
Computational Intelligence
Winter Term 2024/25

Prof. Dr. Günter Rudolph

Computational Intelligence

Fakultät für Informatik

TU Dortmund

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25
2

Plan for Today

● Radial Basis Function Nets (RBF Nets)

 Model

 Training

● Hopfield Networks

 Model

 Optimization

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25
3

Radial Basis Function Nets (RBF Nets)

Definition:

□

typically, || x || denotes Euclidean norm of vector x

examples:

Gaussian

Epanechnikov

Cosine

unbounded

bounded

bounded

Definition:

RBF local iff

ϕ(r) → 0 as r → ∞ □

local

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25
4

Radial Basis Function Nets (RBF Nets)

Definition:
A function f: Rn → R is termed radial basis function net (RBF net)

iff f(x) = w1 ϕ(|| x – c1 ||) + w2 ϕ(|| x – c2 ||) + ... + wp ϕ(|| x – cq ||) □

• layered net

• 1st layer fully connected

• no weights in 1st layer

• activation functions differ

ϕ(||x-c1||)

ϕ(||x-c2||)

ϕ(||x-cq||)

x1

x2

xn

∑

w1

w2

wp

RBF neurons

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25
5

Radial Basis Function Nets (RBF Nets)

given : N training patterns (xi, yi) and q RBF neurons

find : weights w1, ..., wq with minimal error

known valueunknown

⇒ N linear equations with q unknowns

solution:

we know that f(xi) = yi for i = 1, ..., N and therefore we insist that

pik
known value

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25
6

Radial Basis Function Nets (RBF Nets)

in matrix form: P w = y with P = (pik) and P: N x q, y: N x 1, w: q x 1,

case N = q: w = P -1 y if P has full rank

case N < q: many solutions but of no practical relevance

case N > q: w = P+ y where P+ is Moore-Penrose pseudo inverse

P w = y | · P‘ from left hand side (P‘ is transpose of P)

P‘P w = P‘ y | · (P‘P) -1 from left hand side

(P‘P) -1 P‘P w = (P‘P)-1 P‘ y | simplify

unit matrix P+
• existence of (P‘P)-1 ?
• numerical stability ?

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25
7

Radial Basis Function Nets (RBF Nets)

Tikhonov Regularization (1963)

q.e.d.

q.e.d.

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25
8

Radial Basis Function Nets (RBF Nets)

Tikhonov Regularization (1963)

question: how to justify this particular choice?

interpretation: minimize TSSE and prefer solutions with small values! avoid
overfitting

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25
9

Radial Basis Function Nets (RBF Nets)

Tikhonov Regularization (1963)

→ several approaches in use
→ here: grid search and crossvalidation

grid search

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25
10

Radial Basis Function Nets (RBF Nets)

Crossvalidation

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25
11

Radial Basis Function Nets (RBF Nets)

complexity (naive)
w = (P‘P) -1 P‘ y

P‘P: N2 q inversion: q3 P‘y: qN multiplication: q2

O(N2 q) elementary operations

remark: if N large then inaccuracies for P‘P likely

⇒ first analytic solution, then gradient descent starting from this solution

requires
differentiable

basis functions!

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25
12

Radial Basis Function Nets (RBF Nets)

so far: tacitly assumed that RBF neurons are given

⇒ center ck and radii σ considered given and known

how to choose ck and σ ?

uniform covering

x xx

xx
x

x

x
x

x x

if training patterns
inhomogenously
distributed then first
cluster analysis

choose center of basis
function from each
cluster, use cluster size
for setting σ

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25
13

Radial Basis Function Nets (RBF Nets)

advantages:

• additional training patterns → only local adjustment of weights

• optimal weights determinable in polynomial time

• regions not supported by RBF net can be identified by zero outputs

(if output close to zero, verify that output of each basis function is close to zero)

disadvantages:

• number of neurons increases exponentially with input dimension

• unable to extrapolate (since there are no centers and RBFs are local)

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25
14

Radial Basis Function Nets (RBF Nets)

Example: XOR via RBF

training data: (0,0), (1,1) with value –1
(0,1), (1,0) with value +1

choose Gaussian kernel; set σ = 1; set centers ci to training points

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25
15

Radial Basis Function Nets (RBF Nets)

Example: XOR via RBF

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25
16

Hopfield Network

proposed 1982

characterization:

• neurons preserve state until selected at random for update

• bipolar states: x ∈ { -1, +1 }n

• n neurons fully connected

• symmetric weight matrix

• no self-loops (→ zero main diagonal entries)

• thresholds θ , neuron i fires if excitations larger than θi

energy of state x is

1

2 3

1

2

3

transition: select index k at random, new state is

where

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25
17

Hopfield Network

Fixed Points

Definition

x is fixed point of a Hopfield network iff x = sgn(x‘ W - θ). □

Set W = x x‘ and choose θ with | θi | < n, where x ∈ {-1, +1}n.

→ sgn(x‘ W - θ) = sgn(x‘ (x x‘)) = sgn((x‘x) x‘ - θ) = sgn(|| x ||2 x‘ - θ)

Theorem:
If W = x x‘ and | θi | < n then x is fixed point of a Hopfield network. □

Example:

Note that || x ||2 = n for all x ∈ {-1, +1}n.

→ xi = +1: sgn(n ⋅ (+1) - θi) = +1 iff +n - θi ≥ 0 ⇔ θi ≤ +n
→ xi = −1: sgn(n ⋅ (−1) - θi) = −1 iff −n - θi < 0 ⇔ θi > −n

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25
18

Hopfield Network (HN)

Concept of Energy Function

given: HN with W = x x‘ ⇒ x is stable state of HN

starting point x(0) ⇒ x(1) = sgn(x(0)‘ W - θ)

⇒ excitation e = W x(1) - θ

⇒ if sign(e) = x(0) then x(0) stable state

true if
e‘ close to x(0)

⇒small angle
between e‘ and x(0)

1

1

0

x(0) = (1, 1)

recall:

1

0

small angle α ⇒ large cos(α)

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25
19

Hopfield Network (HN)

Concept of Energy Function

required:

small angle between e = W x(0) - θ and x(0)

⇒ larger cosine of angle indicates greater similarity of vectors

⇒ ∀e‘ of equal size: try to maximize x(0) e‘ = || x(0) || · || e || · cos ∠ (x(0) ,e)

fixed fixed max

⇒ maximize x(0)‘ e = x(0)‘ (W x(0) - θ) = x(0)‘ W x(0) - θ‘ x(0)

⇒ identical to minimize -x(0)‘ W x(0) + θ‘ x(0)

Definition

Energy function of HN at iteration t is E(x(t)) = – x(t)‘ W x(t) + θ‘ x(0) □1
2

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25
20

Hopfield Network

Theorem:
Hopfield network converges to local minimum of energy function after a finite
number of updates. □

Proof: assume that xk has been updated

= 0 if i ≠ k

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25
21

Hopfield Network

0 if j ≠ k

(rename j to i, recall W = W‘, wkk = 0)

excitation ek

> 0 if xk < 0 and vice versa

> 0 since:

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25
22

Hopfield Network

⇒ every update (change of state) decreases energy function

⇒ since number of different bipolar vectors is finite
update stops after finite #updates

remark: dynamics of HN get stable in local minimum of energy function

q.e.d.

⇒ Hopfield network can be used to optimize combinatorial optimization problems!

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25
23

Hopfield Network

Application to Combinatorial Optimization

Idea:

• transform combinatorial optimization problem as objective function with x ∈ {-1,+1}n

• rearrange objective function to look like a Hopfield energy function

• extract weights W and thresholds θ from this energy function

• initialize a Hopfield net with these parameters W and θ

• run the Hopfield net until reaching stable state (= local minimizer of energy function)

• stable state is local minimizer of combinatorial optimization problem

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25
24

Hopfield Network

Example I: Linear Functions

Evidently:
⇒

⇒ fixed point reached after Θ(n log n) iterations on average
[proof: → black board]

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25
25

Hopfield Network

Example II: MAXCUT

given: graph with n nodes and symmetric weights ωij = ωji , ωii = 0, on edges

task: find a partition V = (V0, V1) of the nodes such that the weighted sum of edges
with one endpoint in V0 and one endpoint in V1 becomes maximal

encoding: ∀ i=1,...,n: yi = 0 , node i in set V0; yi = 1 , node i in set V1

objective function:

preparations for applying Hopfield network

step 1: conversion to minimization problem

step 2: transformation of variables

step 3: transformation to “Hopfield normal form“

step 4: extract coefficients as weights and thresholds of Hopfield net

Lecture 14

step 2: transformation of variables
⇒ yi = (xi+1) / 2

⇒

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25
26

Hopfield Network

Example II: MAXCUT (continued)

step 1: conversion to minimization problem

⇒ multiply function with -1 ⇒ E(y) = -f(y) → min!

constant value (does not affect location of optimal solution)

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25
27

Hopfield Network

Example II: MAXCUT (continued)

step 4: extract coefficients as weights and thresholds of Hopfield net

step 3: transformation to Hopfield normal form“

wij

0‘

remark:

