#### UNIVERSITÄT DORTMUNI



Wintersemester 2007/08

# Praktische Optimierung (Vorlesung)

(Volicoung)

Kapitel 2: Grundlagen

Prof. Dr. Günter Rudolph
Fachbereich Informatik
Lehrstuhl für Algorithm Engineering



## Kapitel 2: Grundlagen

# **Definition 2.2**

Sei f:  $S \to \mathbb{R}$  mit  $S \subseteq \mathbb{R}^n$ .

- (a) x\* heißt globale Minimalstelle von f(·) falls ∀x ∈ S: f(x\*) ≤ f(x). Der Wert f(x\*) wird dann globales Minimum genannt.
- (b)  $x^*$  heißt **lokale Minimalstelle** von  $f(\cdot)$  falls  $\exists \varepsilon \ge 0$ :  $\forall x \in U_\varepsilon(x^*) \cap S$ :  $f(x^*) \le f(x)$ . Der Wert  $f(x^*)$  wird dann **lokales Minimum** genannt.

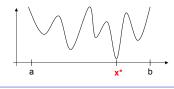
#### Bemerkung:

Offensichtlich ist jede globale Minimalstelle auch eine lokale Minimalstelle.

Die Umkehrung ist im Allgemeinen falsch!

## Beispiel:

f: [a,b]  $\to \mathbb{R}$ , globale Minimalstelle bei  $\mathbf{x}^*$ 



Rudolph: PO (WS 2008/09) • Kap. 2: Grundlagen

# Kapitel 2: Grundlagen

# **Definition 2.1**

Seien f,  $g_i$ ,  $h_j$ :  $S \to \mathbb{R}$  mit  $S \subseteq \mathbb{R}^n$  für i = 1, ..., I und j = 1, ..., J. Die Aufgabe "Finde  $x^* \in S$  mit  $f(x^*)$  = min {  $f(x) : x \in S$  }"

wird globales Optimierungsproblem genannt.

Dann heißt f(x) die **Zielfunktion** und S der **zulässige Bereich**.

Jedes  $x \in S$  wird **zulässige Lösung** genannt.

Ist der zulässige Bereich durch Ungleichungen und / oder Gleichungen der Form

$$g_i(x) \le 0$$
 bzw.  $h_i(x) = 0$  (\*)

beschrieben, so heißen (\*) Nebenbedingungen oder Restriktionen.

#### Bemerkung:

Da min  $\{f(x): x \in S\} = -\max\{-f(x): x \in S\}$  ist es ausreichend, sich im Folgenden auf Minimierungsprobleme zu beschränken.

Rudolph: PO (WS 2008/09) • Kap. 2: Grundlagen

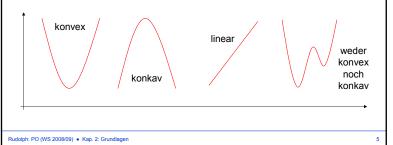
Kapitel 2: Grundlagen **Definition 2.3** Menge  $S \subseteq \mathbb{R}^n$  heißt **konvexe Menge**  $\Leftrightarrow$  $\forall~x,\,y\in S\colon\forall~\xi\in(0,1)\!\!:\xi~x~+~(1~-~\xi)~y\in S$ anschaulich: alle Punkte auf der Verbindungslinie zwischen x und y müssen in S liegen! konvex  $\mathbb{R}^n$  ist konvex!  $\mathbb{R}$ .  $\times$   $\mathbb{R}$ . Durchschnitt nicht konvexer Mengen konvex konvex ist konvex! Rudolph: PO (WS 2008/09) • Kap. 2: Grundlagen

# Kapitel 2: Grundlagen

# **Definition 2.4**

Seien  $x_1, x_2 \in S \subseteq \mathbb{R}^n$  und  $\xi \in [0,1]$ . Die Funktion f:  $S \to \mathbb{R}$  heißt

- (a) **konvex**, falls  $f(\xi x_1 + (1 \xi) x_2) \le \xi f(x_1) + (1 \xi) f(x_2)$ ,
- (b) konkav, falls -f konvex ist,
- (c) *linear* oder *affin*, wenn f sowohl konvex als auch konkav.



## Kapitel 2: Grundlagen

### Satz 2.2

Sei f:  $\mathbb{R}^n \to \mathbb{R}$  unimodal. Jedes lokale Optimum ist auch globales Optimum.

Beweis: (durch Widerspruch)

Sei x\* lokale Optimalstelle von f(.).

Annahme: Es existiert globale Optimalstelle  $y^*$  mit  $f(y^*) < f(x^*)$ .

Wegen Unimodalität von f(•):

 $f(x) < \max \{ f(x^*), f(y^*) \} = f(x^*)$  für alle  $x \in \{ \xi x^* + (1 - \xi) y^* : \xi \in [0, 1] \}.$ 

Also existieren  $x \in \{ \xi x^* + (1 - \xi) y^* : \xi \in [0,1] \} \cap U_{\epsilon}(x^*) \neq \emptyset \text{ mit } f(x) < f(x^*).$ 

Widerspruch zur lokalen Optimalität von x\*.

Rudolph: PO (WS 2008/09) • Kap. 2: Grundlagen

## Kapitel 2: Grundlagen

## **Definition 2.5**

Seien  $x_1, x_2 \in S \subseteq \mathbb{R}^n$  und  $\xi \in [0,1]$ . Die Funktion f:  $S \to \mathbb{R}$  heißt

- (a) **quasikonvex**, falls  $f(\xi x_1 + (1 \xi) x_2) \le \max \{ f(x_1), f(x_2) \},$
- (b) streng quasikonvex oder unimodal, falls oben Gleichheit ausgeschlossen.

## Satz 2.1

f streng konvex  $\Rightarrow$  f unimodal

#### Beweis:

$$\begin{split} f(\;\xi\;X_1 + (1-\xi)\;X_2\;) &< \xi\;f(X_1) + (1-\xi)\;f(X_2) \\ &\leq \max\left\{\;\xi\;f(X_1) + (1-\xi)\;f(X_2) : \xi \in [0,1]\;\right\} \\ &\leq \max\left\{\;f(X_1),\;f(X_2)\;\right\} \end{split}$$

Rudolph: PO (WS 2008/09) • Kap. 2: Grundlager

## Kapitel 2: Grundlagen

#### **Satz 2.3**

Sei f:  $\mathbb{R}^n \to \mathbb{R}$  mit f(x) = x'Ax, wobei Matrix A symmetrisch und positiv definit. Dann ist f(x) konvex.

#### Beweis:

$$f(\xi x_1 + (1 - \xi) x_2) = f(\xi (x_1 - x_2) + x_2)$$
  
=  $[\xi(x_1 - x_2) + x_2]' A [\xi(x_1 - x_2) + x_2]$ ,  $\xi \in [0, 1]$ .

ausmultiplizieren ergibt:

$$= \xi^{2}(x_{1}-x_{2})'A(x_{1}-x_{2}) + \xi(x_{1}-x_{2})'Ax_{2} + \xi x_{2}'A(x_{1}-x_{2}) + x_{2}'Ax_{2}$$

$$\downarrow \qquad \qquad \qquad \leq \xi \in [0,1] \qquad \geq 0, \text{ da A pos. def.}$$

$$\leq \xi (x_1 - x_2)' A(x_1 - x_2) + \xi (x_1 - x_2)' A x_2 + \xi x_2' A(x_1 - x_2) + x_2' A x_2$$

ausmultiplizieren und umordnen ergibt:

$$= \xi (x_1' A x_1 - x_2' A x_2) + x_2' A x_2 = \xi x_1' A x_1 + (1 - \xi) x_2' A x_2$$
$$= \xi f(x_1) + (1 - \xi) f(x_2)$$

Rudolph: PO (WS 2008/09) • Kap. 2: Grundlagen