Fundamente der Computational Intelligence

Dozent: Günter Rudolph Vertretung: Nicola Beume

Wintersemester 2006/07
Universität Dortmund
Fachbereich Informatik
Lehrstuhl für Algorithm Engineering (LS11)
Fachgebiet Computational Intelligence

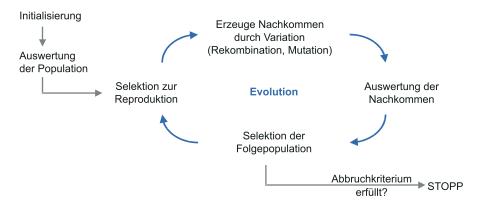
22.11.2006

Themengebiet II: Optimierung mittels evolutionärer Algorithmen (EA)

Themen von Montag:

- Was ist ein Optimierproblem?
- Welche Optimierprobleme sind schwierig?
- Was ist ein evolutionärer Algorithmus (EA)?
- Fachbegriffe
- Anwendungsgebiet
- Algorithmische Einordnung
- Beispiel: (1+1)EA
- Design-Richtlinien f
 ür Operatoren
- Beispiele üblicher Operatoren

Evolutionäre Algorithmen (EA)



Nachtrag zu Themen von Montag (20.11.2006)

Rekombination heißt

diskret, falls Wert eines Elter unverändert übernommen wird arithmetisch, falls Nachkommenwert Vermischung der Elternwerte

Selektion heißt

elitistisch, falls aktuell fitness-beste Individuen immer überleben

Design-Richtlinien:

besagen, was zu tun ist, damit EA Suchraum zufällig durchsucht Falls Problemwissen vorhanden:

problemspezifische Ausrichtung der Operatoren möglich, sollte allerdings bewusst geschehen

Themengebiet II: Optimierung mittels evolutionärer Algorithmen (EA)

Themen der heutigen Vorlesung:

- Andere randomisierte (lokale) Suchverfahren
- Parameter und typische Werte
- Theoretische Sichtweise

Parameter und Basiswerte

Populationgröße: üblicherweise konstant während des Optimierprozesses

 μ : Größe der aktuellen Population

 λ : Anzahl erzeugter Nachkommen pro Generation

Notation für Plus-/Komma-Selektion $(\mu + \lambda)$ EA (μ, λ) EA, $\lambda \geq \mu$ Selektionsdruck $5 \leq \lambda/\mu \leq 10$

Rekombination

optional, Anwendung mit Wkeit p_r

Mutation

wird immer durchgeführt, Anwendung mit Wahrscheinlichkeit 1 Stärke probabilistisch:

MutationsWkeit p_m ,

Zufallsvariable für Anzahl Basis-Mutationen

Parametersteuerung

- statisch wähle konstante Belegung
- adaptiv
 Veränderung gemäß statischer Regel, abhängig von Optimierverlauf
 z.B. Reduktion der Variation mit steigender Generationszahl
- selbstadaptiv
 Parameter sind Evolution unterworfen
 Idee: gute Individuen vererben ihre Parameterwerte
 mutiere Parameter der Individuen der aktuellen Generation
 erzeuge neue Individuen (durch bereits veränderte Variationsparameter)
 neues Individuum erhält Strategieparameter der/s Elter

Andere randomisierte Suchverfahren

Lokale Suchverfahren:

1 Suchpunkt, wähle Folgepunkt aus Nachbarschaft von aktuellem Idee: iterative lokale Verbesserung

Nachbarschaft definiert über Nähe im Raum, gemessen durch Metrik bzw. Norm

Def.: Norm

$$\begin{array}{ll} \mathsf{Funktion} \ || \cdot || : S \to \mathbb{R}_0^+ \ \mathsf{heißt} \ \mathsf{Norm \ auf} \ S : \iff \forall \mathbf{x}, \mathbf{x}' \in S \ \mathsf{gilt:} \\ ||\mathbf{x}|| \ge 0 \ \mathsf{und} \ ||\mathbf{x}|| = 0 \ \iff \mathbf{x} = 0 \\ ||\alpha \mathbf{x}|| = |\alpha| \cdot ||\mathbf{x}|| \\ ||\mathbf{x} + \mathbf{x}'|| \le ||\mathbf{x}|| + ||\mathbf{x}'|| \end{array} \qquad \begin{array}{ll} \mathsf{Nichtnegativit\"{at}} \\ \mathsf{Homogenit\"{at}} \\ \mathsf{Dreiecksungleichung} \\ \end{array}$$

Unterschied zu Metrik: Homogenität statt Symmetrie auf normiertem Raum ist Metrik definierbar durch $d_S(\mathbf{x}, \mathbf{x}') = ||\mathbf{x} - \mathbf{x}'||$

Nachbarschaft
$$N_{\alpha}(\mathbf{x})$$
 von \mathbf{x} : $\mathbf{x}' \in N_{\alpha}(\mathbf{x})$, falls $d_{S}(\mathbf{x}, \mathbf{x}') < \alpha$

d_S Metrik (basierend auf Norm)

Arten der Nachbarschaftssuche

- erstes
 übernehme jeden erzeugten Punkt als aktuellen
- erste Verbesserung wähle ersten gesehenen Punkt mit besserem Funktionswert Nachbarschaft deterministisch abgesucht
- erste Verbesserung bei zufälliger Reihenfolge wähle zufällige Permutation auf der Nachbarschaft wähle ersten gesehenen Punkt mit besserem Funktionswert
- bestes
 betrachte gesamte Nachbarschaft
 wähle besten Punkt als Folgepunkt

Lokale Suchverfahren

reine Zufallsuche

Iteration: wähle Suchpunkt zufällig gleichverteilt im Suchraum erster Punkt

zufällige lokale Suche

wähle initialen Suchpunkt \mathbf{x}_0 zufällig gleichverteilt Iteration: wähle Suchpunkt $\mathbf{x}' \in \mathcal{N}(\mathbf{x}_t)$ zufällig gleichverteilt Falls $f(\mathbf{x}')$ besser als $f(\mathbf{x}_t)$: setze $\mathbf{x}_{t+1} = \mathbf{x}'$, sonst $\mathbf{x}_{t+1} = \mathbf{x}_t$ erste Verbesserung

hill climber

wähle initialen Suchpunkt \mathbf{x}_0 zufällig gleichverteilt betrachte Punkte in $N(\mathbf{x}_t)$ wähle $\mathbf{x}_{t+1} = argmax\{f(\mathbf{x}')|\mathbf{x}' \in N(\mathbf{x}_t)\}$ bester Punkt nur für endliche Nachbarschaft

Lokale Suchverfahren

Metropolis

wähle initialen Suchpunkt \mathbf{x}_0 zufällig gleichverteilt Iteration: wähle Suchpunkt $\mathbf{x}' \in \mathcal{N}(\mathbf{x}_t)$ zufällig gleichverteilt Falls $f(\mathbf{x}')$ besser als $f(\mathbf{x}_t)$: setze $\mathbf{x}_{t+1} = \mathbf{x}'$, sonst übernehme $\mathbf{x}_{t+1} = \mathbf{x}'$ mit Wkeit $e^{(f(\mathbf{x}') - f(\mathbf{x}_t))/T}$ T konstant Verschlechterungen zugelassen

Simulated Annealing

wie Metropolis, mit $\mathcal T$ monoton fallend mit der Zeit (Anzahl Funktionsausw.) Wkeit für Akzeptanz von Verschlechterung sinkt

Tabu-Suche

Idee: Archiviere gesehene Lösungen und verbiete wiederholten Besuch wähle initialen Suchpunkt \mathbf{x}_0 zufällig gleichverteilt Iteration: wähle Suchpunkt $\mathbf{x}' \in N(\mathbf{x}_t)$ zufällig gleichverteilt Tabuliste speichert letzte k Suchpunkte oder deren Eigenschaften Kurzzeitgedächtnis

Komplexitätsmodell für Black-Box-Optimierung

Komplexität: Schwierigkeit von Problem gemessen in Ressourcen, die zur Lösung benötigt sind Ressourcen ausgedrückt gemäß Bezugsgröße

Annahme:

Zielfunktionsauswertung zeitaufwändigste Komponente des EA (z.B. Simulation) Zeit für Zielfunktionsauswertung unbekannt

Anzahl Funktionsauswertungen angemessenes Maß für zeitliche Ressourcen, verwendete Informationen formuliert bzgl. Dimension des Suchraums n (#Entscheidungsvariablen)

Funktionenklasse \mathcal{F} :

Verallgemeinerung von $f \in \mathcal{F}$

f : Rundreise durch Städte DO, BO, E (Instanz bestimmter Distanzmatrix),

 \mathcal{F} : Rundreise durch n Städte

Funktionenklasse bekannt, tatsächliche Funktion nicht

Black-Box-Komplexität

Anzahl Funktionsauswertungen als Komplexitätsmaß: Maß für Schwierigkeit von Problem

Optimierzeit von BlackBox-Algorithmus A auf Funktion f

$$T_{A,f} = 1 + \min\{t \mid f(\mathbf{x}_t) = \min\{f(\mathbf{x}) | x \in S\}\}$$

Anzahl Funktionsauswertungen zu der erstmalig ein bester Suchpunkt gesehen $T_{A\,f}$ Zufallsvariable,

Erwartungswert $E(T_{A,f})$: erwartete Optimierzeit:

Worst-Case erwartete Optimierzeit:

$$T_{A,\mathcal{F}} = \{ E(T_{A,f}) \mid f \in \mathcal{F} \}$$

erwartete Optimierzeit von schwierigster Instanz aus $\mathcal F$

Black-Box-Komplexität von Funktionsklasse \mathcal{F} :

$$B_{\mathcal{F}} = \min\{T_{A,\mathcal{F}} \mid \text{ Black-Box-Algorithmus für } \mathcal{F}\}$$

Worst-Case erwartete Optimierzeit des besten Algorithmus für ${\mathcal F}$

Anzahl Funktionsauswertungen des schnellsten Algorithmus auf schwierigster Instanz der Klasse

Komplexitätsmaß

Anzahl Funktionsauswertungen als Komplexitätsmaß

Nachteil:

Berechnungen des EA zählen nicht möglicherweise exponentielle Laufzeit des EA wird nicht mitgerechnet kleine obere Schranken nicht sehr aussagekräftig

Vorteil:

große Black-Box-Komplexität sehr aussagekräftigt: Problem bei beliebiger zusätzlicher Laufzeit noch schwierig, wenig Informationsgehalt pro Funktionsauswertung

(1+1)EA in \mathbb{B}^n

t = t + 1

bis Abbruchkriterium erfüllt

$$t=0$$
 Wähle $\mathbf{x}_0 \in \mathbb{B}^n$ gleichverteilt zufällig $y_0 = f(\mathbf{x}_0)$ Tue $\mathbf{x}' = \mathsf{Standard} ext{-Bit-Mutation}(\mathbf{x}_t), \ p_m = 1/n$ $y' = f(\mathbf{x}')$ Falls $y' \leq y_t$ $\mathbf{x}_{t+1} = \mathbf{x}'; \ y_{t+1} = y'$ sonst $\mathbf{x}_{t+1} = \mathbf{x}_t; \ y_{t+1} = y_t$

Generationenzähler *t* Initialisierung Funktionsauswertung

Generationsschleife
Variation: Mutation
Fitness=Zielfunktion
Minimierung

Folgepopulation: Lösung \mathbf{x}_{t+1}

Generationenzähler erhöhen Abbruchkriterium

Eigenschaften in \mathbb{B}^n

- Metrik in \mathbb{B}^n : Hamming-Abstand $H(\mathbf{x}, \mathbf{x}') = \sum_{i=1}^n (x_i + x_i' 2x_i x_i')$
- Nachbarschaft: Standard-Bit-Mutation: N_n
- Standard-Bit-Mutation mit $p_m=1/n$ typische Wkeiten: Pr(bestimmtes Bit mutiert)=1/n Pr(bestimmtes Bit mutiert nicht)=1-1/n $E(\#\text{mutierter Bits})=n\cdot 1/n=1$
- Selektion elitistisch

Einfaches Szenario

betrachte einfache Funktion:

OneMax(\mathbf{x})= $\sum_{i=1}^{n} x_i$

Maximierung, Optimum: 1ⁿ

 $\label{lem:unimodale} \mbox{Unimodale Funktion: lokales Optimum} = \mbox{globales Optimum}$

Def.: lokales Optimum (Maximierung)

Für Funktion $f: \mathbb{B}^n \to \mathbb{R}$ heißt $\mathbf{x} \in \mathbb{B}^n$ lokales Maximum, falls gilt:

 $\forall \mathbf{x}' \in N_1(\mathbf{x}): f(\mathbf{x}') \leq f(\mathbf{x})$

Welche Informationen für Analyse benötigt? aktueller Suchpunkt Vergangenheit bringt keine zusätzliche Information gedächtnisloser Prozess → Markov-Kette

Nicola Beume (LS11) Laufzeitanalyse 22.11.2006 17 / 21

Methode für obere Schranken der Optimierzeit

Fitnessbasierte Partitionen

fasse Suchpunkte gleicher Fitness zu Partitionen zusammen numeriere Partitionen gemäß aufsteigender Fitness alle Elemente höchster Partition optimal (fertig) Selektion elitistisch: verlasse Partition nur zu besserer

$$Pr(\mathbf{x} \text{ mutiert zu } \mathbf{x}') : p_m^{H(\mathbf{x},\mathbf{x}')} (1-p_m)^{n-H(\mathbf{x},\mathbf{x}')}$$
 mutiere $H(\mathbf{x},\mathbf{x}')$ Bits, mutiere $n-H(\mathbf{x},\mathbf{x}')$ Bits nicht

 s_i : Verlassens Wkeit für Partition L_i $s_i = \min_{\mathbf{x} \in L_i} \sum_{i < j \le k} \sum_{\mathbf{x}' \in L_i} p_m^{H(\mathbf{x}, \mathbf{x}')} (1 - p_m)^{n - H(\mathbf{x}, \mathbf{x}')}$ innere Summe: alle \mathbf{x}' einer höheren Partition

äußere Summe: alle höheren Partition

min: ungünstigstes x

erw. Optimierzeit: Summe der Aufenthaltsdauer pro Partition Aufenthaltsdauer = 1/VerlassensWkeit $E[T_{(1+1)EA,f}] \leq \sum_{0 \leq i \leq k} s_i^{-1}$

22.11.2006

Obere Schranke für OneMax

Fitnessbasierte Partitionen

Nützliche Ungleichung:
$$(1-1/n)^n < 1/e < (1-1/n)^{n-1}$$

Vektoren in Partition i: i 1-Bits, n-i 0-Bits mögliche Verbesserung: mutiere $0 \to 1$, restliche Bits unverändert $(\to \text{Partition verlassen})$

$$Pr(0 \rightarrow 1) = \#0$$
-Bits $\cdot p_m = (n-i)/n$
Pr(restliche Bits mutieren nicht)= $(1-p_m)^{n-1} = (1-1/n)^{n-1} > 1/e$

untere Schranke für VerlassensWkeit:

$$s_i \geq \frac{n-i}{n} \cdot (1-\frac{1}{n})^{n-1} \geq \frac{n-i}{n} \cdot \frac{1}{e} = \frac{n-i}{ne}$$

$$\begin{array}{l} E(T_{(1+1)EA,OneMax}) \leq \sum_{0 \leq i < n} s_i^{-1} \leq \sum_{0 \leq i < n} \frac{en}{n-i} = en \sum_{1 \leq i \leq n} \frac{1}{i} \\ = enH_n < en(\ln(n)+1) = O(n\log n) \end{array}$$

Zusammenfassung

Themen der heutigen Vorlesung:

- Parameter und typische Werte
- Andere randomisierte (lokale) Suchverfahren
- Black-Box-Komplexität
- Begriffe der Laufzeitanalyse
- Einfache Laufzeitanalyse in \mathbb{B}^n

Literatur

- EA Vorlesungen von Thomas Jansen (in diesem Semester), Ingo Wegener, Hans-Georg Beyer
- Lokale Suchverfahren
 Vorlesung von Ingo Wegener (in diesem Semester)
- Black-Box-Komplexität
 Komplexitätstheorie Grenzen der Effizienz von Algorithmen
 von Ingo Wegener

Nicola Beume (LS11) Literatur 22.11.2006 21 / 21