP}{TN + FP} \right),$$

(3)



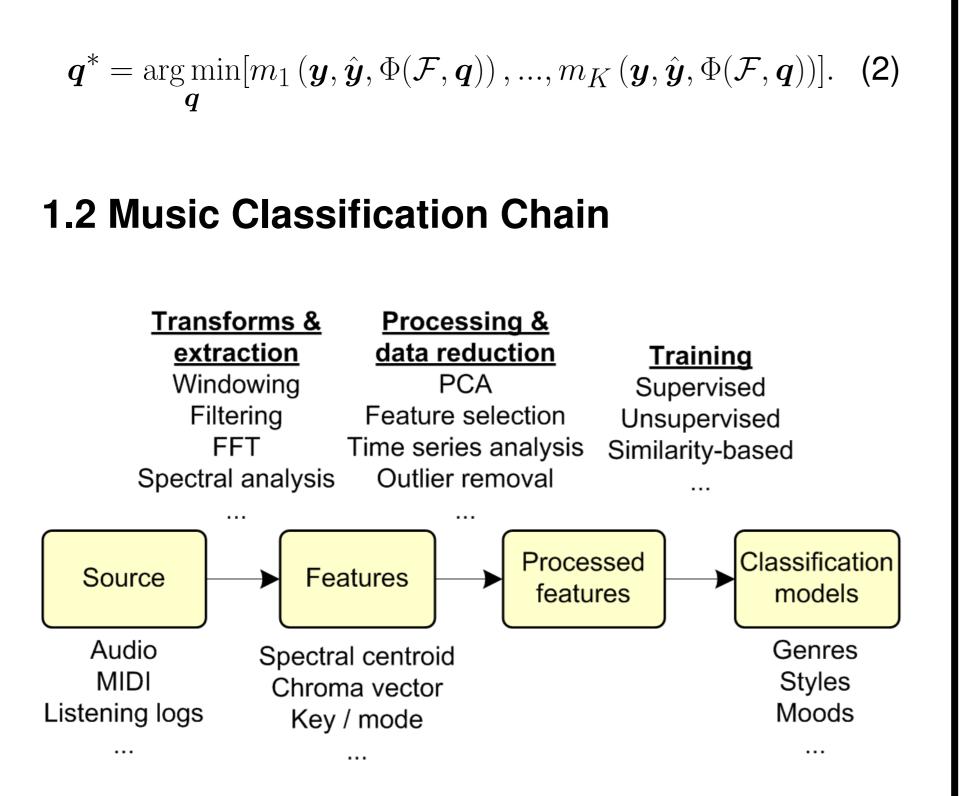
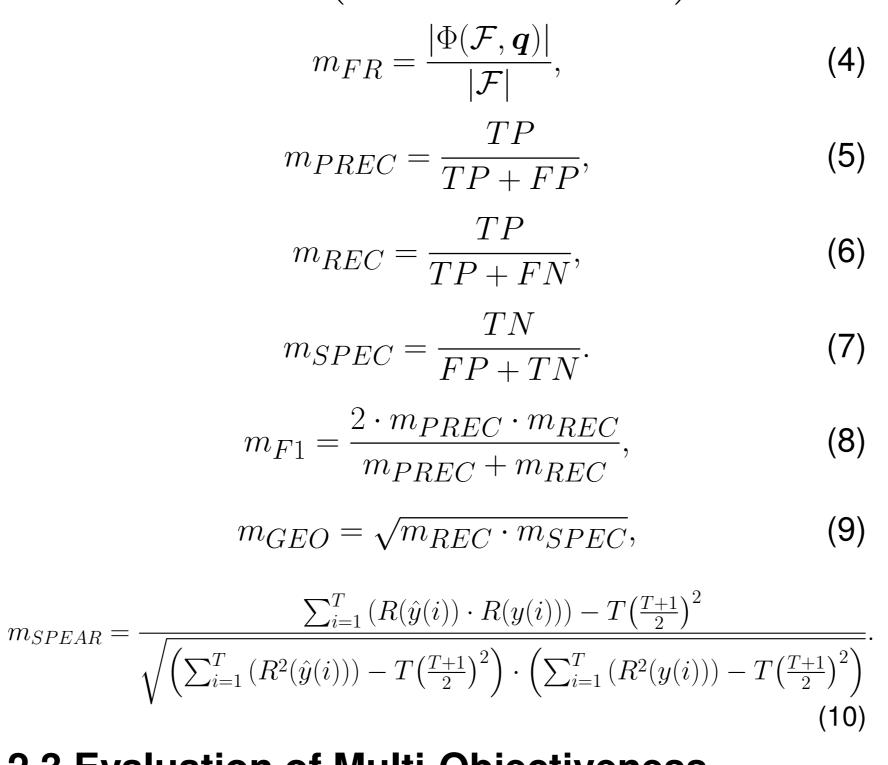


Figure 1: Basic algorithm steps in music categorisation

1.3 Categorisation of Relevance Measures

Groups of measures proposed for the evaluation of music classification in [1]:

• Classification performance: commonly applied methods based on the confusion matrix: accuracy, precision, recall, etc., also constructed for imbalanced data sets.



2.3 Evaluation of Multi-Objectiveness

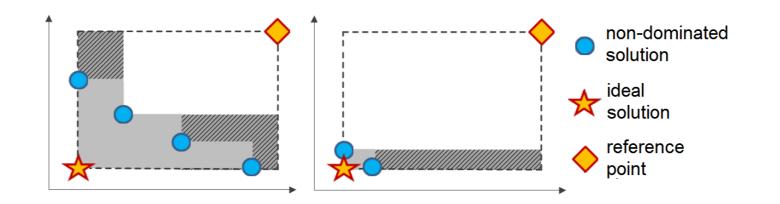


Figure 2: Stronger (left) and weaker (right) advantage of *multi-objective against single-objective approach*

Given

• N: number of solutions $q_1, ..., q_N$ in a front,

Figure 3: Combinations of categories and objectives

3.2 Comparison of Objective Pairs

- (black): pair in the row has a significantly higher ϵ .
- (white): pair in the row has a significantly lower ϵ .
- (grey): no significant difference.

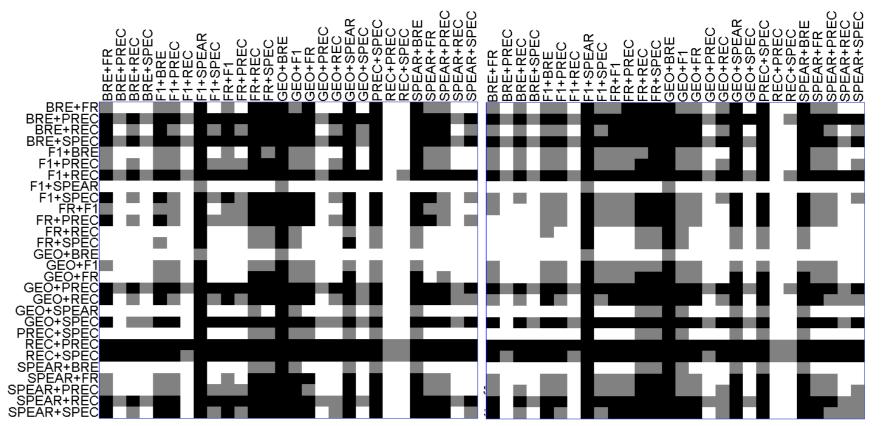
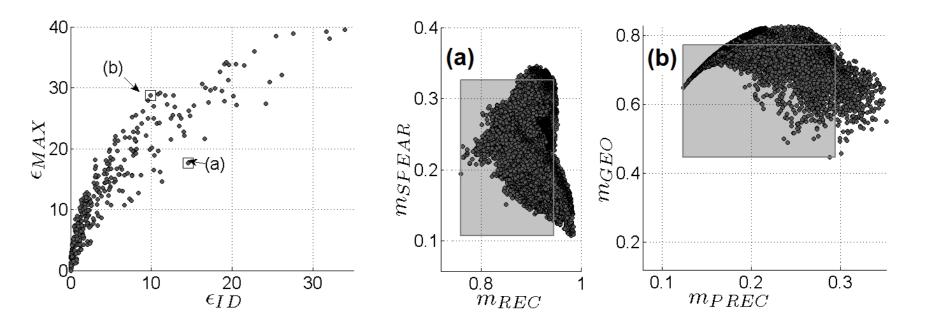


Figure 4: Comparison of objective pairs based on ϵ_{ID} (left) and ϵ_{MAX} (right)

3.3 Correlation between ϵ_{ID} and ϵ_{MAX}



- **Resources**: demands on runtime and storage space for various steps in algorithm chain, see Sect. 1.2.
- Model complexity: measures for the identification of simple and fast models which are more robust against overfitting.
- User related: personal satisfaction with classification results and reduction of any personal efforts necessary to train classification models.
- Specific performance: evaluation of a particular task (e.g., music segmentation, tempo recognition).

• r: reference point, • q_{ID} : ideal solution, the HYPERVOLUME is defined as:

$$\mathcal{S}(\boldsymbol{q}_1, ..., \boldsymbol{q}_N) = vol\left(\bigcup_{i=1}^N [\boldsymbol{q}_i, \mathbf{r}]\right), \quad (11)$$

and share of the hypervolume exclusively dominated by the ideal solution is:

$$\epsilon_{ID} = \frac{\mathcal{S}(\boldsymbol{q}_{ID}) - \mathcal{S}(\boldsymbol{q}_{1}, ..., \boldsymbol{q}_{N})}{\mathcal{S}(\boldsymbol{q}_{ID})} \cdot 100\%.$$
(12)

The share of the hypervolume of the front without the solution with maximum contribution to hypervolume is:

$$\epsilon_{MAX} = \frac{\mathcal{S}(\boldsymbol{q}_1, ..., \boldsymbol{q}_N) - \max_{i \in \{1, ..., N\}} \mathcal{S}(\boldsymbol{q}_i)}{\mathcal{S}(\boldsymbol{q}_1, ..., \boldsymbol{q}_N)} \cdot 100\%.$$
(13)

Figure 5: Example of difference between ϵ_{ID} and ϵ_{MAX}

4. Future Research

• Other objectives from different groups (cf. Sect. 1.3). • Three and more objectives at the same time. Further classification tasks and scenarios.

Impact of optimisation parameters.

References

[1] Vatolkin, I., Preuß, M., Rudolph, G.: Multi-Objective Feature Selection in Music Genre and Style Recognition Tasks. Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference (GECCO), pp. 411–418, 2011.

[2] Vatolkin, I.: Improving Supervised Music Classification by Means of Multi-Objective Evolutionary Feature Selection. PhD thesis, TU Dortmund, 2013.