

Computational Intelligence

Winter Term 2024/25

Prof. Dr. Günter Rudolph

Computational Intelligence

Fakultät für Informatik

TU Dortmund

- Radial Basis Function Nets (RBF Nets)
	- Model
	- **Training**
- Hopfield Networks
	- Model
	- **Optimization**

 \Box $\varphi(r) \rightarrow 0$ as $r \rightarrow \infty$ \Box

typically, || x || denotes Euclidean norm of vector x

examples:

Definition:

A function f: $\mathbb{R}^n \to \mathbb{R}$ is termed **radial basis function net (RBF net)**

iff $f(x) = w_1 \varphi(||x - c_1 ||) + w_2 \varphi(||x - c_2 ||) + ... + w_p \varphi(||x - c_q ||)$

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25

Lecture 14

- given $\;\;$: N training patterns $(\mathsf{x}_{\mathsf{i}},\, \mathsf{y}_{\mathsf{i}})$ and <code>q</code> RBF neurons
- find : weights $w_1, ..., w_q$ with minimal error

solution:

we know that f(x_i) = y_i for i = 1, ..., N and therefore we insist that

in matrix form: $P w = y$ with $P = (p_{ik})$ and $P: N \times q$, y: N x 1, w: q x 1,

case $N = q$: $w = P^{-1}y$ if P has full rank

case N < q: many solutions but of no practical relevance

case $N > q$: $w = P^+ y$ where P^+ is Moore-Penrose pseudo inverse

 $(P'P)$ ⁻¹ P'P w = $(P'P)^{-1}$ P' y | simplify $\overline{}$ unit matrix P+

 $P w = y$ | $\cdot P'$ from left hand side (P' is transpose of P)

 $P'P$ w = P' y $\vert \cdot (P'P) \cdot 1$ from left hand side

• existence of (P'P)-1 ? • numerical stability ?

Tikhonov Regularization (1963)

idea: choose $(P'P + h I_q)^{-1}$ instead of $(P'P)^{-1}$ $(h > 0, I_q$ is q-dim. unit matrix)

excursion to linear algebra:

Def : matrix A positive semidefinite (p.s.d) iff $\forall x \in \mathbb{R}^n : x' A x \geq 0$ Def : matrix A positive definite (p.d.) iff $\forall x \in \mathbb{R}^n \setminus \{0\} : x' A x > 0$ Thm: matrix $A: n \times n$ regular \Leftrightarrow rank $(A) = n \Leftrightarrow A^{-1}$ exists $\Leftarrow A$ is p.d.

Lemma: $a, b > 0$, $A, B : n \times n$, A p.d. and B p.s.d. $\Rightarrow a \cdot A + b \cdot B$ p.d.

Proof:
$$
\forall x \in \mathbb{R}^n \setminus \{0\} : x'(a \cdot A + b \cdot B)x = a \cdot \underbrace{x'Ax}_{>0} + b \cdot \underbrace{x'Bx}_{>0} > 0 \qquad \text{q.e.d.}
$$

Lemma: $P: n \times q \Rightarrow P'P$ p.s.d.

Proof : $\forall x \in \mathbb{R}^n : x'(P'P)x = (x'P') \cdot (Px) = (Px)'(Px) = ||Px||_2^2 \ge 0$ q.e.d.

7

Tikhonov Regularization (1963)

 $\Rightarrow (P'P + h I_q)$ is p.d. $\Rightarrow (P'P + h I_q)^{-1}$ exists

question: how to justify this particular choice?

$$
||Pw - y||^2 + h \cdot ||w||^2 \rightarrow \min_w!
$$

interpretation: minimize TSSE and prefer solutions with small values! *avoid*

$$
\frac{d}{dw}[(Pw - y)'(Pw - y) + h \cdot w'w] =
$$
\n
$$
\frac{d}{dw}[(w'P'Pw - w'P'y - y'Pw + y'y + h \cdot w'w] =
$$
\n
$$
2P'Pw - 2P'y + 2hw = 2(P'P + hI_q)w - 2P'y = 0
$$
\n
$$
\Rightarrow w^* = (P'P + hI_q)^{-1}P'y
$$

 $\frac{d}{dw} [2(P'P + h I_q) w - 2P' y] = 2(P'P + h I_q)$ is p.d. \Rightarrow minimum

Lecture 14

Tikhonov Regularization (1963)

question: how to find appropriate $h > 0$ in $(P'P + h I_q)$?

let PERF $(h;T)$ with PERF : $\mathbb{R}^+ \to \mathbb{R}^+$ measure the performance of RBF net for positive h and given training set T

find h^* such that $PERF(h^*;T) = \max\{PERF(h;T) : h \in \mathbb{R}^+\}$

 \rightarrow several approaches in use

→ here: **grid search** and **crossvalidation**

```
(1) choose n\in\mathbb{N} and h_1,\ldots,h_n\in(0,H]\subset\mathbb{R}^+; set p^*=0(2) for i=1 to n(3) p_i = \text{PERF}(h_i; T)(4) if p_i > p^*grid search(5) p^* = p_i; k = i;(6)\blacksquare endif
(7) endfor
(8) return h_k
```
9

Crossvalidation

choose $k \in \mathbb{N}$ with $k < |T|$ let T_1, \ldots, T_k be partition of training set T

 $PERF(h;T) =$ (1) set $err = 0$ (2) for $i=1$ to k (3) build matrix P and vector y from $T \setminus T_i$ (4) get weights $w = (P'P + hI)^{-1}P'y$ (5) build matrix P and vector y from T_i (6) get error $e = (Pw - y)'(Pw - y)$ (7) $err = err + e$ (8) endfor (9) return $1/err$

 $T_1 \cup \ldots \cup T_k = T$ $T_i \cap T_j = \emptyset$ for $i \neq j$

Lecture 14

technische universität dortmund

remark: if N large then inaccuracies for P'P likely

 \Rightarrow first analytic solution, then gradient descent starting from this solution

requires differentiable basis functions!

Radial Basis Function Nets (RBF Nets)

so far: tacitly assumed that RBF neurons are given

 \Rightarrow center c_k and radii σ considered given and known

how to choose c_k and σ ?

uniform covering

if training patterns inhomogenously distributed then first cluster analysis

Lecture 14

choose center of basis function from each cluster, use cluster size for setting σ

advantages:

- additional training patterns \rightarrow only local adjustment of weights
- optimal weights determinable in polynomial time
- regions not supported by RBF net can be identified by zero outputs
	- (if output close to zero, verify that output of each basis function is close to zero)

disadvantages:

- number of neurons increases exponentially with input dimension
- unable to extrapolate (since there are no centers and RBFs are local)

Example: XOR via RBF

 $\varphi(r) = \exp\left(-\frac{1}{\sigma^2}r^2\right)$ training data: $(0,0)$, $(1,1)$ with value -1 (0,1), (1,0) with value +1

choose Gaussian kernel; set σ = 1; set centers c_i to training points

$$
\hat{f}(x) = w_1 \varphi(||x - c_1||) + w_2 \varphi(||x - c_2||) + w_3 \varphi(||x - c_3||) + w_4 \varphi(||x - c_4||)
$$

$$
\hat{f}(0,0) = w_1 + e^{-1} \cdot w_2 + e^{-1} \cdot w_3 + e^{-2} \cdot w_4 = -1 \n\hat{f}(0,1) = e^{-1} \cdot w_1 + w_2 + e^{-2} \cdot w_3 + e^{-1} \cdot w_4 = 1 \n\hat{f}(1,0) = e^{-1} \cdot w_1 + e^{-2} \cdot w_2 + w_3 + e^{-1} \cdot w_4 = 1 \n\hat{f}(1,1) = e^{-2} \cdot w_1 + e^{-1} \cdot w_2 + e^{-1} \cdot w_3 + w_4 = -1
$$

$$
P = \begin{pmatrix} 1 & e^{-1} & e & e^{-2} \\ e^{-1} & 1 & e^{-2} & e^{-1} \\ e^{-1} & e^{-2} & 1 & e^{-1} \\ e^{-2} & e^{-1} & e^{-1} & 1 \end{pmatrix} y = \begin{pmatrix} -1 \\ 1 \\ 1 \\ -1 \end{pmatrix} w^* = P^{-1} y = \frac{e^2}{(e-1)^2} \begin{pmatrix} -1 \\ 1 \\ 1 \\ -1 \end{pmatrix}
$$

technische universität dortmund

Example: XOR via RBF

proposed 1982

characterization:

- neurons preserve state until selected at random for update
- bipolar states: $x \in \{-1, +1\}^n$
- n neurons fully connected
- symmetric weight matrix
- no self-loops (\rightarrow zero main diagonal entries)
- thresholds θ , neuron i fires if excitations larger than θ_i

transition: select index k at random, new state is $\tilde{x} = \text{sgn}(xW - \theta)$

where
$$
\tilde{x} = (x_1, \ldots, x_{k-1}, \tilde{x}_k, x_{k+1}, \ldots, x_n)
$$

energy of state x is $E(x) = -\frac{1}{2}xWx' + \theta x'$

technische universität dortmund

Fixed Points

Definition

x is *fixed point* of a Hopfield network iff $x = sgn(x^2 W - \theta)$.

Example:

Set W = x x' and choose θ with $|\theta_i|$ < n, where $x \in \{-1, +1\}^n$.

 \rightarrow sgn(x' W - θ) = sgn(x' (x x')) = sgn((x'x) x' - θ) = sgn(|| x ||² x' - θ) Note that $|| x ||^2 = n$ for all $x \in \{-1, +1\}^n$.

$$
\rightarrow x_i = +1: \text{ sgn}(n \cdot (+1) - \theta_i) = +1 \text{ iff } +n - \theta_i \ge 0 \Leftrightarrow \theta_i \le n
$$

\n
$$
\rightarrow x_i = -1: \text{ sgn}(n \cdot (-1) - \theta_i) = -1 \text{ iff } -n - \theta_i < 0 \Leftrightarrow \theta_i > -n
$$

Theorem:

If W = x x' and $\vert \theta_i \vert$ < n then x is fixed point of a Hopfield network. \Box

dortmund

Lecture 14

Concept of Energy Function

18

Concept of Energy Function

required:

small angle between e = W $x^{(0)}$ - θ and $x^{(0)}$

 \Rightarrow larger cosine of angle indicates greater similarity of vectors

 \Rightarrow ∀e' of equal size: try to maximize x⁽⁰⁾ e' = || x⁽⁰⁾ || · || e || · cos ∠ (x⁽⁰⁾ ,e) $\begin{picture}(180,10) \put(0,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line($ fixed fixed max

 \Rightarrow maximize x⁽⁰⁾' e = x⁽⁰⁾' (W x⁽⁰⁾ - θ) = x⁽⁰⁾' W x⁽⁰⁾ - θ ' x⁽⁰⁾

 \Rightarrow identical to minimize $-x^{(0)^\iota}$ W $x^{(0)}$ + θ^ι $x^{(0)}$

Definition

Energy function of HN at iteration t is E($x^{(t)}$) = $-\frac{1}{2}x^{(t)'}$ W $x^{(t)} + \theta' x^{(0)}$ \Box

Theorem:

Hopfield network converges to local minimum of energy function after a finite number of updates. □

Proof: assume that x_k has been updated $\tilde{x}_k = -x_k$ and $\tilde{x}_i = x_i$ for $i \neq k$ $E(x) - E(\tilde{x}) = -\frac{1}{2}xWx' + \theta x' + \frac{1}{2}\tilde{x}W\tilde{x}' - \theta \tilde{x}'$ $= - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n w_{ij} x_i x_j + \sum_{i=1}^n \theta_i x_i + \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n w_{ij} \tilde{x}_i \tilde{x}_j - \sum_{i=1}^n \theta_i \tilde{x}_i$ $= -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (x_i x_j - \tilde{x}_i \tilde{x}_j) + \sum_{i=1}^{n} \theta_i (x_i - \tilde{x}_i)$ 0 if i≠k $=-\frac{1}{2}\sum\limits_{\begin{subarray}{c}i=1\\i\neq k\end{subarray}}^n\sum\limits_{j=1}^n w_{ij}\left(x_ix_j-\tilde{x}_i\,\tilde{x}_j\right)-\frac{1}{2}\sum\limits_{j=1}^n\sum\limits_{\begin{subarray}{c}||\\|\\0 \text{ if } j=k\end{subarray}}^n(x_k\,x_j-\tilde{x}_k\,\tilde{x}_j)+\theta_k\left(x_k-\tilde{x}_k\right)$

technische universität dortmund

$$
= -\frac{1}{2} \sum_{\substack{i=1 \\ i \neq k}}^{n} \sum_{j=1}^{n} w_{ij} x_i \underbrace{(x_j - \tilde{x}_j)}_{0 \text{ if } j \neq k} - \frac{1}{2} \sum_{\substack{j=1 \\ j \neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) + \theta_k (x_k - \tilde{x}_k)
$$

$$
= -\frac{1}{2} \sum_{\substack{i=1 \ i \neq k}}^{n} w_{ik} x_i (x_k - \tilde{x}_k) - \frac{1}{2} \sum_{\substack{j=1 \ j \neq k}}^{n} w_{kj} x_j (x_k - \tilde{x}_k) + \theta_k (x_k - \tilde{x}_k)
$$

$$
= -\sum_{i=1}^{n} w_{ik} x_i (x_k - \tilde{x}_k) + \theta_k (x_k - \tilde{x}_k)
$$

$$
= -(x_k - \tilde{x}_k) \left[\underbrace{\sum_{i=1}^{n} w_{ik} x_i}_{\text{excitation } e_k} - \theta_k \right] > 0 \quad \text{since:} \quad \underbrace{\sum_{x_k}^{x_k} \frac{x_k - \tilde{x}_k}{+1} \ge 0}_{-1} < 0 \le 0 \le 0 \ge 0
$$
\n
$$
\underbrace{\sum_{x_k}^{x_k} \frac{x_k - \tilde{x}_k}{+1} \ge 0}_{-1} < 0 \le 0 \le 0 > 0
$$

technische universität dortmund

 \Rightarrow every update (change of state) decreases energy function

 \Rightarrow since number of different bipolar vectors is finite update stops after finite #updates

remark: dynamics of HN get stable in local minimum of energy function

 \Rightarrow Hopfield network can be used to optimize combinatorial optimization problems!

q.e.d.

Application to Combinatorial Optimization

Idea:

- transform combinatorial optimization problem as objective function with $x \in \{-1, +1\}^n$
- rearrange objective function to look like a Hopfield energy function
- extract weights W and thresholds θ from this energy function
- initialize a Hopfield net with these parameters W and θ
- run the Hopfield net until reaching stable state (= local minimizer of energy function)
- stable state is local minimizer of combinatorial optimization problem

 \sim

Example I: Linear Functions

$$
f(x) = \sum_{i=1}^{n} c_i x_i \longrightarrow \min! \qquad (x_i \in \{-1, +1\})
$$

Evidently: $E(x) = f(x)$ with $W = 0$ and $\theta = c$

$$
\bigcup\limits
$$

choose $x^{(0)} \in \{-1, +1\}^n$ set iteration counter $t=0$ repeat choose index k at random

$$
x_k^{(t+1)} = \text{sgn}(x^{(t)} \cdot W_{\cdot,k} - \theta_k) = \text{sgn}(x^{(t)} \cdot 0 - c_k) = -\text{sgn}(c_k) = \begin{cases} -1 & \text{if } c_k > 0\\ +1 & \text{if } c_k < 0 \end{cases}
$$

increment t

until reaching fixed point

\Rightarrow fixed point reached after Θ (n log n) iterations on average

 $[$ proof: \rightarrow black board $]$

Example II: MAXCUT

given: graph with n nodes and symmetric weights $\omega_{ii} = \omega_{ii}$, $\omega_{ii} = 0$, on edges

task: find a partition $V = (V_0, V_1)$ of the nodes such that the weighted sum of edges with one endpoint in V_0 and one endpoint in V_1 becomes maximal

encoding: \forall i=1,...,n: $y_i = 0$, node i in set V_0 ; y_i = 1, node i in set V₁

$$
\text{objective function: } f(y) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} \left[y_i \left(1 - y_j \right) + y_j \left(1 - y_i \right) \right] \quad \to \text{max!}
$$

preparations for applying Hopfield network

- step 1: conversion to minimization problem
- step 2: transformation of variables
- step 3: transformation to "Hopfield normal form"

step 4: extract coefficients as weights and thresholds of Hopfield net

Example II: MAXCUT (continued)

step 1: conversion to minimization problem

 \Rightarrow multiply function with -1 \Rightarrow E(y) = -f(y) \rightarrow min!

step 2: transformation of variables \Rightarrow y_i = (x_i+1) / 2

$$
\Rightarrow f(x) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} \left[\frac{x_i+1}{2} \left(1 - \frac{x_j+1}{2} \right) + \frac{x_j+1}{2} \left(1 - \frac{x_i+1}{2} \right) \right]
$$

$$
= \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} \left[1 - x_i x_j \right]
$$

$$
= \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} - \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} x_i x_j
$$

constant value (does not affect location of optimal solution)

Example II: MAXCUT (continued)

step 3: transformation to Hopfield normal form

$$
E(x) = \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} x_i x_j = -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \left(-\frac{1}{2} \omega_{ij} \right) x_i x_j
$$

= $-\frac{1}{2} x' W x + \theta' x$
 \downarrow
0'
 $0'$

step 4: extract coefficients as weights and thresholds of Hopfield net

$$
w_{ij} = -\frac{\omega_{ij}}{2}
$$
 for $i \neq j$, $w_{ii} = 0$, $\theta_i = 0$

remark: ω_{ij} : weights in graph — w_{ij} : weights in Hopfield net

technische universität dortmund