UNIVERSITÄT DORTMUNI

Wintersemester 2007/08

Praktische Optimierung (Vorlesung)

(Volicoung)

Kapitel 2: Grundlagen

Prof. Dr. Günter Rudolph
Fachbereich Informatik
Lehrstuhl für Algorithm Engineering

Kapitel 2: Grundlagen

Definition 2.2

Sei f: $S \to \mathbb{R}$ mit $S \subseteq \mathbb{R}^n$.

- (a) x* heißt globale Minimalstelle von f(·) falls ∀x ∈ S: f(x*) ≤ f(x). Der Wert f(x*) wird dann globales Minimum genannt.
- (b) x^* heißt **lokale Minimalstelle** von $f(\cdot)$ falls $\exists \varepsilon \ge 0$: $\forall x \in U_\varepsilon(x^*) \cap S$: $f(x^*) \le f(x)$. Der Wert $f(x^*)$ wird dann **lokales Minimum** genannt.

Bemerkung:

Offensichtlich ist jede globale Minimalstelle auch eine lokale Minimalstelle.

Die Umkehrung ist im Allgemeinen falsch!

Beispiel:

f: [a,b] $\to \mathbb{R}$, globale Minimalstelle bei \mathbf{x}^*

Rudolph: PO (WS 2008/09) • Kap. 2: Grundlagen

Kapitel 2: Grundlagen

Definition 2.1

Seien f, g_i , h_j : $S \to \mathbb{R}$ mit $S \subseteq \mathbb{R}^n$ für i = 1, ..., I und j = 1, ..., J. Die Aufgabe "Finde $x^* \in S$ mit $f(x^*)$ = min { $f(x) : x \in S$ }"

wird globales Optimierungsproblem genannt.

Dann heißt f(x) die **Zielfunktion** und S der **zulässige Bereich**.

Jedes $x \in S$ wird **zulässige Lösung** genannt.

Ist der zulässige Bereich durch Ungleichungen und / oder Gleichungen der Form

$$g_i(x) \le 0$$
 bzw. $h_i(x) = 0$ (*)

beschrieben, so heißen (*) Nebenbedingungen oder Restriktionen.

Bemerkung:

Da min $\{f(x): x \in S\} = -\max\{-f(x): x \in S\}$ ist es ausreichend, sich im Folgenden auf Minimierungsprobleme zu beschränken.

Rudolph: PO (WS 2008/09) • Kap. 2: Grundlagen

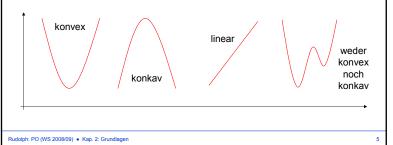
Kapitel 2: Grundlagen **Definition 2.3** Menge $S \subseteq \mathbb{R}^n$ heißt **konvexe Menge** \Leftrightarrow $\forall~x,\,y\in S\colon\forall~\xi\in(0,1)\!\!:\xi~x~+~(1~-~\xi)~y\in S$ anschaulich: alle Punkte auf der Verbindungslinie zwischen x und y müssen in S liegen! konvex \mathbb{R}^n ist konvex! \mathbb{R} . \times \mathbb{R} . Durchschnitt nicht konvexer Mengen konvex konvex ist konvex! Rudolph: PO (WS 2008/09) • Kap. 2: Grundlagen

Kapitel 2: Grundlagen

Definition 2.4

Seien $x_1, x_2 \in S \subseteq \mathbb{R}^n$ und $\xi \in [0,1]$. Die Funktion f: $S \to \mathbb{R}$ heißt

- (a) **konvex**, falls $f(\xi x_1 + (1 \xi) x_2) \le \xi f(x_1) + (1 \xi) f(x_2)$,
- (b) konkav, falls -f konvex ist,
- (c) *linear* oder *affin*, wenn f sowohl konvex als auch konkav.



Kapitel 2: Grundlagen

Satz 2.2

Sei f: $\mathbb{R}^n \to \mathbb{R}$ unimodal. Jedes lokale Optimum ist auch globales Optimum.

Beweis: (durch Widerspruch)

Sei x* lokale Optimalstelle von f(.).

Annahme: Es existiert globale Optimalstelle y^* mit $f(y^*) < f(x^*)$.

Wegen Unimodalität von f(•):

 $f(x) < \max \{ f(x^*), f(y^*) \} = f(x^*)$ für alle $x \in \{ \xi x^* + (1 - \xi) y^* : \xi \in [0, 1] \}.$

Also existieren $x \in \{ \xi x^* + (1 - \xi) y^* : \xi \in [0,1] \} \cap U_{\epsilon}(x^*) \neq \emptyset \text{ mit } f(x) < f(x^*).$

Widerspruch zur lokalen Optimalität von x*.

Rudolph: PO (WS 2008/09) • Kap. 2: Grundlagen

Kapitel 2: Grundlagen

Definition 2.5

Seien $x_1, x_2 \in S \subseteq \mathbb{R}^n$ und $\xi \in [0,1]$. Die Funktion f: $S \to \mathbb{R}$ heißt

- (a) **quasikonvex**, falls $f(\xi x_1 + (1 \xi) x_2) \le \max \{ f(x_1), f(x_2) \},$
- (b) streng quasikonvex oder unimodal, falls oben Gleichheit ausgeschlossen.

Satz 2.1

f streng konvex \Rightarrow f unimodal

Beweis:

$$\begin{split} f(\;\xi\;X_1 + (1-\xi)\;X_2\;) &< \xi\;f(X_1) + (1-\xi)\;f(X_2) \\ &\leq \max\left\{\;\xi\;f(X_1) + (1-\xi)\;f(X_2) : \xi \in [0,1]\;\right\} \\ &\leq \max\left\{\;f(X_1),\;f(X_2)\;\right\} \end{split}$$

Rudolph: PO (WS 2008/09) • Kap. 2: Grundlager

Kapitel 2: Grundlagen

Satz 2.3

Sei f: $\mathbb{R}^n \to \mathbb{R}$ mit f(x) = x'Ax, wobei Matrix A symmetrisch und positiv definit. Dann ist f(x) konvex.

Beweis:

$$f(\xi x_1 + (1 - \xi) x_2) = f(\xi (x_1 - x_2) + x_2)$$

= $[\xi(x_1 - x_2) + x_2]' A [\xi(x_1 - x_2) + x_2]$, $\xi \in [0, 1]$.

ausmultiplizieren ergibt:

$$= \xi^{2}(x_{1}-x_{2})'A(x_{1}-x_{2}) + \xi(x_{1}-x_{2})'Ax_{2} + \xi x_{2}'A(x_{1}-x_{2}) + x_{2}'Ax_{2}$$

$$\downarrow \qquad \qquad \qquad \leq \xi \in [0,1] \qquad \geq 0, \text{ da A pos. def.}$$

$$\leq \xi (x_1 - x_2)' A(x_1 - x_2) + \xi (x_1 - x_2)' A x_2 + \xi x_2' A(x_1 - x_2) + x_2' A x_2$$

ausmultiplizieren und umordnen ergibt:

$$= \xi (x_1' A x_1 - x_2' A x_2) + x_2' A x_2 = \xi x_1' A x_1 + (1 - \xi) x_2' A x_2$$
$$= \xi f(x_1) + (1 - \xi) f(x_2)$$

Rudolph: PO (WS 2008/09) • Kap. 2: Grundlagen