

Radial Basis Function Nets (RBF Nets)

• additional training patterns \rightarrow only local adjustment of weights

• regions not supported by RBF net can be identified by zero outputs

• number of neurons increases exponentially with input dimension

• unable to extrapolate (since there are no centers and RBFs are local)

(if output close to zero, verify that output of each basis function is close to zero)

• optimal weights determinable in polynomial time

advantages:

disadvantages:

J technische universität
J dortmund

Lecture 14

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25

Radial Basis Function Nets (RBF Nets)

Lecture 14

Example: XOR via RBF

training data: $(0,0)$, $(1,1)$ with value -1 (0,1), (1,0) with value +1

$$
\varphi(r) = \exp\left(-\frac{1}{\sigma^2}r^2\right)
$$

choose Gaussian kernel; set σ = 1; set centers c_i to training points

$$
\hat{f}(x) = w_1 \varphi(||x - c_1||) + w_2 \varphi(||x - c_2||) + w_3 \varphi(||x - c_3||) + w_4 \varphi(||x - c_4||)
$$
\n
$$
\hat{f}(0,0) = w_1 + e^{-1} \cdot w_2 + e^{-1} \cdot w_3 + e^{-2} \cdot w_4 \stackrel{!}{=} -1
$$
\n
$$
\hat{f}(0,1) = e^{-1} \cdot w_1 + w_2 + e^{-2} \cdot w_3 + e^{-1} \cdot w_4 \stackrel{!}{=} 1
$$
\n
$$
\hat{f}(1,0) = e^{-1} \cdot w_1 + e^{-2} \cdot w_2 + w_3 + e^{-1} \cdot w_4 \stackrel{!}{=} 1
$$
\n
$$
\hat{f}(1,1) = e^{-2} \cdot w_1 + e^{-1} \cdot w_2 + e^{-1} \cdot w_3 + w_4 \stackrel{!}{=} -1
$$
\n
$$
P = \begin{pmatrix} 1 & e^{-1} & e & e^{-2} \\ e^{-1} & 1 & e^{-2} & e^{-1} \\ e^{-1} & e^{-2} & 1 & e^{-1} \\ e^{-2} & e^{-1} & e^{-1} & 1 \end{pmatrix} y = \begin{pmatrix} -1 \\ 1 \\ 1 \\ -1 \end{pmatrix} w^* = P^{-1} y = \frac{e^2}{(e-1)^2} \begin{pmatrix} -1 \\ 1 \\ 1 \\ -1 \end{pmatrix}
$$
\n
$$
\text{U technique, In this case, we have}
$$
\n
$$
\text{U Lechnische universität}
$$
\n
$$
\text{G. Rudolph: Computational Intelligence - Winter Term 2024/25}
$$

Radial Basis Function Nets (RBF Nets) Lecture 14 Hopfield Network Lecture 14 Example: XOR via RBF proposed 1982 $\hat{f}(x) = \frac{e^2}{(e-1)^2} \cdot \left[-e^{-x_1^2 - x_2^2} + e^{-x_1^2 - (x_2 - 1)^2} + e^{-(x_1 - 1)^2 - x_2^2} - e^{-(x_1 - 1)^2 - (x_2 - 1)^2} \right]$ **characterization:** 1 • neurons preserve state until selected at random for update • bipolar states: $x \in \{-1, +1\}^n$ 2) \longleftrightarrow (3 • n neurons fully connected • symmetric weight matrix 1 2 • no self-loops (→ zero main diagonal entries) 0.5 3 • thresholds θ , neuron i fires if excitations larger than θ_i -0.5 **transition**: select index k at random, new state is $\tilde{x} = \text{sgn}(x W - \theta)$ -1.5 where $\tilde{x} = (x_1, \ldots, x_{k-1}, \tilde{x}_k, x_{k+1}, \ldots, x_n)$ energy of state x is $E(x) = -\frac{1}{2}xWx' + \theta x'$ G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25 G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25 ■ technische universität ■ technische universität 15 16 dortmund dortmund

13

 \Rightarrow identical to minimize -x $^{(0)'}$ W x $^{(0)}$ + θ' x $^{(0)}$

Definition

Energy function of HN at iteration t is E($x^{(t)}$) = $-\frac{1}{2}x^{(t)'}$ W $x^{(t)} + \theta' x^{(0)}$

$$
E(x) - E(\tilde{x}) = -\frac{1}{2} xWx' + \theta x' + \frac{1}{2} \tilde{x}W\tilde{x}' - \theta \tilde{x}'
$$

\n
$$
= -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} x_{i} x_{j} + \sum_{i=1}^{n} \theta_{i} x_{i} + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} \tilde{x}_{i} \tilde{x}_{j} - \sum_{i=1}^{n} \theta_{i} \tilde{x}_{i}
$$

\n
$$
= -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (x_{i} x_{j} - \tilde{x}_{i} \tilde{x}_{j}) + \sum_{i=1}^{n} \theta_{i} (x_{i} - \tilde{x}_{i})
$$

\n
$$
= -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (x_{i} x_{j} - \tilde{x}_{i} \tilde{x}_{j}) - \frac{1}{2} \sum_{j=1}^{n} w_{kj} (x_{k} x_{j} - \tilde{x}_{k} \tilde{x}_{j}) + \theta_{k} (x_{k} - \tilde{x}_{k})
$$

\n
$$
\frac{1}{i \neq k}
$$

■ technische universität dortmund

23

 \top

24

Hopfield Network

Lecture 14

Example II: MAXCUT

given: graph with n nodes and symmetric weights $\omega_{ii} = \omega_{ii}$, $\omega_{ii} = 0$, on edges

task: find a partition $V = (V_0, V_1)$ of the nodes such that the weighted sum of edges with one endpoint in V_0 and one endpoint in V_1 becomes maximal

<u>encoding:</u> \forall i 1,...,n: y_i = 0, node i in set V₀; y_i = 1, node i in set V₁

objective function: $f(y) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} \left[y_i \left(1 - y_j \right) + y_j \left(1 - y_i \right) \right] \longrightarrow \max!$

preparations for applying Hopfield network

step 1: conversion to minimization problem

step 2: transformation of variables

step 3: transformation to "Hopfield normal form"

step 4: extract coefficients as weights and thresholds of Hopfield net

J technische universität
J dortmund

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25

25

27

Hopfield Network

Lecture 14

step 1: conversion to minimization problem

$$
\Rightarrow
$$
 multiply function with -1 \Rightarrow E(y) = -f(y) \rightarrow min!

step 2: transformation of variables

$$
\Rightarrow y_{i} = (x_{i}+1)/2
$$
\n
$$
\Rightarrow f(x) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} \left[\frac{x_{i}+1}{2} \left(1 - \frac{x_{j}+1}{2} \right) + \frac{x_{j}+1}{2} \left(1 - \frac{x_{i}+1}{2} \right) \right]
$$
\n
$$
= \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} \left[1 - x_{i} x_{j} \right]
$$
\n
$$
= \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} - \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} x_{i} x_{j}
$$
\nconstant value (does not affect location of optimal solution)

\ntechnische universität

\nG. Rudolph: Computational Intelligence - Winter Term 2024/25

Hopfield Network Lecture 14 Example II: MAXCUT (continued) step 3: transformation to Hopfield normal form $E(x) = \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \omega_{ij} x_i x_j = -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \left(-\frac{1}{2} \omega_{ij} \right) x_i x_j$
 $i \neq j$ $=-\frac{1}{2}x'Wx+\theta'x$ 0' step 4: extract coefficients as weights and thresholds of Hopfield net $w_{ij} = -\frac{\omega_{ij}}{2}$ for $i \neq j$, $w_{ii} = 0$, $\theta_i = 0$ remark: ω_{ij} : weights in graph — w_{ij} : weights in Hopfield net G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25 technische universität dortmund