

Computational Intelligence

Winter Term 2024/25

Prof. Dr. Günter Rudolph

Computational Intelligence

Fakultät für Informatik

TU Dortmund

- Recurrent Neural Networks
	- **Excursion: Nonlinear Dynamics**
	- **Recurrent Models**
	- **Training**

Dynamical Systems with Discrete Time

Lecture 13

 $s^{(t)}$ is a state $\in S$ at time $t \in \mathbb{N}_0$ S state space with states $s \in S$ Θ parameter space with parameters $\theta \in \Theta$ $f: S \times \Theta \rightarrow S$ transition function

$$
\rightarrow \text{dynamical system } s^{(t+1)} = f(s^{(t)}, \theta) \qquad \qquad (*) \qquad \text{recurrence relation}
$$

$$
s^{(t)} = f^t(s^{(0)}, \theta) = f \circ \cdots \circ f(s^{(0)}, \theta) = f_{\theta}(f_{\theta}(f_{\theta}(\cdots f_{\theta}(s^{(0)}))));\ f_{\theta}(s) = f(s, \theta)
$$

t times
t times

D: s^* is called stationary point / fixed point / steady state of (*) if $s^* = f(s^*)$ D: stationary point s^* is locally asymptotical stable (l.a.s.) if

$$
\exists \varepsilon > 0: \forall s^{(0)} \in B_{\varepsilon}(s^*): \lim_{t \to \infty} s^{(t)} = s^*
$$

T: Let f be differentiable. Then s is l.a.s. if $|f'(s)| < 1$, and unstable if $|f'(s)| > 1$.

Remark: D: $s \in S$ is recurrent if $\forall \varepsilon > 0 : \exists t > 0 : f^t(s) \in B_{\varepsilon}(s)$ infinitly often (i.o.)

Lecture 13

examples

 $f(x) = a x + b$ $a, b \in \mathbb{R}$ linear case: $x = f(x) = a x + b \Rightarrow x = \frac{b}{1-a}$ if $a \neq 1$ fixed points: $f'(x) = a \Rightarrow |f'(x^*)| = |a| < 1$ l.a.s., $|a| > 1$ unstable stability: $f(x) = r x (1 - x)$ $r \in (0, 4]$ $x \in (0, 1)$ logistic map • nonlinear case: $x = f(x) = r x (1 - x)$ \Rightarrow $x = 0$ or $x = 1 - \frac{1}{r} = \frac{r - 1}{r}$ fixed points: $f'(x) = r - 2r x$ stability: $|f'(0)| = r < 1 \implies$ l.a.s. also for $r = 1$ since $x < f(x)$ for $x < \frac{1}{2}$ $|f'(\frac{r-1}{r})| = |2-r| < 1 \Leftrightarrow 1 < r < 3$ l.a.s. $r \in [3, 1 + \sqrt{6})$ oscillation between 2 values $r \in [1 + \sqrt{6}, 3.54...)$ oscillation between 4 values … $8.16.32...$ deterministic chaos $r > 3.56995...$

 \rightarrow predicting a nonlinear dynamic system may be impossible!

Dynamical Systems with Discrete Time

Lecture 13

Lecture 13

extensions

• dynamical system with inputs

$$
s^{(t)} = f(s^{(t-1)}, x^{(t)}; \theta)
$$

$$
\underbrace{\uparrow \qquad \qquad \text{input at time } t \in \mathbb{N}}
$$

• dynamical system with inputs and outputs

$$
s^{(t)} = f(s^{(t-1)}, x^{(t)}; \theta_f)
$$

\n
$$
o^{(t)} = g(s^{(t)}; \theta_g)
$$

\n
$$
\underbrace{\uparrow \qquad \qquad }_{\text{output at time } t \in \mathbb{N}}
$$

describes a **recurrent** neural network (RNN)

unfolding

- finite input sequence \Rightarrow can unfold RNN completely to (deep) feed forward network
- infinite input sequence
	- \Rightarrow can unfold RNN only finitely many steps into the past
	- \Rightarrow assumption: behavior mainly depends on few inputs in the past

(i.e., **no** long-term dependencies)

remark: parameters θ in unfolded network are shared otherwise with θ_t overfitting becomes very likely!

7

Historic Recurrent Neural Networks

Lecture 13

- Jordan network (1983)
	- $s_t = f(s_{t-1}, x_t; W, U, b)$ $= \sigma(Wx_t + U\hat{y}_{t-1} + b)$
	- $o_t = g(s_t; V, c)$ $= Vs_t + c$
	- $\hat{y}_t = a(o_t)$
- Elman network (1990)
	- $s_t = \sigma(Wx_t + Us_{t-1} + b)$ $o_t = Vs_t + c$ $\hat{y}_t = a(o_t)$

8

technische universität dortmund

Recurrent Neural Networks

Lecture 13

test / training mode

loss per input $L(\hat{y}, y) = ||\hat{y} - y||_2^2$ where $\hat{y} = \text{SOFTMAX}(o)$

technische universität dortmund

G. Rudolph: Computational Intelligence ▪ Winter Term 2024/25

training? → backpropagation through time (BPTT)

P.J. Werbos: Generalization of Backpropagation with Application to a Recurrent Gas Market Model. *Neural Networks 1(4):339-356*, 1988.

- works on unfolded network for a finite input sequence $x^{(1)}, \ldots, x^{(\tau)}$
- some adaption to BP necessary, since many parameters are shared

reduces #params and overfitting

• "straightforward" (but tedious + error-prone if done manually)

 \rightarrow use method from your software library!

in principle: gradient descent on loss function

Lecture 13

LSTM network (1997f.) **LSTM** = long short-term memory

so far: no long-term dependencies

now: "remember the important stuff and forget the rest" [Cha18, p.89]

concept: two versions of the past

- 1. selective long-term memory
- 2. short term memory

historic/standard RNN forget too quickly

has the ability to learn long-term dependencies

Gated Recurrent Unit (GRU) [2016]

"simplified" LSTM neuron

- with input and forget gates
- with no output gate and context vector
- \Rightarrow leads to fewer parameters (compared to LSTM)
- \Rightarrow needs fewer training examples
- \Rightarrow possibly faster learning

but: unclear if LSTM or GRU is better

 \rightarrow initial performance results promising

https://arxiv.org/abs/2405.04517