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Abstract

The subject of music information retrieval (MIR) is
to analyze and categorize music pieces. Over the last
years many approaches have been designed to auto-
matically extract music data from the digitized audio
signal. This article presents a survey of the state-of-
the-art algorithms on the basis of a broad literature
study and a tool analysis. It should help to navi-
gate through different MIR techniques and tools. An
overview of different music features to characterize
timbre, harmony, melody and rhythmic information
is given. The various time scales of feature extrac-
tion to form meta-features from basic features are
discussed. The task-specific pruning of features is
presented to reduce the computational complexity.
The article continues with a discussion of different
classification techniques and how the results are eval-
uated. Finally the properties of four state-of-the-art
MIR tools are outlined.

1 Introduction and Motivation

In recent years, the presence of digital music has
become ubiquitous. The expansion of the internet,
music online shops and the enhanced storage capac-
ities of stationary and mobile devices such as mu-
sic players, smartphones, PDAs caused a remark-
able growth of private music collections all over the
world. Since these collections often exceed thou-
sands of music pieces, the importance of intuitive
content navigation is growing constantly. The com-
mon approach to manage large data sets is to classify
them, often hierarchically, and to use keywords for
the description of data. However, the existing def-
initions of music categories, typically called genres,
are ambiguous and very hard to standardize. In [1]
it is shown that taxonomies from three popular mu-
sic classification web sites http://www.allmusic.com

(531 genres), http://www.amazon.com (719 genres)
and http://www.mp3.com (430 genres) share only 70
equal genre definitions. The definition of one genre
or music style depends on many facts such as instru-
mentation, place of the genre formation, cultural and
historic information. Besides that, a possibly unique
genre taxonomy list can be meaningless for individual
persons. For a lover of classical music whose music
collection consists of several thousand classical and
several dozens of rock and jazz pieces, ‘Popular Mu-
sic’ can describe the small part of his collection very
well. A jazz fan could distinguish song categories
such as Acid Jazz, Latin Jazz, Swing Jazz, Bebop and
so on. Furthermore, many personal genre categories
which depend on the preferences of their owner can
be used, e.g. ‘my favorite songs’, ‘sad music’, ‘sum-
mer holidays’. So, if the goal of a music management
tool is to assist the user in navigation through a large
music collection, user-driven classification is essential.
Another aspect of music classification is the fuzziness
of suggestions such as ‘music piece A belongs to mu-
sic genre B’. Due to the unprecise boundaries between
genres it is meaningful to allow one music piece to be-
long to several music categories with different fuzzy
membership values.

Beside the mapping of music pieces to pre-defined
categories some other music tasks can be performed
by computer algorithms developed during the last
decades. These problems are e.g. the recognition
of particular instruments, the recognition of hummed
melodies, the extraction of complex music descriptors
like tonality or structural information, the beat and
similarity analysis.

Several information sources exist to categorize mu-
sic: Features can be extracted from the audio signal,
features are derived from symbolic representations
like MIDI or the musical score and the community in-
formation like user-generated playlists or recommen-
dations are utilized. Since the availability of scores
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for popular music is very limited for the end user,
and the community information can be sometimes
unprecise or subjective, this paper concentrates on
the classification based on audio data. Current meth-
ods and several tools for music feature extraction and
classification are described and put into perspective.
Proposals and ideas for future developments are pre-
sented.

2 Processing Steps for Music
Classification

A successful music categorization is based on several
algorithmic steps, as depicted in Figure 1. First of
all, a given feature set is to be extracted from the
set of music pieces. These features describe different
characteristics of music pieces, e.g. physical, tempo-
ral, harmonic or even cultural properties. The num-
ber of extracted features can be very high. In order
to reduce the computational complexity, the feature
values are analyzed and only important features are
chosen for classification algorithms. This task is cov-
ered by pruning and similarity analysis algorithms,
called feature pruners in this paper later.

Normally, the given data set is split into training
set and test set: Classification algorithms first learn
to classify the given music data and then a validation
shows how good the classification method works.

A variety of tools for MIR and especially automatic
classification of music pieces has been developed in
recent years. The different tools are either available
as open-source or as commercial offers. They have
different focus areas: Feature extraction, classifica-
tion or visualization of music. For this paper we
have tested several commonly used open-source tools,
which are continuously developed and represent the
state-of-the-art. Dedicated math packages like e.g.
Matlab are left out here due to their general purpose
nature, although they are used intensively also in the
music domain. The exact descriptions of tools are
listed below in the appendix. For the extended list of
further tools, see [2] and the web site of the author 1.

The algorithms for every processing step are de-
scribed in detail in the next chapters.

1http://mirsystems.info/

Figure 1: Processing steps

3 Music Feature Extraction

A digital music signal is a special case of a value se-
ries (see [3] for definition) since it is characterized by
a time sequence of sampled and quantized audio val-
ues. In the context of this article it is assumed that
multichannel audio information is reduced to a mono
signal which contains all relevant music information
for classification.

3.1 Timbre features

Timbre is the perceptual feature that makes two
sounds with the same pitch sound different. It de-
scribes the spectral content of music and provides the
summary information of all instruments and voices at
the same time. Thus, this feature can be used for the
distinction of instruments.

• Temporal features are computed from single sig-
nal intervals or from the complete signal. Im-
portant features are the zero-crossing rate, lin-
ear prediction coefficients as well as variance and
mean distance between extremal or zero values
[4].

• Another type of features describes the energy in-

formation of the signal. Important parameters
are the root mean square and absolute values of
a signal frame (volume), its variation over time,
the energy of harmonic components, the energy
of the noisy part of the spectrum and low en-
ergy segments [5]. The odd-to-even harmonic
energy ratio gives the ratio between odd harmon-
ics energy to even harmonics energy and can be
used to distinguish instruments [6]. The tris-
timulus consists of three values. The first one
corresponds to the spectral energy ratio between
the fundamental frequency and the sum of all
harmonics; the second corresponds to the ratio
between the sum of the second, third and fourth
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harmonics and the harmonic sum; the third spec-
ifies the ratio of fifth and all further harmonics
to the harmonic sum [7].

Several measures exist to judge the purity of the
timbre information [6]: The noisiness is defined
as the ratio between the noise (non-harmonic
part of the spectrum) and the complete spectral
energy. It is close to 1 if the signal is dominated
by noise and around 0 if the harmonic content
dominates. The inharmonicity represents the de-
viation of the spectral components from a pure
harmonic structure. The harmonic spectral devi-
ation describe how the amplitudes of harmonics
peaks differ from the global spectral envelope. In
[8] it is shown that the harmonic components of
a sound alone are sufficient to perform instru-
ment recognition, but the non-harmonic noise
improves the recognition and the naturalness of
the sound.

• Spectral shape features describe the shape of the
power spectrum on a more abstract level. The
centroid [5] describes the center of gravity of the
magnitude spectrum, the parameters spread /
bandwidth, skewness, kurtosis [6] as well as lin-
ear regression features such as spectral slope [4]
characterize the extent of the spectrum. The
spectral flatness is the ratio of geometric and
arithmetic spectral mean values. If the spectrum
is balanced, i.e. no dominant spectral peaks
exist, the spectral flatness value is near zero.
The spectral crest factor [4, 6] provides the ratio
between maximum and average spectral values.
Mel frequency cepstral coefficients (MFCCs) are
calculated from the cepstral audio representation
(the spectrum of the spectrum) and consider the
human sound recognition using the logarithm of
the amplitude spectrum [9]. Variants of the cep-
stral coefficients use the bark scale (BFCCs), the
equivalent rectangular bandwidth scale (EFCCs)
or the octave scale (OFCCs) [10]. Other relevant
features are spectral flux (describing the spectral
change in successive intervals) [5, 6], spectral de-
crease [6], roll-off frequency [5] and maximum
frequency and variance in defined intervals [10].

• Phase domain features attempt to model the dy-
namics of a nonlinear system by creating vectors
from a state variable. The angles between adja-
cent vectors and their distances / variances allow
the classification of certain music genres [3].

• Perceptual features have been introduced to

model the human acoustic perception. Exist-
ing features are transformed to mimic the hu-
man hearing: Relative loudness, sharpness and
spread of sound [6]. The Bark or Sone repre-
sentation on the frequency scale allow to model
the human perception that is most sensitive to
medium frequencies between 1 - 5 kHz and less
sensitive to lower or higher frequencies [10].

3.2 Harmony and melody features

Harmony is defined as the usage of simultaneous pitch
values and chords in music. Since the associated
notes appear vertically in a musical score, harmony
is called the vertical element of music. Melody is de-
fined as the succession of pitched events which are
perceived as a single entity. Therefore it is entitled
the horizontal element of music [11].

• The pitch as the fundamental frequency of a
sound is a key feature for melody and harmony
analysis. The fundamental frequency is defined
as the frequency whose integer multiples best
match the spectral content of a signal [6]. Pitch
distributions (either single or multiple funda-
mental frequencies at a time) with their ampli-
tudes, width and frequency positions / distances
of peaks are retrieved [4].

• A chromagram maps all pitch values to a fre-
quency range of one octave by a modulo oper-
ation (folded pitch) and allows to sense the har-
monic contributions. By construction it is in-
variant against transposing music by multiples
of an octave. Also a mean chroma vector is
used by several authors [10, 12]. In order not to
loose information the pitch distribution or his-
tograms over a number of time windows are cre-
ated. The most dominant parameters from those
histograms are the amplitude and the pitch value
of the maximum peak of the folded or unfolded
pitch distribution, the pitch interval between the
two most prominent peaks and the sum of all
pitch values as a measure of strength for the
pitch detection [5].

• The tonality (key and mode) of a music piece
describes the relationship between simultaneous
(multi-pitch) and successive (melody) tones. Its
estimation is a very complex task, the common
approach uses hidden Markov models since the
transitions of notes and chords can well be de-
scribed by probabilities. The relationship be-
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tween different tones in a given tonality was in-
vestigated by experiments [13, 14] and their re-
sults are used for algorithms which estimate key
and mode on the basis of chroma vectors [15, 16].
A shortcoming of most algorithms is the limita-
tion of classification to major/minor modes. Mu-
sic pieces in other modes such as dorian or phry-
gian as well as music outside the Western tradi-
tion (e.g. pentatonic scale, quarter tone music)
cannot be analyzed adequately.

3.3 Rhythm and time properties

Pieces of music can also be distinguished by their bar
and temporal structure. Different rhythmic patterns
and accents correspond to different music styles.

• The most trivial time measure is the duration of
a piece of music which can act as a simple means
to filter different pieces of music.

• In general music contains nested groups of pulses
on different time scales, called metrical levels.
Time intervals on higher metrical levels are in-
teger multiples of the lower level periods. The
lowest metrical level is termed tatum.

• The beat is the perceived periodic variation in
loudness, resulting from acoustical interference
of two near-unison tones [17]. A typical beat
range is between 40 and 200 beats / minute.
Since it is sometimes difficult to estimate the ex-
act beat frequency, it is common practice to cre-
ate beat histograms and summarizing features
such as amplitudes / positions of the first two
peaks, the ratio of the amplitudes of second and
first peak or the overall sum of all beat values
to indicate the strength of the beat altogether.
The beat is typically evaluated by applying pre-
filtering and autocorrelation to the signal and
averaging the beat values over a long time win-
dow [5]. A method for joint efficient computa-
tion of beat and tatum information based on a
subband approach and transformation into the
periodicity domain is described in [18].

• The rhythm of a piece of music describes the
temporal regularity pattern governing the music.
Periodicities are obtained by autocorrelation of
features over time, like e.g. energy in different
frequency bands or MFCCs [4]. The time scale
of rhythms is longer than that for beats. In mu-
sic notation it is typically described by a musical

Figure 2: Hierarchical combination of features

meter like e.g. 3/4 or 4/4. A successful approach
to estimate a periodic rhythmic pattern and the
music meter is given by [19]: The authors use
a Bayesian probabilistic model to map an input
signal to a cycle of the rhythmic pattern and are
also able to track changes in rhythmic patterns,
meter and tempo.

• The rhythm can be quantized to belong to a cer-
tain category (e.g. by a musical meter). Also
the (intentional) timing deviations from a regu-
lar rhythm characterize a piece of music.

3.4 Implementation of feature extraction
and aggregation of features

The features described above are extracted from a
particular segment of music data, for example a time
window with 512 samples. The number of samples
should be small enough to not correspond to several
melody tones, but also large enough for spectral es-
timations. If the whole music piece is divided into
time windows of a given length, the variation of ev-
ery feature over time can be analyzed. This process
can be characterized as the building of meta-features
or high-level features (see Figure 2).

Several possibilities exist to build meta-features.
Let f1,...,n be the extracted features and t the number
of time windows.

• The standard statistical descriptors are minimum,
maximum, median and mean values and the
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standard deviation. Moments describe the dis-
tribution of feature values [20]. The most signifi-
cant moments are mean, variance, skewness and
kurtosis. The feature values can be sorted and
divided into a given number of quantiles, groups
with equal number of values. Also, the value
range between minimum and maximum can be
divided into a given number of histogram bins,
and the strength of each bin can be calculated.

• Another type of meta-features models time dy-

namics. Running means or (n-th) derivatives
of feature values are examples to be calculated.
Hidden Markov models (HMMs) [21] describe
the probabilities of transitions between states,
where each state corresponds to a defined range
of values. Other descriptors of dynamics were
calculated e.g. in [22].

The number of values for each meta-feature varies
between 1 (mean value, moments...) and t (derivative
e.g.), i.e. the number of time windows.

However it is common practice not to extract fea-
tures from adjacent time windows but from sliding
time windows with overlap (e.g. 50%). In that case
the overall number of features increases by 50 %. The
extraction of these values and the additional training
of classification strategies based on all feature val-
ues requires a lot of computing time. Therefore some
considerations which reduce the number of features
before estimation of meta features (described later as
feature pruning) are used in most audio classification
tools. Often the following signal processing steps are
applied:

• Reduction from stereo to mono audio signal.

• Sampling rate conversion (e.g. to a standard
sampling rate of 22.05 kHz as in MusicMiner
[10]).

• Determination of segments for feature extrac-
tion: Often the introduction is skipped since it
is transient, a longer segment (e.g. 30 s) is se-
lected some time after the beginning (e.g. after
30 s), feature extraction is only done for sung
parts or for the complete piece of music. By us-
ing a self-similarity or distance matrix recurrent
structures can be identified and only those seg-
ments are used for feature extraction [23]. An-
other possibility is the choice of a given number
of time windows from random positions, applied
for example in [24].

• Sampling can be applied for feature extraction,
i.e. features are evaluated in short time windows
distributed over the piece of music.

• A sliding window strategy defines the window
size (e.g. of 512 samples or 20 ms length) and
the overlap (e.g. 50%) with the next window.

4 Feature Pruning

In contrast to the discussion of music features or clas-
sification strategies, the methods to limit the number
of used features are not so well represented in liter-
ature. The common reason is that authors usually
start classification with a small given set of impor-
tant features and do not need to reduce this set any
more. However, different classification tasks may re-
quire different features or feature groups, so it is not
always reasonable to limit the number of used fea-
tures from the start. An adequate approach here is
to take a large amount of possible features into ac-
count and use feature pruners for the estimation of
the most important features. In other words, the task
of a feature pruner is to choose a small feature set
which is good enough to allow successful classifica-
tion. Commonly used pruning strategies are:

• Linear reduction of the feature space dimensions:
Here the whole set of features is needed, and
the axes are re-defined. The principal component

analysis (PCA) [25] calculates the eigenvectors
of the covariance matrix of feature vectors and
transforms the axes in the feature domain, so
that they can be sorted by the variance of fea-
tures along the axes. The most important axis
corresponds to the largest feature variance along
this axis. Axes with the smallest feature vari-
ances are discarded and the dimensionality of the
problem is reduced. Another linear technique
is linear discriminant analysis (LDA) [26], which
transforms the axis on the basis of scatter ma-
trices. The goal is to reduce the distances within
feature vectors which belong to the same (music)
category and to increase the distances between
different categories.

• The correlation-based feature selection [27] begins
with an empty set of features and adds them one
by one, selecting at first the features which are
least correlated with the features already added
to the set.
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• Pareto density estimations (PDEs) used for fea-
ture selection in [10] calculate the likelihood of a
membership in a certain music category for given
feature values. In other words, the likelihood is
described as a function of feature distributions.
Several quality scores for features are introduced:
Separation scores e.g. measure the area under
PDEs corresponding to the error which may oc-
cur when estimating the category.

• Evolutionary algorithms (EAs) [28] consider sev-
eral aspects of natural evolution and produce
new sets of solutions from the existing ones with
defined operators, so that the positive charac-
teristics of parent solutions are transfered to the
next generation. For feature pruning, a solution
describes the composition of a feature set. The
quality of a certain solution corresponds to the
success of classifiers which have been run on this
feature set. [29] mentions several drawbacks of
statistical techniques such as PCA and proposes
genetic algorithms to be a promising method to
reduce feature dimensionality.

• Nonlinear dimension reduction techniques and
neural networks are not so often used in MIR for
feature pruning, but are applied in other prob-
lem domains.

5 Classification and Evaluation of
Results

The purpose of classification algorithms is to map
music songs to categories, whereas one song can be
member of several categories. Clusters in the feature
domain can be built, or the similarities between given
instances are calculated based on similarity metrics.
Since the ranges of feature values can be very dif-
ferent, normalization should be done before classifi-
cation (e.g. mapping of features to interval [-1;1] or
[0;1]). Alternatively the results of independent classi-
fiers for different sets of features should be combined.

5.1 Similarity metrics

Several metrics are used by classification strategies
for measuring the similarity of different feature vec-
tors. Let fx and fy be two feature vectors with f i

x and
f i

x being their i-th scalar components. Most common
used metrics are:

• The Euclidian distance is the standard distance
measure:

de =

√

√

√

√

n
∑

i=1

(f i
x − f i

y)2 (1)

• The cosine distance corresponds to the cosine of
the angle between two vectors. If two vectors
have the similar direction, the similarity is max-
imum (equal to 1):

dcos =
f
T
x fy

||fx|| · ||fy||
(2)

• Hamming distance: The standard Hamming dis-
tance calculates for two feature vectors the num-
ber of positions with different (discrete) values.
Continuous feature values may lie within some
defined neighborhood, e.g. interval and can be
then described as similar. Here one can sum the
number of non-empty neighborhoods.

• The Mahalanobis distance considers the correla-
tion between features and is scale-invariant:

dmah = (fx − fy)T · C−1 · (fx − fy) (3)

with the covariance matrix

C = E
[

(fx − E[fx]) · (fy − E[fy])T
]

(4)

Beyond the metrics listed here many other methods
to calculate the similarity between two feature vec-
tors exist, for example self organizing maps (SOM),
a technique based on artificial neural networks which
maps similar feature vectors to close positions on
a two-dimensional map [30] or the Kullback-Leibler
divergence which considers probability distributions
and is used in [31].

5.2 Classification strategies

Many classification strategies were developed for data
mining. For details and an overview of different tech-
niques, see [32]. In the music classification context,
some categories are defined in the beginning and ex-
amples of music are assigned to them. Each piece
of music can be mapped to none, one or multiple of
the defined categories. The purpose of the classifiers
is to learn from the given data and map new music
pieces to the correct music categories. These classi-
fiers belong to supervised learning algorithms, which
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learn from the given training set. Unsupervised learn-

ing algorithms start with no information about the
output categories at all and try to build the categories
by themselves (e.g. clustering). These strategies are
not often used for music classification. We provide
here a list of the commonly used algorithms:

• k-nearest neighbors: Each song described by fea-
ture vector can be represented as a point in the
multidimensional feature space. For a new song
the distances to the nearest neighbor from each
category are calculated. The song is assigned to
the category whose nearest neighbor is closest.
Different distance metrics as discussed above can
be used. It is also possible to make a fuzzy clas-
sification. The strategy is simple, but effective
and can be enhanced with a special data struc-
ture, kD-trees, which recursively divide the fea-
ture space with hyperplanes.

• Bayesian classifier: The probability distribution
of feature values X for a certain category Y is
estimated, e.g. modelled as a Gaussian distri-
bution. On the basis of probability densities for
all categories, the probability that the new song
belongs to a certain category can be computed.
The Bayesian theorem can be used to compute
the conditional probability that a category Y is
observed for given features X:

P [Y |X] =
P [X|Y ] · P [Y ]

P [X]
(5)

The individual features are treated as if they
were independent, and the probability densities
are multiplied. Normally, the features are not
independent and some of them correlate, so the
calculation of the probability belonging to one
certain category is not precise. Therefore a prun-
ing operation to reduce the correlation between
different features is beneficial to increase the
classification performance.

• The divide-and-conquer algorithm makes a clas-
sification on the basis of decision trees. Decision
trees consider one feature in each node. The
child nodes correspond to some intervals of the
feature values. For example, a simple decision
tree can start in a ‘number of beats per minute’
node and proceed to three child nodes, the first
for interval (0;60] beats/minute (classical music),
the second for interval (60;100] bpm (pop mu-
sic) and the last for bpm values greater than

100 (electronic music). Divide-and-conquer es-
timates the importance of every feature on the
basis of an entropy measure, which describes how
much information about the membership to dif-
ferent categories will be gained if this feature will
be taken as a node. The most important feature
is taken initially as the first node, and the algo-
rithm recursively continues for the child nodes.

• C4.5: Several enhancements of divide-and-
conquer lead to the algorithm named C4.5 [33].
The most significant improvement is the pruning
of large decision trees. A commercial successor of
C4.5 exists (C5.0) which works more efficiently,
but is not available as open source and is not
widely used in music information retrieval.

• Support vector machines (SVMs): If the points
in feature space cannot be linearly separated,
SVMs create new feature dimensions and trans-
form the points so that they can be separated
with maximum margin. Further modifications
include the usage of nonlinear bounds. An ex-
tended tutorial to SVMs is given in [34].

If no information about music categories is avail-
able, unsupervised methods like k-means clustering

can be used. Here k cluster centers (correspond-
ing to the categories) are randomly picked up from
the feature vectors, and the other feature vectors are
mapped to the clusters on the basis of some distance
measure, often using Euclidean metric. Once the
input feature vectors are assigned to the respective
clusters, the cluster centers are calculated again as
the centroids of all feature vectors from the cluster
and the whole process is repeated with the new clus-
ter centers. Another unsupervised learning method
is the Gaussian mixture model, which describes the
feature vector as a combination of Gaussian distribu-
tions [35].

One important conclusion from the literature study
is that the choice of classification strategy is often
less important than the design of the feature set. As
a single classifier, SVMs perform well and are often
preferred for music classification. Another interesting
idea is to use several classifiers and combine their
results, for example running different classifiers on
different feature groups [36].

5.3 Evaluation of results

Evaluation of classification results belongs to the de-
sign steps of a music classification system like the
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choice of a feature set and a classification strategy.
Generally evaluation is a bottleneck in data mining
since the algorithms often are trained on a small set
of data. Larger data sets are not always available
and require much more learning time. The classifiers
should perform well for some new data which was not
known during the learning process. Well-described
data for learning is normally divided into training
and test sets, so that the algorithms can learn on the
training set and are evaluated on the test set. The
methods to arrange training and test set are:

• m-fold cross validation: As a very common used
technique (applied e.g. in [3, 5, 37]) the data
set is divided in m equal partitions. During a
single processing iteration, all partitions except
one are used for learning and the last partition is
used for evaluation. The validation is repeated
exactly m times for different partitions, so that
every partition is used once for evaluation and
m−1 times for learning. The whole m-fold cross
validation can be repeated several times and the
evaluation results are averaged.

• Leave-one-out: m-fold cross validation, where the
number of partitions is equal to the number of
data instances.

• Separated training and test sets: In [38] it is ar-
gued that cross validation can lead to the over-
fitting of algorithms to the given data set and
therefore separate training and test sets should
be used.

Some measures for the quality of classification can
be considered:

• Number of successes and failures: TPi (true pos-
itives) is the number of music files that belong
to category i and are recognized correctly; FNi

(false negatives) is the number of music files
which belong to category i but are identified as
not belonging to the category; TNi (true nega-
tives) corresponds to the amount of music pieces
which do not belong to category i and are classi-
fied as not belonging to the category; FPi (false
positives) is the number of music pieces which
do not belong to category i but are classified as
belonging to it.

• Precision describes the fraction of correctly iden-
tified music pieces of category i to the whole set

of music pieces identified as belonging to cate-
gory i:

pi =
TPi

TPi + FPi

· 100% (6)

• Recall describes the fraction of correctly identi-
fied music pieces of category i to the whole num-
ber of music pieces of category i:

ri =
TPi

TPi + FNi

· 100% (7)

• Accuracy corresponds to the average rate of true
positives. Let C be the number of categories and
N the whole number of music pieces:

a =
1

N
·

C
∑

i=1

TPi · 100% (8)

• F1 measure is a combination of precision and re-
call described in [37]:

F1 =
2 ·

∑C

i=1
pi ·

∑C

i=1
ri

∑C

i=1
pi +

∑C

i=1
ri

(9)

Several further ideas about evaluation of classifiers
are discussed in [32].

The results can be combined to confusion matrices

which map real categories (listed in rows) to identified
categories (listed in columns). The percentage num-
bers in the table cells correspond to the fraction how
many music pieces are correctly classified or confused
with other categories.

6 Summary and Outlook

Many recent publications address the field of music
classification algorithms. In this paper, we have pre-
sented a wide overview of techniques without pre-
senting the details. Several feature groups have been
discussed, methods for feature pruning and classifica-
tion strategies have been introduced. It is a snapshot
of a continuously growing research field and should
serve as a starting point to a literature study for the
interested readers. Some observations and purposes
can be made for further development:

• Features: The development of new features and
intelligent methods of building meta-features can
improve classification. Some feature domains are
still difficult to investigate (tempo extraction,
key and mode estimation) and further work is
necessary.
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• Pruners are not always widely used in MIR, new
algorithms beyond statistical methods such as
PCA and LDA are required. A promising idea
is the application of EAs or the development of
completely new techniques to measure the im-
portance of music features.

• Classifier design belongs generally to the scope
of data mining. New achievements in that area
should be applied by the MIR community as
well as the development of classification strate-
gies with integrated and specific problem knowl-
edge.

As a short and last conclusion, automatic music
classification remains an exciting and growing re-
search area, and many unsolved problems are still
a challenge for the development of new algorithms.

7 Tools for Music Classification

7.1 jAudio

• Application purpose: Initially developed as part
of ACE (Autonomous Classification Engine)
framework and lately integrated in OMEN (On-
demand Metadata Extraction Network) frame-
work. jAudio is also available as stand-alone ap-
plication

• Developers: Schulich School of Music, McGill
University

• Start of development: 2005

• Current status: Beta release

• Programming language: Java

• License: LGPL

• Supported audio formats: Wave, mp3 and other
formats supported by Java Sound API

• Output formats: Weka ARFF, ACE XML format

• Batch and command line support: Yes, batch files
can be configured and saved for the future appli-
cation with or without usage of GUI

• Feature extraction details: Currently over 20 dis-
tinct feature groups including signal and spectral
properties, MFCC, beat histograms

• Publications: [39, 40]

• WWW: http://jaudio.sourceforge.net/

7.2 M2K (Music to Knowledge)

• Application purpose: Set of modules for D2K
(Data to Knowlegde) framework, which should
be used for various MIR tasks and their evalu-
ation. Different extensions of M2K can be eval-
uated during the annual MIREX (Music Infor-
mation Retrieval Evaluation eXchange) contests.
Examples are provided of how to integrate ex-
periment code from other environments such as
C++ or Matlab.

• Developers: Graduate School of Library & Infor-
mation Science, University of Illinois at Urbana-
Champaign, The Automated Learning Group,
The National Center for Supercomputing Appli-
cations, School Computing Sciences, University
of East Anglia, Sun Microsystems Laboratories

• Start of development: 2004

• Current status: 1.2 release promised soon (incor-
porating evaluation code from MIREX 2006)

• Programming language: Java

• License: Academic use, research use and com-
mercial evaluation licenses are available for D2K;
M2K is distributed under free license

• Supported audio formats: Wave, mp3

• Output formats: D2K Table, ASCII file, ARFF
(via D2K Table), Java serialization

• Batch and command line support: Yes

• Feature extraction details: Examples of various
features are provided including MFCCs, spec-
tral contrast features, common spectral shape
descriptors (centroid, flux etc.) and onset de-
tection functions

• Classification algorithms details: Classification
modules are integrated in D2K and contain many
strategies: decision trees, Bayesian classifier,
Weka learners, neural networks, SVMs etc.

• Publications: [41]

• WWW: http://www.music-ir.org/evaluation/
m2k/release/
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7.3 MusicMiner

• Application purpose: Music browser which visu-
alizes the differences between songs and artists

• Developers: Databionics Research Group, Uni-
versität Marburg

• Start of development: 2005

• Current status: Stable release

• Programming language: Java

• License: GPL

• Supported audio formats: Wave, mp3, ogg, wma,
mp2, m4a

• Output formats: ASCII file

• Batch and command line support: Yes, feature
extraction can be made from the command line

• Feature extraction details: Features are extracted
using Yale ValueSeries preprocessing plugin (see
below)

• Classification algorithms details: For the visu-
alization of music similarities, emergent self-
organizing maps are used

• Publications: [10, 42]

• WWW: http://musicminer.sourceforge.net/

7.4 RapidMiner (Yale)

• Application purpose: Environment for machine
learning experiments and data mining. Feature
extraction available via ValueSeries preprocess-
ing plugin, numerous classification techniques
are implemented

• Developers: Artificial Intelligence Unit, Univer-
sität Dortmund

• Start of development: 2001

• Current status: Stable release

• Programming language: Java

• License: GPL

• Supported audio formats: Wave, mp3, ogg

• Output formats: Weka ARFF and numerous
other formats, which can also be user-defined

• Batch and command line support: Yes, batch
XML files can be saved for future applications
with or without usage of GUI

• Feature extraction: ValueSeries preprocessing
plugin allows extraction of certain features (cur-
rently over 30 operators) as well as many trans-
forms such as FFT, autocorrelation, phase do-
main transform, different filters etc.

• Classification algorithms details: Various classifi-
cation techniques are available, including Weka
learners, SVMs, Bayesian classifier, decision tree,
association rules learners

• Publications: [43]

• WWW: http://rapid-i.com/
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