

Computational Intelligence

Winter Term 2024/25

Prof. Dr. Günter Rudolph

Computational Intelligence

Fakultät für Informatik

TU Dortmund

- Deep Neural Networks
 - Model
 - Training

- Convolutional Neural Networks
 - Model
 - Training

Deep Neural Networks (DNN)

Lecture 12

DNN = Neural Network with > 3 layers

we know: L = 3 layers in MLP sufficient to describe arbitrary sets

What can be achieved by more than 3 layers?

information stored in weights of edges of network

→ more layers → more neurons → more edges → more information storable

Which additional information storage is useful?

traditionally : handcrafted features fed into 3-layer perceptron

modern viewpoint: let L-k layers learn the feature map, last k layers separate!

advantage:

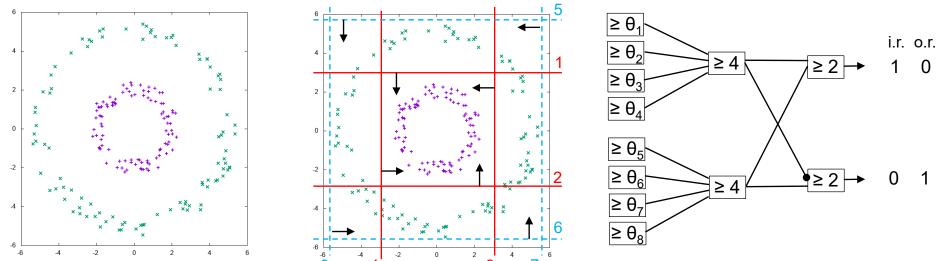
human expert need not design features manually for each application domain

⇒ no expert needed, only observations!

Deep Neural Networks (DNN)

Lecture 12

example: separate 'inner ring' (i.r.) / 'outer ring' (o.r.) / 'outside'



⇒ MLP with 3 layers and 12 neurons

Is there a simpler way?

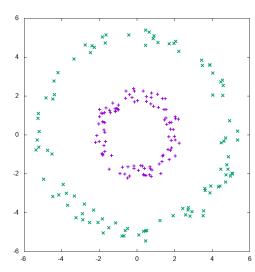
observations
$$(x,y) \in \mathbb{R}^n \times \mathbb{B}$$
 feature map $F(x) = (F_1(x), \dots, F_m(x)) \in \mathbb{R}^m$

feature = measurable property of an observation or numerical transformation of observed value(s)

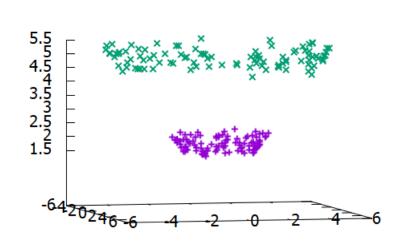
 \Rightarrow find MLP on transformed data points (F(x), y)

example: separate 'inner ring' / 'outer ring'

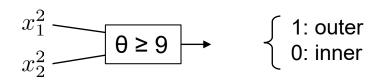
• feature map $F(x) = (x_1, x_2, \sqrt{x_1^2 + x_2^2}) \in \mathbb{R}^3$

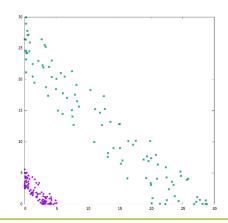


2D → 3D



• feature map $F(x)=(x_1^2,x_2^2)\in\mathbb{R}^2$

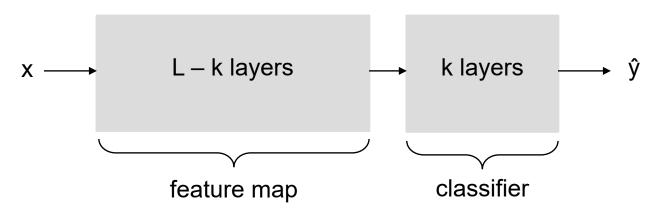




but: how to find useful features?

- → typically designed by experts with domain knowledge
- → traditional approach in classification:
 - 1. design & select appropriate features
 - 2. map data to feature space
 - 3. apply classification method to data in feature space

modern approach via DNN: learn feature map and classification simultaneously!



proven: MLP can approximate any continuous map with aribitrary accuracy

Deep Multi-Layer Perceptrons

Lecture 12

contra:

- danger: overfitting
 - → need larger training set (expensive!)
 - → optimization needs more time
- response landscape changes
 - → more sigmoidal activiations
 - → gradient vanishes
 - → small progress in learning weights

countermeasures:

- regularization / dropout
 - → data augmentation
 - → parallel hardware (multi-core / GPU)
- not necessarily bad
 - → change activation functions
 - → gradient does not vanish
 - → progress in learning weights

vanishing gradient: (underlying principle)

forward pass $y = f_3(f_2(f_1(x; w_1); w_2); w_3)$

f_i ≈ activation function

backward pass $(f_3(f_2(f_1(x; w_1); w_2); w_3))' =$

 $f_3'(f_2(f_1(x;w_1);w_2);w_3) \cdot f_2'(f_1(x;w_1);w_2) \cdot f_1'(x;w_1)$ chain rule!

 \rightarrow repeated multiplication of values in $(0,1) \rightarrow 0$

Deep Multi-Layer Perceptrons

Lecture 12

vanishing gradient:
$$a(x) = \frac{e^x}{e^x + 1} = \frac{1}{1 + e^{-x}} \rightarrow a'(x) = a(x) \cdot (1 - a(x))$$

$$a'(x) = a(x) \cdot (1 - a(x))$$

$$\forall x \in \mathbb{R}: \quad a(x) \cdot (1 - a(x)) \le \frac{1}{4} \quad \Leftrightarrow \quad \left(a(x) - \frac{1}{2}\right)^2 \ge 0$$

$$\left(a(x) - \frac{1}{2}\right)$$

$$\checkmark$$

 \Rightarrow gradient $a'(x) \in \left[0, \frac{1}{4}\right]$

principally: desired property in learning process! if weights stabilize such that neuron almost always either fires [i.e., $a(x) \approx 1$] or not fires [i.e., $a(x) \approx 0$] then gradient ≈ 0 and the weights are hardly changed

a(x)8.0 0.6 0.4 a'(x)0.2 -2 0 2

⇒ leads to convergence in the learning process!

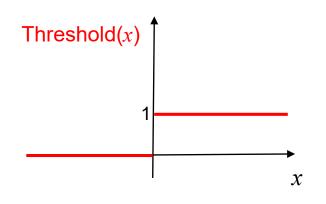
while learning, updates of weights via partial derivatives:

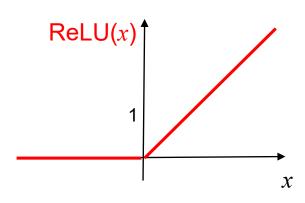
$$\frac{\partial f(w,u;x,z^*)}{\partial w_{ij}} = 2\sum_{k=1}^{K} \left[a(u_k'y) - z_k^* \right] \cdot \underbrace{a'(u_k'y)}_{\leq \frac{1}{4}} \cdot u_{jk} \cdot \underbrace{a'(w_j'x)}_{\leq \frac{1}{4}} \cdot x_i \qquad \text{(L= 2 layers)}$$

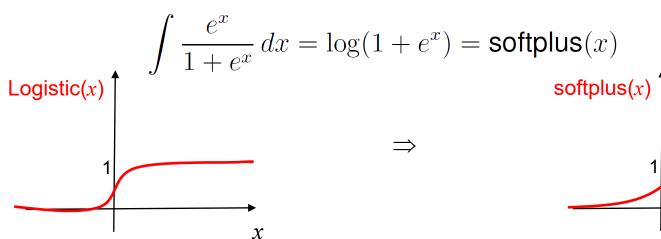
 \Rightarrow in general $f_{w_{ij}} = O(4^{-L}) \to 0$ as $L \uparrow$ $L \leq 3$: effect neglectable; but $L \gg 3$

non-sigmoid activation functions

$$\int \mathbb{1}_{[x \ge 0]}(x) \, dx = \left\{ \begin{array}{ll} 0 & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{array} \right\} = \max\{0, x\} = \mathsf{ReLU}(x)$$







 $\boldsymbol{\chi}$

dropout

- applied for regularization (against overfitting)
- can be interpreted as inexpensive approximation of bagging

aka: bootstrap aggregating, model averaging, ensemble methods

create k training sets by drawing with replacement train k models (with own exclusive training set) combine k outcomes from k models (e.g. majority voting)

- parts of network is effectively switched off
 e.g. multiplication of outputs with 0,
 e.g. use inputs with prob. 0.8 and inner neurons with prob. 0.5
- gradient descent on switching parts of network
 - → artificial perturbation of greediness during gradient descent
- can reduce computational complexity if implemented sophistically

data augmentation (counteracts overfitting)

- → extending training set by slightly perturbed true training examples
- best applicable if inputs are images: translate, rotate, add noise, resize, ...

- if x is real vector then adding e.g. small gaussian noise
 - → here, utility disputable (artificial sample may cross true separating line)

extra costs for acquiring additional annotated data are inevitable!

stochastic gradient descent

- partitioning of training set B into (mini-) batches of size b

traditionally: 2 extreme cases

update of weights

- after each training example b = 1
- after all training examples

now:

update of weights

- after b training examples where 1 < b < |B|
- search in subspaces → counteracts greediness → better generalization

b = |B|

- accelerates optimization methods (parallelism possible)

choice of batch size b

- b large ⇒ better approximation of gradient
- b small ⇒ better generalization

b also depends on available hardware

b too small ⇒ multi-cores underemployed

often b ≈ 100 (empirically)

cost functions

• regression

N training samples (x_i, y_i)

insist that $f(x_i; \theta) = y_i$ for i=1,..., N

if $f(x; \theta)$ linear in θ then $\theta^T x_i = y_i$ for i=1,..., N or $X \theta = y_i$

 \Rightarrow best choice for θ : least square estimator (LSE)

$$\Rightarrow$$
 (X θ - y)^T (X θ - y) $\rightarrow \min_{\theta}!$

in case of MLP: $f(x; \theta)$ is <u>nonlinear</u> in θ

 \Rightarrow best choice for θ : (nonlinear) least square estimator; aka TSSE

$$\Rightarrow \sum_{i} (f(x_i; \theta) - y_i)^2 \rightarrow \min_{\theta}!$$

cost functions

classification

N training samples (x_i, y_i) where $y_i \in \{1, ..., C\}$, C = #classes

- → want to estimate probability of different outcomes for unknown sample
- → decision rule: choose class with highest probability (given the data)

idea: use maximum likelihood estimator (MLE)

= estimate unknown parameter θ such that likelihood of sample $x_1, ..., x_N$ gets maximal as a function of θ

likelihood function

$$L(\theta; x_1, \dots, x_N) := f_{X_1, \dots, X_N}(x_1, \dots, x_N; \theta) = \prod_{i=1}^n f_X(x_i; \theta) \to \max_{\theta}!$$

Deep Neural Networks

Lecture 12

here: random variable $X \in \{1, ..., C\}$ with $P\{X = i\} = q_i$ (true, but unknown)

 \rightarrow we use relative frequencies of training set $x_1, ..., x_N$ as estimator of q_i

$$\hat{q}_i = \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{[x_j = i]} \quad \Rightarrow \text{there are } N \cdot \hat{q}_i \text{ samples of class } i \text{ in training set}$$

 \Rightarrow the neural network should output \hat{p} as close as possible to \hat{q} ! [actually: to q]

likelihood
$$L(\hat{p}; x_1, ..., x_N) = \prod_{k=1}^{N} P\{X_k = x_k\} = \prod_{i=1}^{C} \hat{p}_i^{N \cdot \hat{q}_i} \to \max!$$

$$\log L = \log \left(\prod_{i=1}^{C} \hat{p}_i^{N \cdot \hat{q}_i} \right) = \sum_{i=1}^{C} \log \hat{p}_i^{N \cdot \hat{q}_i} = N \underbrace{\sum_{i=1}^{C} \hat{q}_i \cdot \log \hat{p}_i}_{-H(\hat{a}, \hat{a})} \rightarrow \max!$$

 \Rightarrow maximizing $\log L$ leads to same solution as minimizing **cross-entropy** $H(\hat{q}, \hat{p})$

in case of classification

use softmax function
$$P\{y=j\,|\,x\}=\frac{e^{w_j^x\,x+o_j}}{\sum_{i=1}^C e^{w_i^T\,x+b_i}}$$
 in output layer

- → multiclass classification: probability of membership to class j = 1, ..., C
- → class with maximum excitation w'x+b has maximum probabilty
- → decision rule: element x is assigned to class with maximum probability

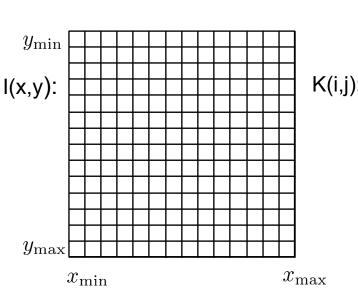
Convolutional Neural Networks (CNN)

Lecture 12

most often used in graphical applications (2-D input; also possible: k-D tensors)

layer of CNN = 3 stages

- 1. convolution
- 2. nonlinear activation (e.g. ReLU)
- 3. pooling



	$-\delta$		δ	
	-1	-2	-1	$-\delta$
:	1	1	1	
	-2	1	-2	δ

example

1. Convolution

local filter / kernel K(i, j) applied to each cell of image I(x, y)

$$S(x,y) = (K * I)(x,y) = \sum_{i=-\delta}^{\delta} \sum_{j=-\delta}^{\delta} I(x+i,y+j) \cdot K(i,j)$$

ranges:

- without padding: $x = x_{\min} + \delta, \ldots, x_{\max} - \delta, y = y_{\min} + \delta, \ldots, y_{\max} - \delta$

Convolutional Neural Networks (CNN)

Lecture 12

example: edge detection with Sobel kernel

→ two convolutions

$$K_{x} = \begin{pmatrix} -1, 0, 1 \\ -2, 0, 2 \\ -1, 0, 1 \end{pmatrix} \qquad K_{y} = \begin{pmatrix} -1, -2, -1 \\ 0, 0, 0 \\ 1, 2, 1 \end{pmatrix}$$
yields S_{x} yields S_{y}

original image I(x,y)

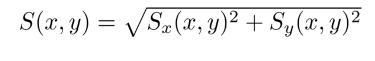


image S(x,y) after convolution

filter / kernel

well known in image processing; typically hand-crafted!

here: values of filter matrix learnt in CNN!

actually: many filters active in CNN

e.g. horizontal line detection

stride

- = distance between two applications of a filter (horizontal s_h / vertical s_v)
- \rightarrow leads to smaller images if s_h or s_v > 1

padding

- = treatment of border cells if filter does not fit in image
- "valid": apply only to cells for which filter fits → leads to smaller images
- "same": add rows/columns with zero cells; apply filter to all cells (→ same size)

2. nonlinear activation

$$a(x) = ReLU(x^T W + c)$$

3. pooling

in principle: summarizing statistic of nearby outputs

e.g. **max-pooling**
$$m(i,j) = max(l(i+a, j+b) : a,b = -\delta, ..., 0, ... \delta)$$
 for $\delta > 0$

- also possible: mean, median, matrix norm, ...
- can be used to reduce matrix / output dimensions

example: max-pooling 2x2 (iterated), stride = 2

Convolutional Neural Networks

Lecture 12

Pooling with Stride

c_{in} : columns of input

r_{in}: rows of input

f_c: columns of filter

f_r: rows of filter

s_c: stride for columns

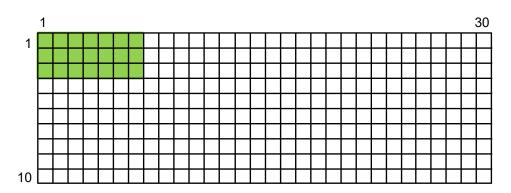
s_r: stride for rows

image size: r_{in} x c_{in}

filter size : $f_r x f_c$

assumptions:

$$f_c \le c_{in}$$
 $f_r \le f_{in}$
padding = valid



How often fits the filter in image horizontally?

$$pos_1 = 1$$

 $pos_2 = pos_1 + s_c$
 $pos_3 = pos_2 + s_c = (pos_1 + s_c) + s_c = pos_1 + 2 \cdot s_c$
 \vdots
 $pos_k = pos_1 + (k - 1) \cdot s_c$

thus, find largest k such that

$$pos_{1} + (k - 1) \cdot s_{c} + (f_{c} - 1) \leq c_{in}$$

$$\Leftrightarrow (k - 1) \cdot s_{c} + f_{c} \leq c_{in}$$

$$\Leftrightarrow k \leq (c_{in} - f_{c}) / s_{c} + 1 \quad (integer division!)$$

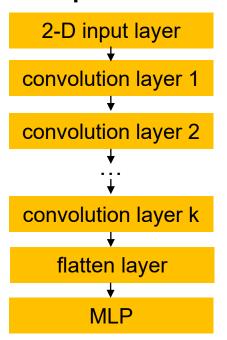
$$\Rightarrow \qquad k = \left\lfloor \frac{c_{in} - f_{c}}{s_{c}} \right\rfloor + 1 = c_{out}$$

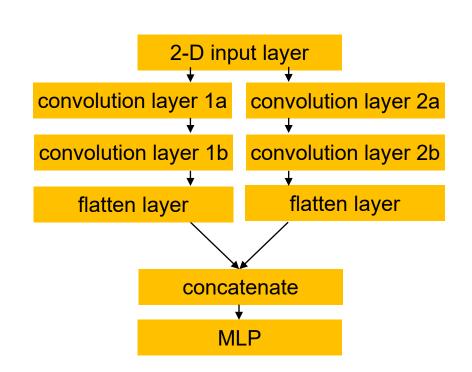
[analog reasoning for rows!]

CNN architecture:

- several consecutive convolution layers (also parallel streams); possibly dropouts
- flatten layer (→ converts k-D matrix to 1-D matrix required for MLP input layer)
- fully connected MLP

examples:





Convolutional Neural Networks

Lecture 12

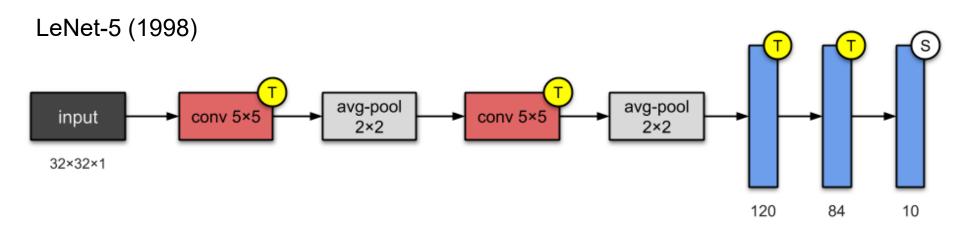
Popular CNN Architectures

https://towardsdatascience.com

Name	Year	Depth	#Params
LeNet	1998		
AlexNet	2012		> 60 M
VGG16	2014	23	> 23 M
Inception-v1	2014		
ResNet50	2014		> 25 M
Inception-v3	2015	159	
Xception	2016	126	> 22 M
InceptionResNet	2017	572	> 55 M

Popular CNN Architectures

https://towardsdatascience.com



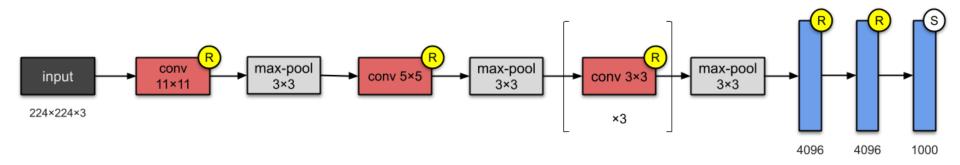
T = tanh

S = softmax

Popular CNN Architectures

https://towardsdatascience.com

AlexNet (2012)



T = tanh

R = ReLU

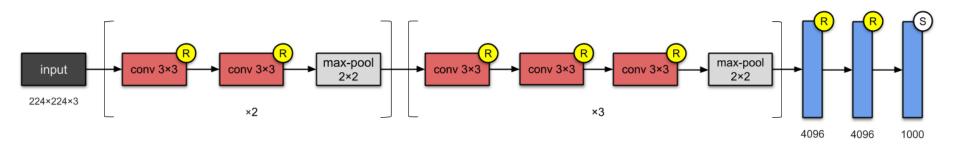
S = softmax

Used dropout

Popular CNN Architectures

https://towardsdatascience.com

VGG-16 (2014)



T = tanh

R = ReLU

S = softmax

Deeper than AlexNet