Universität Dortmund

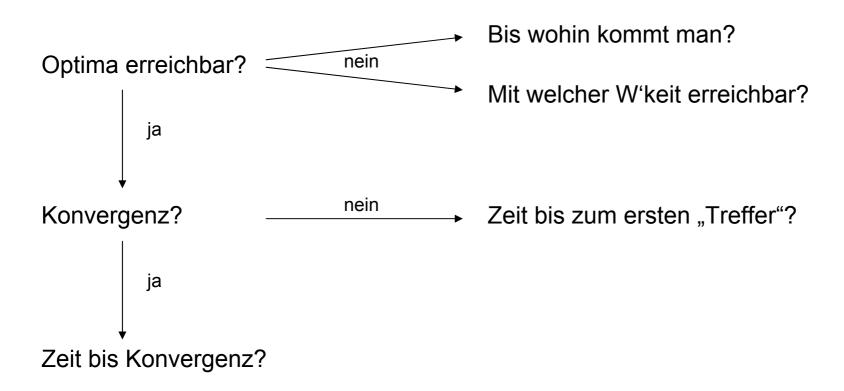
Wintersemester 2006/07

Fundamente der Computational Intelligence (Vorlesung)

Prof. Dr. Günter Rudolph
Fachbereich Informatik
Lehrstuhl für Algorithm Engineering

Inhalt

- Konvergenz
- ullet EA im \mathbb{R}^n



Zum Begriff "Konvergenz"

$$D_k = |f(X_k) - f^*| \ge 0$$
 ist eine Zufallsvariable wir betrachten die stochastische Folge $D_0, D_1, D_2, ...$

Konvergiert die stochastische Folge $(D_k)_{k\geq 0}$ gegen 0? Wenn ja, dann offensichtlich "Konvergenz zum Optimum"!

Es existieren viele Arten von stochastischer Konvergenz!

→ deshalb hier nur die gebräuchlichsten ...

Notation: $\mathcal{P}^{(t)}$ = Population zum Zeitpunkt $t \ge 0$, $f_b(\mathcal{P}(t))$ = min{ $f(x): x \in \mathcal{P}(t)$ }

Definition

Sei $D_t = |f_h(\mathcal{P}(t)) - f^*| \ge 0$. Wir sagen: Der EA

(a) *konvergiert vollständig* zum Optimum, wenn $\forall \epsilon > 0$

$$\lim_{t\to\infty}\sum_{k=1}^t P\{D_k>\varepsilon\}<\infty;$$

(b) konvergiert fast sicher oder mit W'keit 1 zum Optimum, wenn

$$P\{\lim_{t\to\infty}D_k=0\}=1;$$

(c) *konvergiert in Wahrscheinlichkeit* zum Optimum, wenn $\forall \ \epsilon > 0$

$$\lim_{t\to\infty} P\{D_t > \varepsilon\} = 0;$$

(a) *konvergiert im Mittel* zum Optimum, wenn $\forall \epsilon > 0$

$$\lim_{t\to\infty} E\{D_t\} = 0.$$

Lemma

- (a) \Rightarrow (b) \Rightarrow (c).
- (d) \Rightarrow (c).
- Falls $\exists K < \infty : \forall t \ge 0 : D_t \le K$, dann (d) \Leftrightarrow (c).
- Falls $(D_t)_{t\geq 0}$ stochastisch unabhängige Folge, dann $(a) \Leftrightarrow (b)$.

Typische Vorgehensweise:

- 1. Zeige Konvergenz in W'keit (c). Meistens einfach!
- 2. Zeige, dass Konvergenz schnell genug (a). Dann folgt auch (b).
- 3. Folge nach oben beschränkt? Dann folgt (d).

Beispiele: Sei $(X_k)_{k\geq 1}$ Folge unabhängiger Zufallsvariablen.

Verteilung:
$$P\{X_k = 0\} = 1 - \frac{1}{k}$$
 $P\{X_k = 1\} = \frac{1}{k}$

1.
$$P\{X_k > \varepsilon\} = P\{X_k = 1\} = \frac{1}{k} \to 0 \text{ für } t \to \infty$$

 \Rightarrow Konvergenz in W'keit (c)

2.
$$\sum_{k=1}^{\infty} P\{X_k > \varepsilon\} = \sum_{k=1}^{\infty} P\{X_k = 1\} = \sum_{k=1}^{\infty} \frac{1}{k} = \infty$$

- ⇒ Konvergenz nicht schnell genug! Also keine vollständige Konvergenz!
- 3. Es gilt: $\forall k \geq 0$: $0 \leq X_k \leq 1$. Also: Folge beschränkt mit K=1. Wg. Konvergenz in W'keit (c) und Beschränktheit \Rightarrow Konvergenz im Mittel (d)



Verteilung:		(a)	(c)	(d)
$P\{X_k = 0\} = 1 - \frac{1}{k}$	$P\{X_k = 1\} = \frac{1}{k}$	(–)	(+)	(+)
$P\{X_k = 0\} = 1 - \frac{1}{k^2}$	$P\{X_k = 1\} = \frac{1}{k^2}$	(+)	(+)	(+)
$P\{X_k = 0\} = 1 - \frac{1}{k}$	$P\{X_k = k\} = \frac{1}{k}$	(–)	(+)	(-)
$P\{X_k = 0\} = 1 - \frac{1}{k^2}$	$P\{X_k = k\} = \frac{1}{k^2}$	(+)	(+)	(+)
$P\{X_k = 0\} = 1 - \frac{1}{k}$	$P\{X_k = k^2\} = \frac{1}{k}$	(–)	(+)	(-)
$P\{X_k = 0\} = 1 - \frac{1}{k^2}$	$P\{X_k = k^2\} = \frac{1}{k^2}$	(+)	(+)	(–)

Satz:

Sei $D_k = |f(x_k) - f^*|$ für $k \ge 0$ durch einen (1+1)-EA generiert, $S^* = \{ x^* \in S : f(x^*) = f^* \}$ die Menge der optimalen Lösungen und $P_m(x, S^*)$ die W'keit, von $x \in S$ durch eine Mutation nach S^* zu gelangen.

Wenn für jedes $x \in S \setminus S^*$ gilt $P_m(x, S^*) \ge \delta > 0$, dann $D_k \to 0$ vollständig.

Beweis:

Für den (1+1)-EA gilt: $P(x, S^*) = 1$ für $x \in S^*$ wg. Selektion des Besseren.

Es reicht also zu zeigen, dass der EA durch Mutation S* sicher erreicht:

Erfolg in 1. Iteration: $P_m(x, S^*) \ge \delta$.

Kein Erfolg in 1. Iteration $\leq 1 - \delta$.

Kein Erfolg in k. Iteration $\leq (1 - \delta)^k$.

 \Rightarrow Erfolg in k. Iteration ≥ 1 - $(1-\delta)^k \to 1$ für $k \to \infty$.

Wg. P{ $D_k > \epsilon$ } \leq (1- δ)^k \rightarrow 0 folgt Konvergenz in W'keit und da folgt sogar vollständige Konvergenz.

$$\sum_{k=0}^{\infty} (1-\delta)^k < \infty$$

Außerdem: \forall k \geq 0: $0 \leq D_k \leq D_0 < \infty$, also auch Konvergenz im Mittel.

- Die Bedingung: $\forall x \in S \setminus S^*$ gilt $P_m(x, S^*) \ge \delta > 0$
- ist hinreichend, aber nicht notwendig und
- etwa für die globale Mutation mit Mutationsw'keit p ∈ (0,1) erfüllt, da

$$P_m(x, y) = p^{H(x,y)} (1-p)^{n-H(x,y)} > 0$$
 für alle x, y in S,

wobei n = Dimension und H(x,y) der Hamming-Abstand zwischen x und y.

Achtung:

Die gleiche Konvergenzaussage erhält man für reine Zufallssuche:

```
Wähle X_0 \in S, setze k=0. repeat  \begin{array}{l} \text{Wähle } Y_k \text{ zufällig gleichverteilt aus } S. \\ \text{Falls } f(Y_k) < f(X_k) & \text{dann } X_{k+1} = Y_k \\ & \text{sonst } X_{k+1} = X_k \\ \end{array}  until Terminierung
```

Folgerung:

Solche Aussagen sind von geringer Bedeutung, weil δ astronomisch klein!

Beispiel:

alle Bits müssen invertiert werden \Rightarrow pⁿ = n⁻ⁿ = δ

Übergang zum Optimum erfolgt mit W'keit δ (geometrische Verteilung)

 \Rightarrow mittlere Zeit bis zum Eintreffen des Ereignisses 1/ δ = nⁿ

Sei n = 20 und wir haben einen Tera-Hertz-Rechner (10^{12} Iterationen/Sekunde).

Dann warten wir im Mittel 20^{20} / 10^{12} Sekunden = 2^{20} x 10^{8} Sekunden auf Lösung, also über 3,325 Millionen Jahre!

⇒ Das ist mathematisch gesehen zwar endlich, praktisch jedoch unendlich!

Also:

Stochastische Konvergenzaussagen (auch für Simulated Annealing etc.) sind mit Vorsicht zu genießen!

Aber:

Negative Aussage (keine Konvergenz bzw. kein sicheres Besuchen des Optimums) ist schon von Bedeutung!

Beispiel:

Sicheres Auffinden des Optimums in Zeit t mit W'keit $\gamma > 0$.

⇒ Multistart! W'keit des Mißerfolgs sinkt exponentiell schnell!

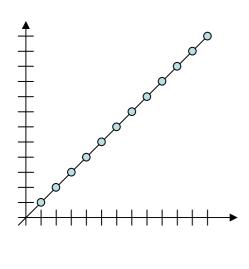
Allerdings spielt Größe von γ eine Rolle!

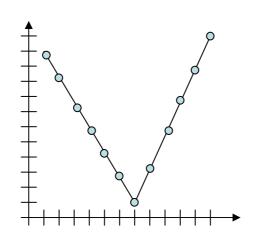
P { mindestens 1 Erfolg bis zum k-ten Versuch } = $1 - (1 - \gamma)^k$

"Functions of Unication" (Goldberg/Deb 1993):

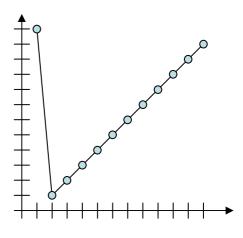
Es existiert g: $\{0,1,\ldots n\} \to \mathbb{R}$ mit f(x) = g(||x||), wobei || . || Hamming-Norm.

Beispiel: Counting Ones f(x) = ||x||





$$\gamma = 0.5$$



γ klein

NIAH (needle-in-a-haystick)

Schematischer Ablauf eines Evolutionären Algorithmus

	GA	ES	<u>EP</u>
Initialisierung der Population	x	x	x
repeat			
Reproduktionsselektion	x	-	_
Rekombination	x	x	_
Mutation	x	x	x
Überlebensselektion	-	x	x
until Abbruch			

Heute: Keine Unterscheidung zwischen GA / ES / EP, da Übergänge fließend

Selektion: unabhängig von Representation

Rekombination: k-Punkt-Crossover, Uniform Crossover

funktioniert auf allen Produkträumen!

zusätzlich:

Intermediare Rekombination $z_i = \alpha_i x_i + (1-\alpha_i) y_i$, $\alpha_i \in (0,1)$

 $\alpha_i \equiv \alpha$: auf Verbindungslinie zwischen x und y

sonst innerhalb des durch x und y definierten Hyperrechtecks

auch: Varianten mit > 2 Eltern

Mutation: additiv via Normalverteilung N(0, C), C Kovarianzmatrix

häufig: C = $\sigma^2 \cdot I_n$ oder individuelle σ_i

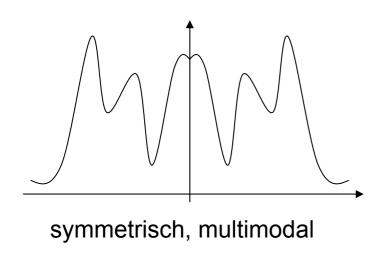
auch: Cauchyverteilung ("Levy flights") oder Mixturen

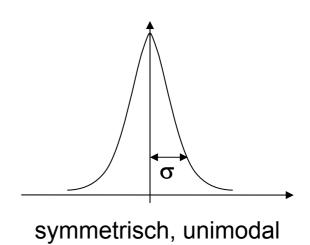
notwendig: Anpassung von C bzw. σ_i während Suche!

Forderungen an Such- / Mutationsverteilung von $\,m_k\,$

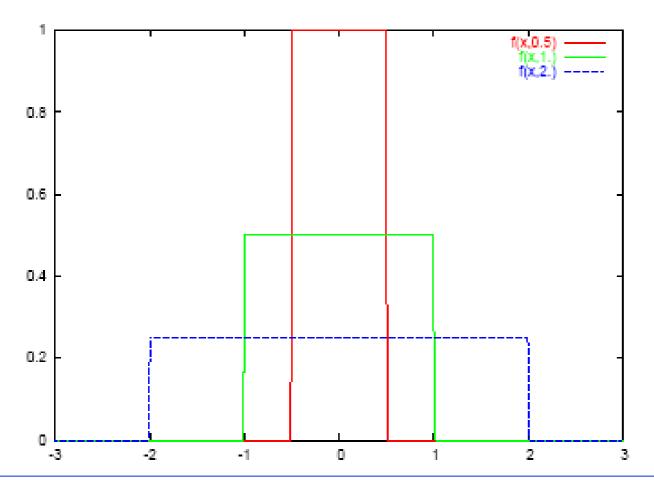
- 1. Keine Richtung ohne Grund bevorzugen
- 2. Kleine Änderungen wahrscheinlicher als große
- 3. Steuerbar: Größe der Umgebung, Streuung
- 4. Leicht erzeugbar
- 5. ...

- → Symmetrie um 0
- → Unimodal mit Modus 0
- → Parametrisierbar





Gleichverteilung
$$f_m(x) = \frac{1}{2r} \cdot 1_{(-r,r)}(x)$$

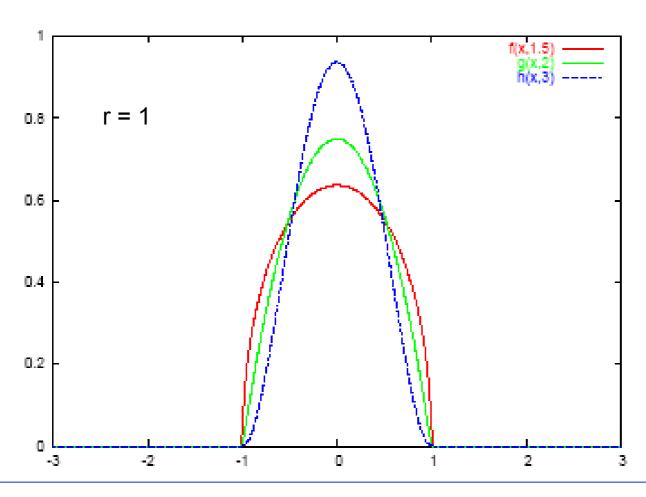


- symmetrisch
- unimodal
- steuerbar → r
- leicht erzeugbar:

$$m = r (2 u - 1)$$

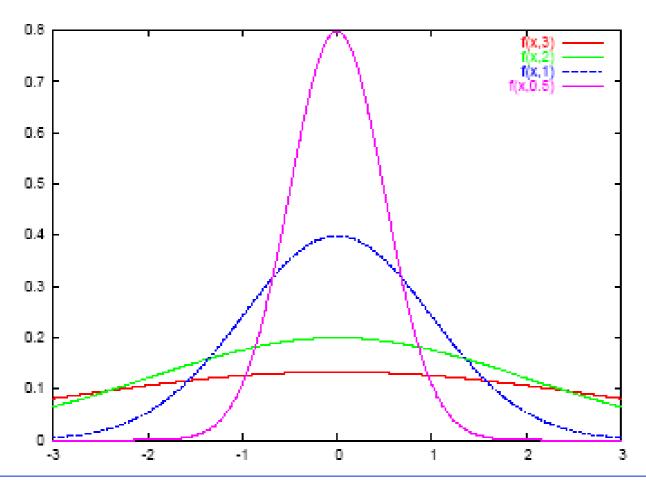
wobei u ∈ [0,1) gleichverteilt (aus Bibliothek)

Betaverteilung
$$f_m(x) = \frac{r^{1-2p}}{\sqrt{\pi}} \cdot \frac{\Gamma(p+\frac{1}{2})}{\Gamma(p)} (1-x^2)^{p-1} \cdot 1_{(-r,r)}(x)$$



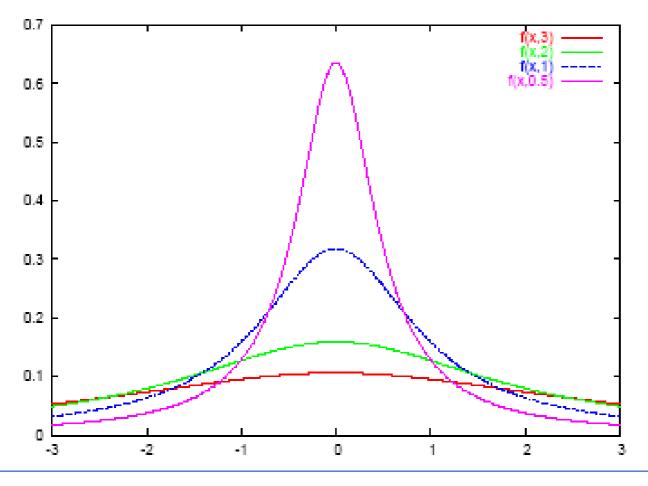
- symmetrisch
- unimodal
- steuerbar → r, p
- leicht erzeugbar (Bibliothek)

Normalverteilung
$$f_m(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$



- symmetrisch
- unimodal
- steuerbar $\rightarrow \sigma$
- nicht ganz so leicht erzeugbar (Bibliothek)

Cauchyverteilung
$$f_m(x) = \frac{1}{c \pi} \cdot \frac{1}{1 + (1 + \frac{x}{c})^2}$$



- symmetrisch
- unimodal
- steuerbar → c
- leicht erzeugbar (Bibliothek)

Besonderheit:

unendliche Varianz

Rotationssymmetrie

Definition:

Sei T eine (n x n)-Matrix mit T'T = I_n . (I_n : n-dim. Einheitsmatrix)

T heißt *orthogonale Matrix* oder *Rotationsmatrix*.

Beispiel:

$$T = \begin{pmatrix} \cos \omega & -\sin \omega \\ \sin \omega & \cos \omega \end{pmatrix}$$

 $y = T'x \Rightarrow \text{Vektor } x \text{ wurde um Winkel } \omega \text{ gedreht}$

n-dimensionaler Zufallsvektor x heißt

sphärisch symmetrisch oder rotationssysmmetrisch

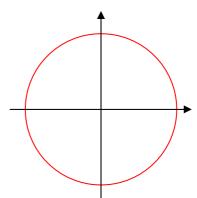
$$\Leftrightarrow$$
 x $\stackrel{d}{=}$ T'x für jede orthogonale Matrix T.

 $x \stackrel{d}{=} y$ bedeutet: x hat die gleiche Verteilung wie y

Beispiel: Gleichverteilung auf Kreis (Hyperkugel der Dimension n = 2)

u gleichverteilt in [0,1]
$$\Rightarrow \omega = 2\pi u$$

$$x \stackrel{d}{=} \left(\begin{array}{c} \cos \omega \\ \sin \omega \end{array}\right)$$



Satz:

Zufallsvektor x rotationssymmetrisch \Leftrightarrow x $\stackrel{d}{=}$ r u⁽ⁿ⁾, wobei

- r nichtnegative Zufallsvariable und
- u⁽ⁿ⁾ Zufallsvektor mit Gleichverteilung auf n-dim. Hyperkugelrand mit Radius 1. ■

Bemerkung:

r und $\mathbf{u}^{(n)}$ sind stochastisch unabhängig, $\mathbf{u}^{(n)} \stackrel{d}{=} \frac{x}{\parallel x \parallel}$

Erzeugung von rotationssymmetrischen Zufallsvektoren:

- 1. Wähle zufällige Richtung u⁽ⁿ⁾
- 2. Wähle zufällige Schrittlänge r
- 3. Multiplikation: $x = r u^{(n)}$

Beispiel: Multivariate Normalverteilung

Zufallsvektor m erzeugbar via

1.
$$m = \sigma \cdot (m_1, m_2, \dots, m_n)$$
, wobei $m_i \sim N(0, 1)$ stoch. unabh., oder

2.
$$m=r\cdot u$$
, wobei $r\sim \chi_n(\sigma)$, $u\sim U(\partial S_n(1))$.
 \uparrow \uparrow χ -Verteilung mit Gleichverteilung n Freiheitsgraden auf Hyperkugelrand

$$\partial S_n(r) = \{ x \in \mathbb{R}^n : || x || = r \}$$
 Hyperkugelrand

Beispiel: Multivariate Cauchyverteilung

Zufallsvektor m erzeugbar via

1.
$$m = \sigma \cdot (m_1, m_2, \dots, m_n)/m_0$$
, wobei $m_i \sim N(0, 1)$ stoch. unabh., oder

2.
$$m=r\cdot u$$
, wobei $r/n\sim F_{n,1}$, $u\sim U(\partial S_n(1))$.

F-Verteilung mit (n,1) Gleichverteilung auf Hyperkugelrand

Achtung:

Zufallsvektor aus n unabh. Cauchy-Zufallsvariablen <u>nicht</u> rotationssymmetrisch!

Optimierung ohne "Anpassen" (reine Zufallssuche)

$$f(x) = ||x||^2 = x^2 \times min!$$
 wobei $x \in S_n(r) = \{x \in \mathbb{R}^n : ||x|| \le r\}$

 Z_k ist gleichverteilt in $S_n(r)$

$$X_{k+1} = Z_k$$
 falls $f(Z_k) < f(X_k)$, sonst $X_{k+1} = X_k$

$$\Rightarrow$$
 V_k = min { f(Z₁), f(Z₂), ..., f(Z_k) } bester ZF-Wert bis Iteration k

$$P\{ || Z || \le x \} = P\{ Z \in S_n(x) \} = Vol(S_n(x)) / Vol(S_n(r)) = (x / r)^n, 0 \le x \le r$$

$$P\{ || Z ||^2 \le x \} = P\{ || Z || \le x^{1/2} \} = x^{n/2} / r^n , 0 \le x \le r^2$$

$$P\{V_k \le x\} = 1 - (1 - P\{||Z||^2 \le x\})^k = 1 - (1 - x^{n/2} / r^n)^k$$

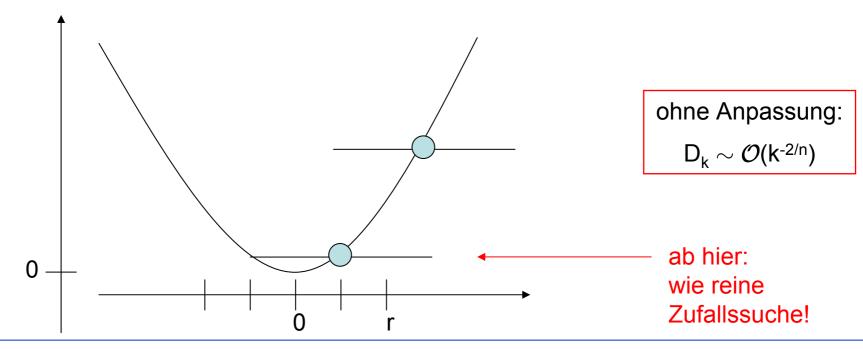
$$E[V_k] \rightarrow r^2 \Gamma(1 + 2/n) k^{-2/n}$$
 für große k

Optimierung ohne "Anpassen" (lokal gleichverteilt)

$$f(x) = ||x||^2 = x'x \rightarrow min! \text{ wobei } x \in S_n(r) = \{ x \in \mathbb{R}^n : ||x|| \le r \}$$

 Z_k ist gleichverteilt in [-r, r], n = 1

$$X_{k+1} = X_k + Z_k$$
 falls $f(X_k + Z_k) < f(X_k)$, sonst $X_{k+1} = X_k$



$$(1, \lambda)$$
-EA mit $f(x) = ||x||^2$

$$|| Y_{k} ||^{2} = || X_{k} + r_{k} U_{k} ||^{2} = (X_{k} + r_{k} U_{k})^{*} (X_{k} + r_{k} U_{k})$$

$$= X_{k}^{*} X_{k} + 2r_{k} X_{k}^{*} U_{k} + r_{k}^{2} U_{k}^{*} U_{k}$$

$$= || X_{k} ||^{2} + 2r_{k} X_{k}^{*} U_{k} + r_{k}^{2} || U_{k} ||^{2} = || X_{k} ||^{2} + 2X_{k}^{*} U_{k} + r_{k}^{2}$$

$$= 1$$

da das zufällige Skalarprodukt x'U die gleiche Verteilung hat wie ||x|| B,

wobei Zufallsvariable B betaverteilt mit Parametern (n-1)/2 auf [-1, 1] ist, folgt

$$|| Y_k ||^2 = || X_k ||^2 + 2r_k || X_k || B + r_k^2$$

da der $(1,\lambda)$ den besten Wert aus λ Versuchen selektiert, folgt

$$||X_{k+1}||^2 = ||X_k||^2 + 2r_k ||X_k|| B_{1:\lambda} + r_k^2$$

$$|| X_{k+1} ||^2 = || X_k ||^2 + 2r_k || X_k || B_{1:\lambda} + r_k^2$$
bedingte Erwartungswerte auf beiden Seiten

$$E||X_{k+1}||^2 = ||X_k||^2 + 2\gamma ||X_k||^2 E[B_{1:\lambda}] + \gamma^2 ||X_k||^2$$

wg. Symmetrie von B folgt
$$E[B_{1:\lambda}] = -E[B_{\lambda:\lambda}] < 0$$

$$E|| X_{k+1} ||^2 = || X_k ||^2 - 2 \gamma || X_k ||^2 E[B_{\lambda:\lambda}] + \gamma^2 || X_k ||^2$$

$$= || X_k ||^2 (1 - 2\gamma E[B_{\lambda:\lambda}] + \gamma^2)$$

mit Anpassung:

$$D_k \sim \mathcal{O}(c^k), c \in (0,1)$$

Parabelscheitel bei $\gamma^* = E[B_{\lambda:\lambda}]$, also $E[|X_{k+1}||^2 = ||X_k||^2 (1 - E[B_{\lambda:\lambda}]^2)$

Praktisches Problem:

Woher bekommen wir || X_k || bei $r_k = || X_k || \cdot E[B_{\lambda:\lambda}]$?

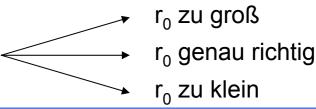
Wir wissen aus Analyse:
$$E||X_{k+1}||^2 = ||X_k||^2 (1 - E[B_{\lambda:\lambda}]^2)$$

Annahme: rk war optimal eingestellt

$$\Rightarrow r_{k+1} = || X_{k+1} || E[B_{\lambda:\lambda}] \approx || X_k || (1 - E[B_{\lambda:\lambda}]^2)^{1/2} E[B_{\lambda:\lambda}]$$
Konstante!

 \Rightarrow altes r_k mit Konstante multiplizieren: $r_{k+1} = c \cdot r_k$

<u>aber:</u> woher bekommen wir r_0 bzw. $||X_0||$?

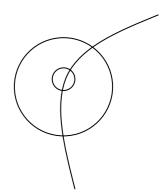


(1+1)-EA mit Schrittweitenanpassung (1/5-Erfolgsregel, Rechenberg 1973)

Idee:

- Wenn viele erfolgreiche Mutationen, dann Schrittweite zu klein.
- Wenn wenige erfolgreiche Mutationen, dann Schrittweite zu groß.

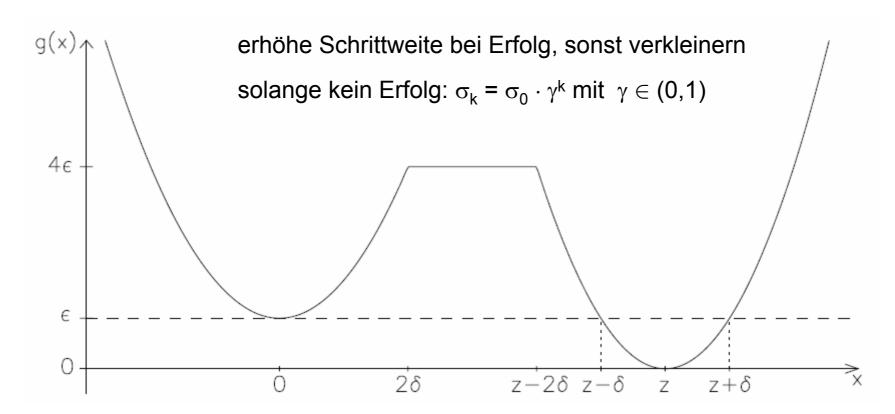
bei infinitesimal kleinem Radius ist Erfolgsrate = 1/2



Ansatz:

- Protokolliere erfolgreiche Mutationen in gewissem Zeitraum
- Wenn Anteil größer als gewisse Schranke (z. B. 1/5), dann Schrittweite erhöhen, sonst Schrittweite verringern

Konvergenzproblematik bei der Schrittweitenanpassung



Annahme: $X_0 = 0$

Frage: Wird lokales Optimum sicher verlassen (Übergang zu $[z-\delta,z+\delta]$) ?

Sei q_k Wahrscheinlichkeit, im Schritt k das lokale Optimum zu verlassen.

Kriterium für sicheres Verlassen:

$$1 - \prod_{k=1}^{\infty} (1 - q_k) = 1 \Leftrightarrow \prod_{k=1}^{\infty} (1 - q_k) = 0 \Leftrightarrow \sum_{k=1}^{\infty} \log \frac{1}{1 - q_k} = \infty$$

Kriterium für unsicheres Verlassen:

$$1 - \prod_{k=1}^{\infty} (1 - q_k) < 1 \Leftrightarrow \prod_{k=1}^{\infty} (1 - q_k) > 0 \Leftrightarrow \sum_{k=1}^{\infty} \log \frac{1}{1 - q_k} < \infty$$

Vereinfachung des log-Terms ——

Sei
$$x \in (0,1)$$
. Dann gilt: $x < \log\left(\frac{1}{1-x}\right) < \frac{x}{1-x}$

Beweis:

Reihenentwicklung
$$\log\left(\frac{1}{1-x}\right) - \log(1-x) = \sum_{i=1}^{\infty} \frac{x^i}{i}$$

also:
$$0 < x < \sum_{i=1}^{\infty} \frac{x^i}{i} < \sum_{i=1}^{\infty} x^i = \sum_{i=0}^{\infty} x^i - 1 = \frac{x}{1-x}$$

q.e.d.

Hinreichendes Kriterium für unsicheres Verlassen:

$$\sum_{k=1}^{\infty} \log \frac{1}{1 - q_k} < \sum_{k=1}^{\infty} \frac{q_k}{1 - q_k} < \frac{1}{1 - q_1} \sum_{k=1}^{\infty} q_k < \infty$$

$$\begin{array}{lll} p_k = P\{\ 0 \rightarrow (z - \delta,\ z + \delta)\} &=& P\{\ z - \delta < Z < z + \delta\ \} \\ &=& 2\ \delta\ f_Z(z - \delta + \theta\cdot\ 2\ \delta) \end{array} \quad \text{mit}\ \theta \in (0,1) \\ &=& Differential rechnung! \end{array}$$

Annahme: Dichte $f_{z}(\cdot)$ von Z ist unimodal

dann: $2 \delta f_Z(z+\delta) < p_k < 2 \delta f_Z(z-\delta)$ und deshalb: $q_k = 2 \delta f_Z(z-\delta)$

Z sei normalverteilt

$$f_Z(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

$$p_k \le q_k = \delta \sqrt{\frac{2}{\pi}} \frac{1}{\sigma_k} \exp\left(-\frac{(z-\delta)^2}{2\sigma_k^2}\right)$$
$$= A \eta_k \exp(-B \eta_k^2)$$

wobei

$$A = \delta (2/\pi)^{1/2}$$
, $B = (z - \delta)^2/2$, $\eta_k = 1/\sigma_k$.

Sei
$$\eta_k = \eta_0 \, \beta^k$$
 mit $\beta = 1/\gamma > 1$

$$\sum_{k=1}^{\infty} \frac{\beta^k}{\exp(B \, \eta_0^2 \, \beta^{2 \, k})}$$
 konvergiert nach Wurzelkriterium!

$$\sum_{k=0}^{\infty} |a_k| < \infty \quad \text{falls}$$

$$\lim_{k \to \infty} |a_k|^{1/k} = \alpha < \infty$$

⇒ kein sicheres Entkommen von lokalen Optima!