

| technische universität                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Plan for Today Lecture 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Computational Intelligence<br>Winter Term 2024/25                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Recurrent Neural Networks     Excursion: Nonlinear Dynamics     Recurrent Models     Training                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Prof. Dr. Günter Rudolph<br>Computational Intelligence<br>Fakultät für Informatik<br>TU Dortmund                                                                                                                                                                                                                                                                                                                                                                                                                              | G. Rudolph: Computational Intelligence • Winter Term 2024/25<br>dortmund 2                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Dynamical Systems with Discrete Time Lecture 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dynamical Systems with Discrete Time Lecture 13                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| $\begin{array}{ll}S \text{ state space with states } s \in S & s^{(t)} \text{ is a state } \in S \text{ at time } t \in \mathbb{N}_0 \\ \Theta \text{ parameter space with parameters } \theta \in \Theta & f: S \times \Theta \to S \text{ transition function} \\ \to \text{ dynamical system } s^{(t+1)} = f(s^{(t)}, \theta) & (*) & \text{recurrence relation} \end{array}$                                                                                                                                              | examples• linear case: $f(x) = a x + b$ $a, b \in \mathbb{R}$ fixed points: $x = f(x) = a x + b$ $\Rightarrow x = \frac{b}{1-a}$ if $a \neq 1$ stability: $f'(x) = a$ $\Rightarrow  f'(x^*)  =  a  < 1$ l.a.s., $ a  > 1$ unstable                                                                                                                                                                                                                                                                        |  |
| $s^{(t)} = f^t(s^{(0)}, \theta) = \underbrace{f \circ \cdots \circ f}_{t \text{ times}}(s^{(0)}, \theta) = \underbrace{f_\theta(f_\theta(f_\theta(\cdots f_\theta(s^{(0)}))))}_{t \text{ times}}(s^{(0)}))); \ f_\theta(s) = f(s, \theta)$                                                                                                                                                                                                                                                                                    | • <u>nonlinear case</u> : $f(x) = r x (1 - x)$ $r \in (0, 4]$ $x \in (0, 1)$ logistic map<br>fixed points: $x = f(x) = r x (1 - x)$ $\Rightarrow$ $x = 0$ or $x = 1 - \frac{1}{r} = \frac{r-1}{r}$<br>stability: $f'(x) = r - 2r x$                                                                                                                                                                                                                                                                       |  |
| D: $s^*$ is called stationary point / fixed point / steady state of (*) if $s^* = f(s^*)$<br>D: stationary point $s^*$ is locally asymptotical stable (l.a.s.) if<br>$\exists \varepsilon > 0 : \forall s^{(0)} \in B_{\varepsilon}(s^*) : \lim_{t \to \infty} s^{(t)} = s^*$<br>T: Let $f$ be differentiable. Then $s$ is l.a.s. if $ f'(s)  < 1$ , and unstable if $ f'(s)  > 1$ .<br>Remark: D: $s \in S$ is recurrent if $\forall \varepsilon > 0 : \exists t > 0 : f^t(s) \in B_{\varepsilon}(s)$ infinitly often (i.o.) | $\begin{split}  f'(0)  &= r < 1  \Rightarrow \text{ I.a.s.}  \text{also for } r = 1 \text{ since } x < f(x) \text{ for } x < \frac{1}{2} \\  f'(\frac{r-1}{r})  &=  2 - r  < 1 \Leftrightarrow 1 < r < 3 \text{ I.a.s.} \\ r \in [3, 1 + \sqrt{6})  \text{oscillation between 2 values} \\ r \in [1 + \sqrt{6}, 3.54 \dots)  \text{oscillation between 4 values} \\ \vdots \qquad \qquad$ |  |
| G. Rudolph: Computational Intelligence • Winter Term 2024/25 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G. Rudolph: Computational Intelligence • Winter Term 2024/25<br>dortmund                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |





| Recurrent Neural Networks                                                                                                                       | Lecture 13                                          | Recurrent Neural Networks                                                   | Lecture 13                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------|
| Gated Recurrent Unit (GRU) [2016]                                                                                                               |                                                     | Extended LSTM (xLSTM) [2024]                                                | https://github.com/NX-AI/xlstm                                     |
| "simplified" LSTM neuron                                                                                                                        |                                                     | - based on LSTM                                                             | details                                                            |
| - with input and forget gates                                                                                                                   |                                                     | - different kind of gating                                                  |                                                                    |
| - with no output gate and context vector                                                                                                        |                                                     |                                                                             |                                                                    |
| <ul> <li>⇒ leads to fewer parameters (compared to LSTM)</li> <li>⇒ needs fewer training examples</li> <li>⇒ possibly faster learning</li> </ul> |                                                     | → initial performance results promising<br>https://arxiv.org/abs/2405.04517 |                                                                    |
| but: unclear if LSTM or GRU is better                                                                                                           |                                                     |                                                                             |                                                                    |
|                                                                                                                                                 |                                                     |                                                                             |                                                                    |
| U technische universität G. Rudolph: Comp<br>dortmund                                                                                           | outational Intelligence • Winter Term 2024/25<br>13 | technische universität<br>dortmund                                          | G. Rudolph: Computational Intelligence • Winter Term 2024/25<br>14 |