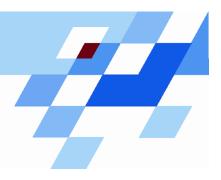
Universität Dortmund



Wintersemester 2007/08

Praktische Optimierung (Vorlesung)

Prof. Dr. Günter Rudolph
Fachbereich Informatik
Lehrstuhl für Algorithm Engineering

(1+1)-EA:

Schrittweite Zufallsvektor

Wähle $X^{(0)} \in \mathbb{R}^n$, $s_0 > \epsilon > 0$, k = 0 while $(s_k > \epsilon)$ { $Y = X^{(k)} + s_k \cdot m^{(k)} \longleftarrow$ $\text{if } f(Y) < f(X^{(k)}) \text{ then } X^{(k+1)} = Y \quad ; s_{k+1} = a^+(s_k)$ $\text{else } X^{(k+1)} = X^{(k)} \; ; s_{k+1} = a^-(s_k)$ Selektion $\text{helse } X^{(k+1)} = X^{(k)} \; ; s_{k+1} = a^-(s_k)$

Schrittweitenanpassung: z.B.

$$a^+(s) = s / \gamma$$

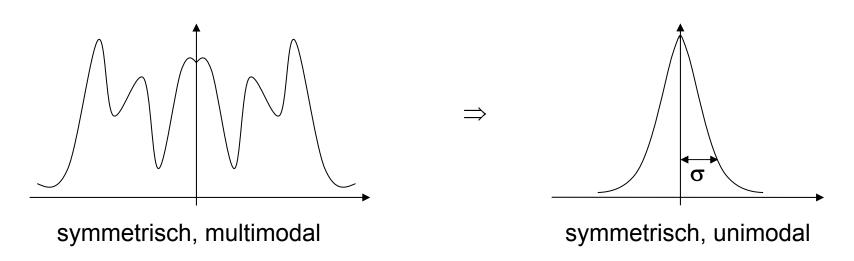
 $a^-(s) = s \cdot \gamma$ $\gamma \in (0,1)$

Wie sollte die Mutationsverteilung gewählt werden?

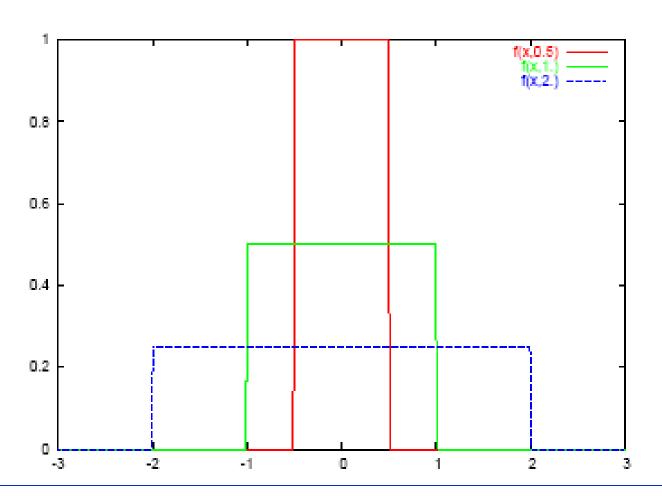
Forderungen an Such- / Mutationsverteilung von m(k)

- 1. Keine Richtung ohne Grund bevorzugen
- 2. Kleine Änderungen wahrscheinlicher als große
- 3. Steuerbar: Größe der Umgebung, Streuung
- 4. Leicht erzeugbar
- 5. ...

- → Symmetrie um 0
- → Unimodal mit Modus 0
- → Parametrisierbar



Gleichverteilung
$$f_m(x) = \frac{1}{2r} \cdot 1_{(-r,r)}(x)$$

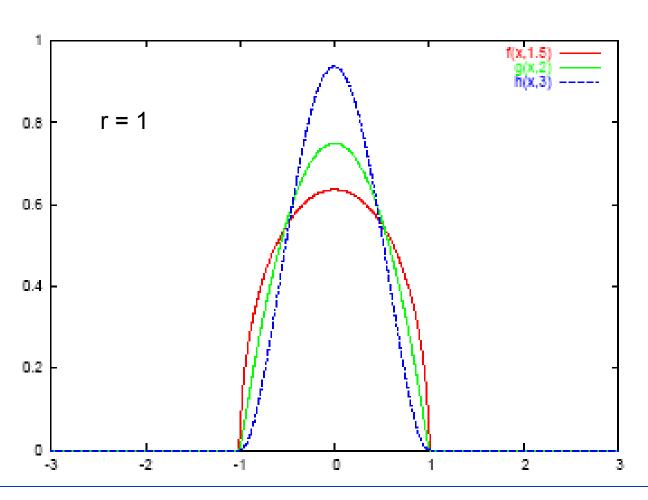


- symmetrisch
- unimodal
- steuerbar → r
- leicht erzeugbar:

$$m = r (2 u - 1)$$

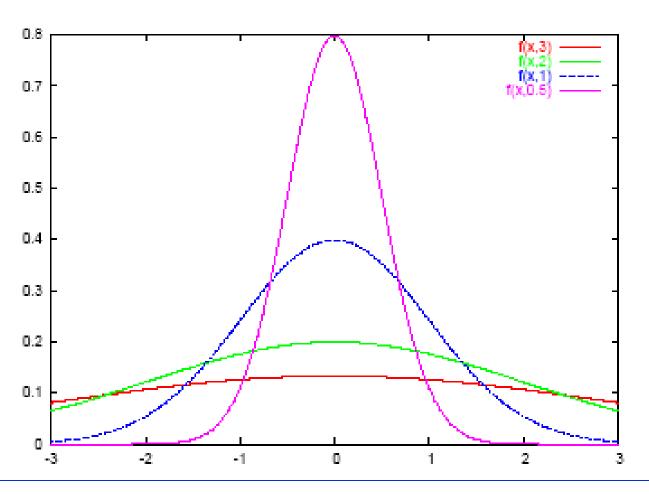
wobei $u \in [0,1)$ gleichverteilt (aus Bibliothek)

Betaverteilung
$$f_m(x) = \frac{r^{1-2p}}{\sqrt{\pi}} \cdot \frac{\Gamma(p+\frac{1}{2})}{\Gamma(p)} (1-x^2)^{p-1} \cdot 1_{(-r,r)}(x)$$



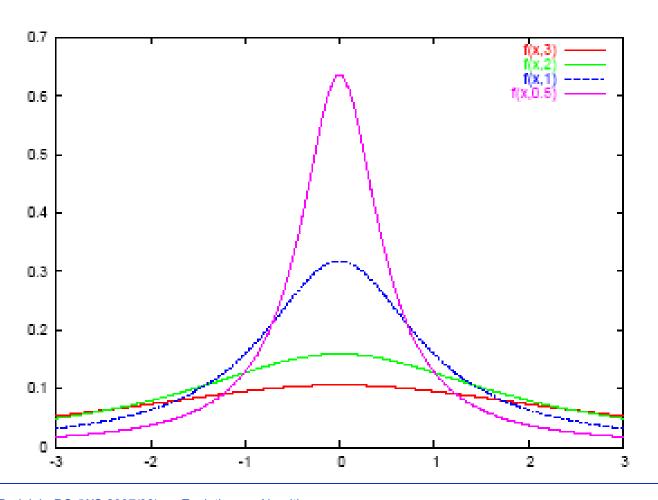
- symmetrisch
- unimodal
- steuerbar \rightarrow r, p
- leicht erzeugbar (Bibliothek)

Normalverteilung
$$f_m(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$



- symmetrisch
- unimodal
- steuerbar $\rightarrow \sigma$
- nicht ganz so leicht erzeugbar (Bibliothek)

$$f_m(x) = \frac{1}{c\pi} \cdot \frac{1}{1 + (\frac{x}{c})^2}$$



- symmetrisch
- unimodal
- steuerbar → c
- leicht erzeugbar (Bibliothek)

Besonderheit:

unendliche Varianz

Höherdimensionale Suchräume: Symmetrie? Unimodalität? Steuerbarkeit?

↓ Rotationssymmetrie

Definition:

Sei T eine (n x n)-Matrix mit T'T = I_n . (I_n : n-dim. Einheitsmatrix)

T heißt *orthogonale Matrix* oder *Rotationsmatrix*.

Beispiel:

$$T = \begin{pmatrix} \cos \omega & -\sin \omega \\ \sin \omega & \cos \omega \end{pmatrix}$$

 $y = T'x \Rightarrow \text{Vektor } x \text{ wurde um Winkel } \omega \text{ gedreht}$

Definition:

n-dimensionaler Zufallsvektor x heißt

sphärisch symmetrisch oder rotationssysmmetrisch

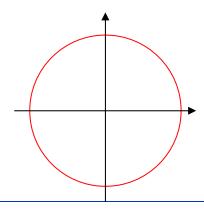
 $\Leftrightarrow x \stackrel{d}{=} T'x$ für jede orthogonale Matrix T.

 $x \stackrel{d}{=} y$ bedeutet: x hat die gleiche Verteilung wie y

Beispiel: Gleichverteilung auf Kreis (Hyperkugel der Dimension n = 2)

u gleichverteilt in $[0,1] \Rightarrow \omega = 2\pi u$

$$x \stackrel{d}{=} \left(\begin{array}{c} \cos \omega \\ \sin \omega \end{array}\right)$$



Satz:

Zufallsvektor x rotationssymmetrisch \Leftrightarrow x $\stackrel{d}{=}$ r u⁽ⁿ⁾, wobei

nichtnegative Zufallsvariable und

u⁽ⁿ⁾ Zufallsvektor mit Gleichverteilung auf n-dim. Hyperkugelrand mit Radius 1. ■

Bemerkung:

r und $u^{(n)}$ sind stochastisch unabhängig, $u^{(n)} = \frac{x}{\parallel x \parallel}$

Erzeugung von rotationssymmetrischen Zufallsvektoren:

- 1. Wähle zufällige Richtung u⁽ⁿ⁾
- 2. Wähle zufällige Schrittlänge r
- 3. Multiplikation: $x = r u^{(n)}$

Beispiel: Multivariate Normalverteilung

Zufallsvektor m erzeugbar via

1.
$$m = \sigma \cdot (m_1, m_2, \dots, m_n)$$
, wobei $m_i \sim N(0, 1)$ stoch. unabh., oder

2.
$$m=r\cdot u$$
, wobei $r\sim \chi_n(\sigma)$, $u\sim U(\partial S_n(1))$.

$$\uparrow \qquad \qquad \uparrow$$

$$\chi\text{-Verteilung mit} \qquad \text{Gleichverteilung}$$
n Freiheitsgraden auf Hyperkugelrand

$$\partial S_n(r) = \{ x \in \mathbb{R}^n : || x || = r \}$$
 Hyperkugelrand

Beispiel: Multivariate Cauchyverteilung

Zufallsvektor m erzeugbar via

1.
$$m = \sigma \cdot (m_1, m_2, \dots, m_n)/m_0$$
, wobei $m_i \sim N(0, 1)$ stoch. unabh., oder

2.
$$m=r\cdot u$$
, wobei $r/n\sim F_{n,1}$, $u\sim U(\partial S_n(1))$.

F-Verteilung mit (n,1) Gleichverteilung auf Hyperkugelrand

Achtung:

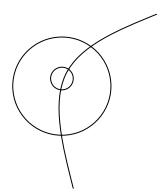
Zufallsvektor aus n unabh. Cauchy-Zufallsvariablen <u>nicht</u> rotationssymmetrisch!

(1+1)-EA mit Schrittweitenanpassung (1/5-Erfolgsregel, Rechenberg 1973)

Idee:

- Wenn viele erfolgreiche Mutationen, dann Schrittweite zu klein.
- Wenn wenige erfolgreiche Mutationen, dann Schrittweite zu groß.

bei infinitesimal kleinem Radius ist Erfolgsrate = 1/2



Ansatz:

- Protokolliere erfolgreiche Mutationen in gewissem Zeitraum
- Wenn Anteil größer als gewisse Schranke (z. B. 1/5), dann Schrittweite erhöhen, sonst Schrittweite verringern

Satz:

(1+1)-EA mit 1/5-artiger Schrittweitensteuerung konvergiert für streng konvexe Probleme zum globalen Minimum mit linearer Konvergenzordnung.

Jägersküpper 2006

lineare Konvergenzordnung:

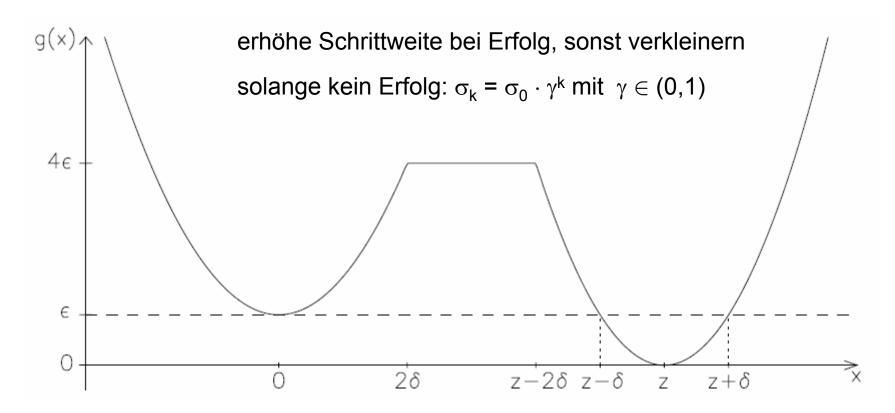
$$E[f(X_{k+1}) - f^* \mid X_k] \le c \cdot E[f(X_k) - f^*] \text{ mit } c \in (0,1)$$

deshalb im allgemeinen, multimodalen Fall:

⇒ schnelle Konvergenz zum lokalen Optimum

Anmerkung: gleiche Konvergenzordnung wie Gradientenverfahren!

Konvergenzproblematik bei der Schrittweitenanpassung



Annahme: $X_0 = 0$

Frage: Wird lokales Optimum sicher verlassen (Übergang zu $[z-\delta,z+\delta]$) ?

Sei q_k Wahrscheinlichkeit, im Schritt k das lokale Optimum zu verlassen.

Kriterium für sicheres Verlassen:

$$1 - \prod_{k=1}^{\infty} (1 - q_k) = 1 \Leftrightarrow \prod_{k=1}^{\infty} (1 - q_k) = 0 \Leftrightarrow \sum_{k=1}^{\infty} \log \frac{1}{1 - q_k} = \infty$$

Kriterium für unsicheres Verlassen:

$$1 - \prod_{k=1}^{\infty} (1 - q_k) < 1 \Leftrightarrow \prod_{k=1}^{\infty} (1 - q_k) > 0 \Leftrightarrow \sum_{k=1}^{\infty} \log \frac{1}{1 - q_k} < \infty$$

Vereinfachung des log-Terms →

Lemma:

Sei
$$x \in (0,1)$$
. Dann gilt: $x < \log\left(\frac{1}{1-x}\right) < \frac{x}{1-x}$

Beweis:

Reihenentwicklung
$$\log\left(\frac{1}{1-x}\right) = -\log(1-x) = \sum_{i=1}^{\infty} \frac{x^i}{i}$$

also:
$$0 < x < \sum_{i=1}^{\infty} \frac{x^i}{i} < \sum_{i=1}^{\infty} x^i = \sum_{i=0}^{\infty} x^i - 1 = \frac{x}{1-x}$$

q.e.d.

Hinreichendes Kriterium für unsicheres Verlassen:

$$\sum_{k=1}^{\infty} \log \frac{1}{1-q_k} < \sum_{k=1}^{\infty} \frac{q_k}{1-q_k} < \boxed{\frac{1}{1-q_1} \sum_{k=1}^{\infty} q_k < \infty}$$

Lemma

weil q_k monoton fallend

$$\begin{array}{lll} p_k = P\{\ 0 \rightarrow (z - \delta,\ z + \delta)\} &= P\{\ z - \delta < Z < z + \delta\ \} &= F_Z(z + \delta) - F_Z(z - \delta) = \\ &= 2\ \delta\ f_Z(z - \delta + \theta \cdot 2\ \delta) & \text{mit}\ \theta \in (0,1) \end{array}$$

$$\begin{array}{ll} \text{Mittelwertsatz der} \\ \text{Differential rechnung!} \end{array}$$

Annahme: Dichte $f_{z}(\cdot)$ von Z ist unimodal

dann: $2 \delta f_Z(z+\delta) < p_k < 2 \delta f_Z(z-\delta)$ und deshalb: $q_k = 2 \delta f_Z(z-\delta)$

Z sei normalverteilt

$$f_Z(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

$$p_k \le q_k = \delta \sqrt{\frac{2}{\pi}} \frac{1}{\sigma_k} \exp\left(-\frac{(z-\delta)^2}{2\sigma_k^2}\right)$$
$$= A \eta_k \exp(-B \eta_k^2)$$

wobei

$$A = \delta (2/\pi)^{1/2}$$
, $B = (z - \delta)^2/2$, $\eta_k = 1/\sigma_k$.

Sei
$$\eta_k = \eta_0 \, \beta^k$$
 mit $\beta = 1/\gamma > 1$

$$\sum_{k=1}^{\infty} \frac{\beta^k}{\exp(B\,\eta_0^2\,\beta^{2\,k})} \quad \text{konvergiert nach Wurzelkriterium!}$$

$$\sum_{k=0}^{\infty} |a_k| < \infty$$
 falls $\lim_{k o \infty} |a_k|^{1/k} = lpha < \infty$

⇒ kein sicheres Entkommen von lokalen Optima!

Schrittweitensteuerung nach Rechenberg:

Individuum
$$(x, \sigma)$$
 $\gamma \in (0,1) \subset \mathbb{R}$

$$\sigma^{(k)} = \left\{ \begin{array}{l} \sigma^{(k-\Delta k)} \, / \, \gamma \, , \, \text{falls} & \frac{\text{\# Verbesserungen}}{\text{\# Mutationen}} \\ \\ \sigma^{(k-\Delta k)} \cdot \gamma \, , \, \text{sonst} \end{array} \right. > 1/5 \quad \text{während } \Delta k \, \text{Mutationen}$$

Problem: keine Konvergenz mit W'keit 1

aber: schnelle Konvergenz zum lokalen Optimum + W'keit > 0 dieses zu verlassen!

⇒ kein globales Verfahren, aber gutes nicht-lokales Verhalten!

Beobachtung: Anpassung σ sprunghaft \Rightarrow Anpassung kontinuisieren!

Schrittweitensteuerung nach Schwefel:

Individuum (x, σ) : auch Strategieparameter wie σ werden mutiert

Mutation:

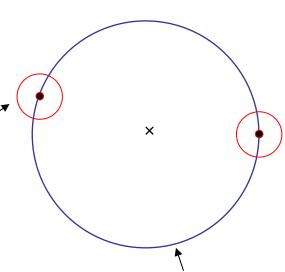
1.
$$\sigma_{k+1} = \sigma_k \cdot \exp(N(0, \tau^2))$$
 $\tau = 1 / n^{1/2}$

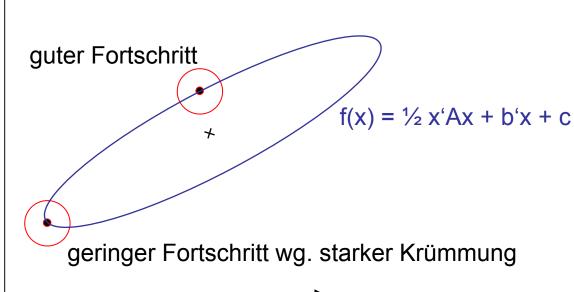
2.
$$X_{k+1} = X_k + \sigma_{k+1} \cdot N(0, I)$$

Wichtig: die bereits mutierte Schrittweite wird verwendet!

"Schrittweite" σ wird <u>multiplikativ</u> verändert (logarithmisch normalverteilt), neue Schrittweite wird verwendet bei <u>additiver</u> Veränderung der <u>Position</u>

Bisher: rotationssymmetrische Mutationen

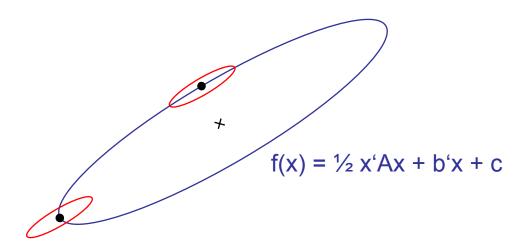




Isolinie {
$$x : f(x) = a$$
 }
falls $f(x) = ||x||^2$
(Höhenlinie)

Idee:

Mutationsverteilung wie Höhenlinien ausrichten



Wie erzeugt man solche Mutationsverteilungen?

 $Z \sim N(0, \sigma^2 I_n)$ \Rightarrow rotationssymmetrisch (I_n = Einheitsmatrix mit Rang n)

 $Z \sim N(0, D^2)$ \Rightarrow ellipsoid, achsenparallel (D = diag($\sigma_1, ..., \sigma_n$), Diagonalmatrix)

 $Z \sim N(0, C)$ \Rightarrow ellipsoid, frei beweglich (C = Kovarianzmatrix)

C = C' (symmetrisch) und $\forall x: x'Cx > 0$ (positiv definit)

Wie muss Kovarianzmatrix C gewählt werden?

Ansatz: Taylor-Reihenentwicklung

$$f(x + h) = f(x) + h'\nabla f(x) + \frac{1}{2}h'\nabla^2 f(x) h + R(x, h)$$

$$linear quadratisch Restterme (ignorierbar, da h klein)$$

$$\nabla^2 f(x) = H(x)$$
 Hessematrix

→ enthält Informationen über Skalierung und Orientierung der Höhenlinien

 \rightarrow Es wird sich zeigen: Wähle C = H⁻¹!

Approximation:
$$f(x) \approx \frac{1}{2} x^4 A x + b^4 x + c \Rightarrow \text{Hessematrix H} = A$$

Koordinatentransformation:
$$x = Q y$$
 Q: $(n \times n) - Matrix$

$$\Rightarrow f(Qy) = \frac{1}{2} (Qy)' A (Qy) + b' (Qy) + c$$

$$= \frac{1}{2} y'Q'AQy + b'Qy + c$$

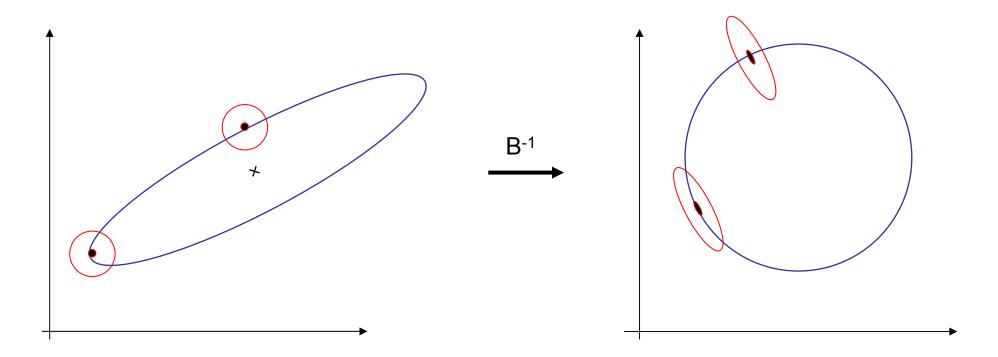
$$= \frac{1}{2} y'Q'B'BQy + b'Qy + c \qquad \text{mit Cholesky-Zerlegung} \quad A = B'B$$

$$= \frac{1}{2} y'(Q'B')(BQ)y + b'Qy + c \qquad \text{sei jetzt } Q = B^{-1}$$

$$= \frac{1}{2} y'y + b' B^{-1}y + c$$

rotationssymmetrische Höhenlinien!

also: wir benötigen Dreiecksmatrix Q bzw. B⁻¹



- ⇒ durch Koordinatentransformation mit B-1 wird Problem kugelsymmetrisch!
- $\Rightarrow \text{also kugelsymmetrische Mutation transformieren!}$

Satz:

Sei y \sim N(0, I_n) und Q'Q eine positiv definite Matrix mit Rang n.

Dann x = Q'y \sim N(0, Q'Q).

⇒ mit Q' = B-1 können wir Mutationsverteilungen wie gewünscht ausrichten!

aber: woher bekommen wir Matrix Q?

⇒ Selbstanpassung der Matrixelemente wie bei Schrittweite nach Schwefel

Q entsteht durch Cholesky-Zerlegung von C, ist also Dreiecksmatrix

- → Skalierungsfaktoren je Zeile herausziehen: in Diagonalmatrix S ablegen
- \rightarrow Q zerlegbar in Q = S · T mit t_{ii} = 1 (S hat n Parameter, T hat n(n-1)/2 Parameter)

Satz:

Jede sym., pos. definite Matrix A ist zerlegbar via A = T'DT und umgekehrt, wobei T orthogonale Matrix (T' = T^{-1}) und D Diagonalmatrix mit $d_{ii} > 0$.

 \Rightarrow also wählen wir S = D^{1/2}, so dass A = (TS)'(TS)

Satz:

Jede orthogonale Matrix T kann durch das Produkt von n(n-1)/2 elementaren Rotationsmatrizen R_{ii} (ω_k) dargestellt werden:

$$T = \prod_{i=1}^{n-1} \prod_{j=i+1}^{n} R_{ij}(\omega_k)$$

 $R_{ij}(\omega)$ = wie Einheitsmatrix, jedoch mit r_{ii} = r_{ji} = $\cos \omega$, r_{ij} = $-r_{ji}$ = $-\sin \omega$

Geometrische Interpretation

durch Q'y = TSy wird rotationssymmetrischer Zufallsvektor y

- 1. zunächst achsenparallel skaliert via Sy
- 2. und dann durch n(n-1)/2 elementare Rotationen in gewünschte Orientierung gebracht via T(Sy)

Mutation der Winkel ω:

$$\omega^{(t+1)} = (\omega^{(t)} + W + \pi) \text{ mod } (2\pi) - \pi \qquad \in (-\pi, \, \pi]$$
 wobei $W \sim N(0, \, \kappa^2)$ mit $\kappa = 5^\circ \pi \, / \, 180^\circ$

 \rightarrow Individuum jetzt: (x, σ , ω) mit n Schrittweiten (Skalierungen) + n(n-1)/2 Winkel

Praxis zeigt:

Idee gut, aber Realisierung nicht gut genug (funktioniert nur für kleines n)

Wie könnte man sonst noch an Matrixelemente von Q kommen?

(Rudolph 1992)

Modellannahme: $f(x) \approx \frac{1}{2} x^4 + b^4 + c$

Beobachtung: Bei (μ^+, λ) – Selektion werden λ Paare (x, f(x)) berechnet.

 \Rightarrow Falls $\lambda > n(n+1)/2 + n + 1$, dann **überbestimmtes** lineares Gleichungssystem:

$$f(x_1) = \frac{1}{2} x_1 Ax_1 + b x_1 + c$$

$$\vdots$$

$$f(x_{\lambda}) = \frac{1}{2} x_{\lambda} Ax_{\lambda} + b x_{\lambda} + c$$

$$v = (A, b, c) hat n(n-1)/2 + n + 1 zu$$

$$schätzende Parameter, wobei A = B'B$$

- \Rightarrow multiple lineare Regression für f = Xv \rightarrow X'f = X'Xv \rightarrow (X'X)-1X'f = v
- ⇒ aus Schätzer v = (A, b, c) bekommen wir Hessematrix H = A
- ⇒ Cholesky-Dekomposition von H und Matrixinversion liefert Q

Praxis zeigt: funktioniert sehr gut, aber zu hoher Aufwand: $(X^{i}X)^{-1}$ kostet $\mathcal{O}(n^6)$

Idee: Matrix C nicht in jeder Generation schätzen, sondern iterativ nähern!

(Hansen, Ostermeier et al. 1996ff.)

→ Covariance Matrix Adaptation Evolutionary Algorithm (CMA-EA)

Setze initiale Kovarianzmatrix auf $C^{(0)} = I_n$

$$C^{(t+1)} = (1-\eta) C^{(t)} + \eta \sum_{i=1}^{\mu} w_i d_i d_i$$

$$\eta$$
 : "Lernrate" \in (0,1)

$$m = \frac{1}{\mu} \sum_{i=1}^{\mu} x_{i:\lambda}$$
 Mittelpunkt aller selektierten Eltern

Aufwand:
$$\mathcal{O}(\mu n^2 + n^3)$$

$$d_i = (x_{i \cdot \lambda} - m) / \sigma$$

$$d_i = (x_{i:\lambda} - m) / \sigma$$
 Sortierung: $f(x_{1:\lambda}) \le f(x_{2:\lambda}) \le ... \le f(x_{\lambda:\lambda})$

dyadisches Produkt: dd' =
$$\begin{pmatrix} d_1d_1 & d_1d_2 & \cdots & d_1d_\mu \\ d_2d_1 & d_2d_2 & \cdots & d_2d_\mu \\ \vdots & & & \vdots \\ d_\mu d_1 & d_\mu d_2 & \cdots & d_\mu d_\mu \end{pmatrix}$$
 ist positiv semidefinite Streuungsmatrix

Variante:

$$\mathbf{m} = \frac{1}{\mu} \sum_{i=1}^{\mu} x_{i:\lambda} \quad \text{Mittelpunkt aller } \underline{\mathbf{selektierten}} \; \underline{\mathbf{Eltern}}$$

$$\begin{split} p^{(t+1)} &= (1-\chi) \; p^{(t)} + (\chi \; (2-\chi) \; \mu_{eff})^{1/2} \; (m^{(t)} - m^{(t-1)} \;) \, / \; \sigma^{(t)} \end{split} \qquad \text{"Evolutionspfad"} \\ p^{(0)} &= 0 \qquad \qquad \chi \in (0,1) \end{split}$$

$$C^{(0)} = I_n$$

 $C^{(t+1)} = (1 - \eta) C^{(t)} + \eta p^{(t)} (p^{(t)})$
Aufwand: $\mathcal{O}(n^2)$

 \rightarrow Cholesky-Zerlegung: $\mathcal{O}(n^3)$ für $C^{(t)}$

State-of-the-art: CMA-EA

- → erfolgreiche Anwendungen in der Praxis
- → insbesondere wenn Zielfunktionsauswertung zeitaufwändig
 (z.B. Zielfunktionsauswertung durch Simulationsprogramm)

Implementierungen im WWW verfügbar