

Computational Intelligence

Winter Term 2024/25

Prof. Dr. Günter Rudolph Computational Intelligence Fakultät für Informatik TU Dortmund

Slides prepared by **Dr. Nicola Beume** (2012)

enriched with slides by
Prof. Dr. Boris Naujoks, TH Cologne
from Winter Term 2017/18
(with permission)

The regular optimisation problem

Minimize

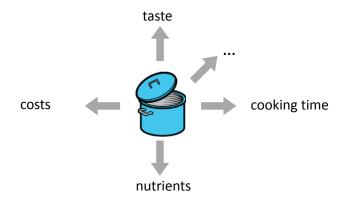
$$f: \mathcal{X} \subset \mathbf{R}^n \longrightarrow \mathcal{Y} \subset \mathbf{R}$$

- Subject to
 - Equality constraints

$$h(x) = 0 \quad \forall x \in \mathcal{X}$$

- Inequality constraints

$$g(x) \leqslant 0 \quad \forall x \in \mathcal{X}$$


- Definitions
 - $x \in \mathcal{X}$ is (valid) solution
 - \mathcal{X} search, parameter, or decision space
 - \mathcal{Y} objective space

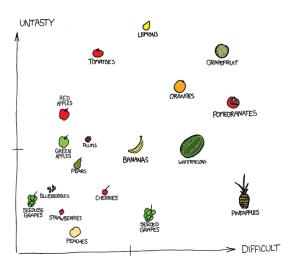
B. Naujok

Multi-Objective Evolutionary Optimisation

21. November 2017

Multiobjective Optimization

Real-world problems: various demands on problem solution

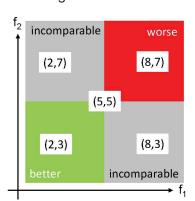

⇒ multiple conflictive objective functions

Laptop Selection

<u>Name</u>	Display	Battery	Weight	Price	CPU	RAM	Graphic	Disk	Interfaces
Dell Vostro 15 5568	15.6	12 h	2 kg	689	15-7	8 GB DDR4	HD Graphics 620	256 SSD	VGA, HDMI, USB
HP 14-bs007ng	14	12.5 h	1,7 kg	699	15-7	8 GB DDR4	HD Graphics 620	256 SSD	VGA, HDMI, USB
HP 250 2HG71ES	15.6	12 h	1,86 kg	649	15-7	8 GB DDR4	Radeon 520	256 SSD	VGA, HDMI, USB
Lenovo ThinkPad L470	14	10 h	1,87 kg	699	15-7	8 GB DDR4	HD Graphics 620	256 SSD	VGA, Disp, USB
Fuijitsu Lifebook A557	15.6	8 h	2,4 kg	650	15-7	8 GB DDR4	HD Graphics 620	256 SSD	VGA, HDMI, USB
Levono ThinkPad E470	14	8 h	1.87 kg	699	15-7	8 GB DDR4	GeForce 940MX	256 SSD	HDMI, USB
Levono ThinkPad E470	14	8 h	1.87 kg	849	17-7	16 GB DDR4	GeForce 940MX	256 SSD	HDMI, USB
Lenovo ThinkPad L570	15.6	10 h	2.38 kg	849	15-7	8 GB DDR4	HD Graphics 620	256 SSD	VGA; Disp, USB
Lenovo ThinkPad 13	13.3	12 h	1.44 kg	869	15-7	8 GB DDR4	HD Graphics 620	256 SSD	HDMI, USB
HP Power Pavilion 14-cb013ng	15.6	14.5 h	2.21 kg	1139	17-7	16 GB DDR4	GeForce CTX 1050 Ti	256 SSD + 1T HDD	HDMI, USB
HP Power Pavilion 15-cb013ng	15.6	14.5 h	2.21 kg	1139	17-7	16 GB DDR4	GeForce GtX 1050 Ti	256 SSD + 1T HDD	HDMI, USB
Asus X556UQ-DM885T	15.6	decent	2.3 kg	719	15-7	8 GB DDR4	GeForce 940MX	256 SSD + 1T HDD	VGA; HDMI; USB
Acer Aspire 5 A515-51G-51 RL	15.6	9 h	2.1 kg	849	15-7	8 GB DDR4	Geforce MX150	128 SSD + 1T HDD	HDMI; USB
HP Pavilion 14-bf007ng	14	10.25 h	1.53 kg	666	15-7	8 GB DDR4	HD Graphics 620	256 SSD	HDMI; USB
Acer Swift 3 (SF314-51-77W2)	14	10 h	1.65 kg	774	17-7	8 GB DDR4	HD Graphics 620	256 SSD	HDMI; USB
Lenovo ThinkPad X1 Carbon	14	12 h	1.13 kg	879	17-4	8 GB DDR3L	HD Graphics 5000	256 SSD	HDMI; DISP; USB
Fujitsu Lifebook A557	15.6	8 h	2.4 kg	613	15-7	16 GB DDR4	HD Graphics 620	512 SSD	VGA; HDMI; USB
Acer TravelMate P459-G2-M-56T4	15.6	8 h	2.1 kg	694	15-7	8 GB DDR4	HD Graphics 620	256 SSD	VGA; HDMI; USB
AsusZenbook UX3410UQ-GV999T	14	8.5 h	1.4 kg	999	15-7	8 GB DDR4	GeForce 940MX	256 SSD + 1T HDD	HDMI; USB

Nicola Beume (LS11) CI 2012 25.01.2012 B. Naujoks Multi-Objective Evolutionary Optimisation 21. November 2017

Comparing Apples and Oranges

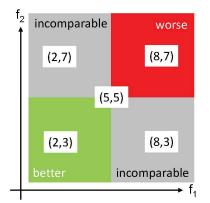

Von: http://xkcd.com/388/, modified

Naujoke Multi-O

Multi-Objective Evolutionary Optimisation 21. N

Pareto Dominance

partial order among vectors in \mathbb{R}^d and thus in \mathbb{R}^n


$$(2,3) \prec (5,5) \prec (8,7)$$

 $(2,7) \parallel (5,5) \parallel (8,3)$

 $\mathbf{a} \leq \mathbf{b}$, \mathbf{a} weakly dominates $\mathbf{b} : \iff \forall i \in \{1, \dots, d\} : a_i \leq b_i$ $\mathbf{a} \prec \mathbf{b}$, \mathbf{a} dominates $\mathbf{b} : \iff \mathbf{a} \leq \mathbf{b}$ and $\mathbf{a} \neq \mathbf{b}$, i.e., $\exists i \in \{1, \dots, d\} : a_i < b_i$ $\mathbf{a} \parallel \mathbf{b}$, \mathbf{a} and \mathbf{b} are incomparable: \iff neither $\mathbf{a} \prec \mathbf{b}$ nor $\mathbf{b} \prec \mathbf{a}$.

Multiobjective Optimization

Multiobjective Problem

$$f: S \subseteq \mathbb{R}^n \to Z \subseteq \mathbb{R}^d$$
, $\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_d(\mathbf{x}))$

How to relate vectors?

Nicola Beume (LS11) Cl 2012 25.01.2012

Laptop Selection

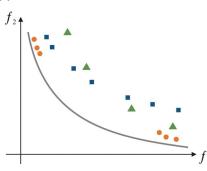
<u>Name</u>	Display	Battery	Weight	Price	CPU	RAM	Graphic	Disk	Interfaces
Dell Vostro 15 5568	15.6	12 h	2 kg	689	15-7	8 GB DDR4	HD Graphics 620	256 SSD	VGA, HDMI, USB
HP 14-bs007ng	14	12.5 h	1,7 kg	699	15-7	8 GB DDR4	HD Graphics 620	256 SSD	VGA, HDMI, USB
HP 250 2HG71ES	15.6	12 h	1,86 kg	649	15-7	8 GB DDR4	Radeon 520	256 SSD	VGA, HDMI, USB
Lenovo ThinkPad L470	14	10 h	1,87 kg	699	15-7	8 GB DDR4	HD Graphics 620	256 SSD	VGA, Disp, USB
Fuijitsu Lifebook A557	15.6	8 h	2,4 kg	650	15-7	8 GB DDR4	HD Graphics 620	256 SSD	VGA, HDMI, USB
Levono ThinkPad E470	14	8 h	1.87 kg	699	15-7	8 GB DDR4	GeForce 940MX	256 SSD	HDMI, USB
Levono ThinkPad E470	14	8 h	1.87 kg	849	17-7	16 GB DDR4	GeForce 940MX	256 SSD	HDMI, USB
Lenovo ThinkPad L570	15.6	10 h	2.38 kg	849	15-7	8 GB DDR4	HD Graphics 620	256 SSD	VGA; Disp, USB
Lenovo ThinkPad 13	13.3	12 h	1.44 kg	869	15-7	8 GB DDR4	HD Graphics 620	256 SSD	HDMI, USB
HP Power Pavilion 14-cb013ng	15.6	14.5 h	2.21 kg	1139	17-7	16 GB DDR4	GeForce CTX 1050 Ti	256 SSD + 1T HDD	HDMI, USB
HP Power Pavilion 15-cb013ng	15.6	14.5 h	2.21 kg	1139	17-7	16 GB DDR4	GeForce GtX 1050 Ti	256 SSD + 1T HDD	HDMI, USB
Asus X556UQ-DM885T	15.6	decent	2.3 kg	719	15-7	8 GB DDR4	GeForce 940MX	256 SSD + 1T HDD	VGA; HDMI; USB
Acer Aspire 5 A515-51G-51 RL	15.6	9 h	2.1 kg	849	15-7	8 GB DDR4	Geforce MX150	128 SSD + 1T HDD	HDMI; USB
HP Pavilion 14-bf007ng	14	10.25 h	1.53 kg	666	15-7	8 GB DDR4	HD Graphics 620	256 SSD	HDMI; USB
Acer Swift 3 (SF314-51-77W2)	14	10 h	1.65 kg	774	17-7	8 GB DDR4	HD Graphics 620	256 SSD	HDMI; USB
Lenovo ThinkPad X1 Carbon	14	12 h	1.13 kg	879	17-4	8 GB DDR3L	HD Graphics 5000	256 SSD	HDMI; DISP; USE
Fujitsu Lifebook A557	15.6	8 h	2.4 kg	613	15-7	16 GB DDR4	HD Graphics 620	512 SSD	VGA; HDMI; USB
Acer TravelMate P459-G2-M-56T4	15.6	8 h	2.1 kg	694	15-7	8 GB DDR4	HD Graphics 620	256 SSD	VGA; HDMI; USB
AsusZenbook UX3410UQ-GV999T	14	8.5 h	1.4 kg	999	15-7	8 GB DDR4	GeForce 940MX	256 SSD + 1T HDD	HDMI; USB

Nicola Beume (LS11) CI 2012 25.01.2012 B. Naujoks Multi-Objective Evolutionary Optimisation 21. November 2017

Aim of Optimization

Pareto front: set of optimal solution vectors in \mathbb{R}^d , i.e.,

 $\mathsf{PF} = \{ \mathbf{x} \in Z \mid \nexists \mathbf{x}' \in Z \text{ with } \mathbf{x}' \prec \mathbf{x} \}$


Aim of optimization: find Pareto front?

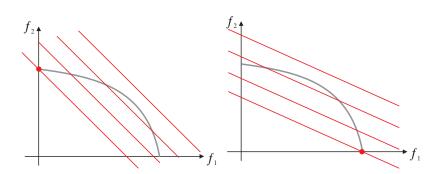
PF maybe infinitively large

PF hard to hit exactly in continuous space

⇒too ambitious!

Aim of optimization: approximate Pareto front!

Nicola Beume (LS11) CI 2012 25.01.2012


Scalarization

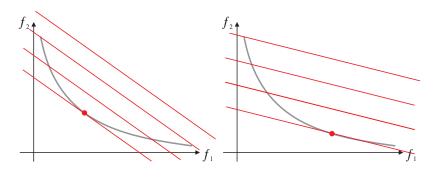
Previous example: convex Pareto front

Consider concave Pareto front

 ${\it \cancel{1}}$ only boundary solutions are optimal

⇒ scalarization by simple weighting is not a good idea

Scalarization


Isn't there an easier way?

Scalarize objectives to single-objective function:

$$f: S \subseteq \mathbb{R}^n \to Z \subseteq \mathbb{R}^2 \Rightarrow f_{scal} = w_1 f_1(\mathbf{x}) + w_2 f_2(\mathbf{x})$$

Result: single solution

Specify desired solution by choice of w_1, w_2

Nicola Beume (LS11) CI 2012 25.01.2012

Classification

a-priori approach

first specify preferences, then optimize

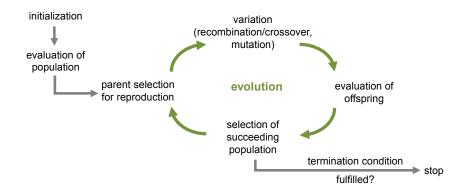
more advanced scalarization techniques (e.g. Tschebyscheff) allow to access all elements of PF

remaining difficulty:

how to express your desires through parameter values!?

a-posteriori approach

first optimize (approximate Pareto front), then choose solution


⇒back to a-posteriori approach

⇒state-of-the-art methods: evolutionary algorithms

Nicola Beume (LS11) CI 2012 25.01.2012 Nicola Beume (LS11) CI 2012 25.01.2012 25.01.2012

Evolutionary Algorithms

Evolutionary Multiobjective Optimization Algorithms (EMOA) Multiobjective Optimization Evolutionary Algorithms (MOEA)

What to change in case of multiobjective optimization?

Selection!

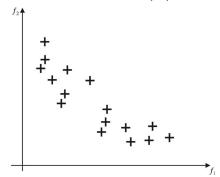
Remaining operators may work on search space only

Nicola Beume (LS11) CI 2012 25.01.2012

Non-dominated Sorting

Example for primary selection criterion

partition population into sets of mutually incomparable solutions (antichains)


non-dominated set: best elements of set

$$NDS(M) = \{ \mathbf{x} \in M \mid \exists \mathbf{x}' \in M \text{ with } \mathbf{x}' \prec \mathbf{x} \}$$

Simple algorithm:

Nicola Beume (LS11)

iteratively remove non-dominated set until population empty

CI 2012

25.01.2012

Selection in EMOA

Selection requires sortable population to choose best individuals

How to sort d-dimensional objective vectors?

Primary selection criterion:

use Pareto dominance relation to sort comparable individuals

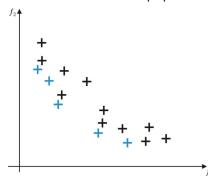
Secondary selection criterion:

apply additional measure to incomparable individuals to enforce order

Nicola Beume (LS11) CI 2012 25.01.2012

Non-dominated Sorting

Example for primary selection criterion


partition population into sets of mutually incomparable solutions (antichains)

non-dominated set: best elements of set

$$\mathsf{NDS}(\mathsf{M}) = \{ \mathbf{x} \in M \mid \nexists \mathbf{x}' \in M \text{ with } \mathbf{x}' \prec \mathbf{x} \}$$

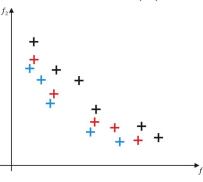
Simple algorithm:

iteratively remove non-dominated set until population empty

Nicola Beume (LS11) CI 2012 25.01.2012

Non-dominated Sorting

Example for primary selection criterion


partition population into sets of mutually incomparable solutions (antichains)

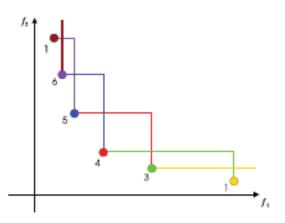
non-dominated set: best elements of set

$$\mathsf{NDS}(\mathsf{M}) = \{ \mathbf{x} \in M \mid \nexists \mathbf{x}' \in M \text{ with } \mathbf{x}' \prec \mathbf{x} \}$$

Simple algorithm:

iteratively remove non-dominated set until population empty

Nicola Beume (LS11)


CI 2012

25.01.2012

NSGA-II

Crowding distance:

1/2 perimeter of empty bounding box around point value of infinity for boundary points large values good

NSGA-II

Popular EMOA: Non-dominated Sorting Genetic Algorithm II

 $(\mu + \mu)$ -selection:

- 1 perform non-dominated sorting on all $\mu + \mu$ individuals
- 2 take best subsets as long as they can be included completely
- 3 if population size μ not reached but next subset does not fit in completely: apply secondary selection criterion *crowding distance* to that subset
- 4 fill up population with best ones w.r.t. the crowding distance

Nicola Beume (LS11) CI 2012 25.01.2012

Difficulties of Selection

imagine point in the middle of the search space

d=2: 1/4 better, 1/4 worse, 1/2 incomparable

d=3: 1/8 better, 1/8 worse, 3/4 incomparable

general: fraction 2^{-d+1} comparable, decreases exponentially

- ⇒typical case: all individuals incomparable
- ⇒mainly secondary selection criterion in operation

Drawback of crowding distance:

rewards spreading of points, does not reward approaching the Pareto front

 \Rightarrow NSGA-II diverges for large d, difficulties already for d=3

Nicola Beume (LS11) CI 2012 25.01.2012 Nicola Beume (LS11) CI 2012 25.01.2012

Difficulties of Selection

Secondary selection criterion has to be meaningful!

Desired: choose best subset of size μ from individuals

How to compare sets of partially incomparable points?

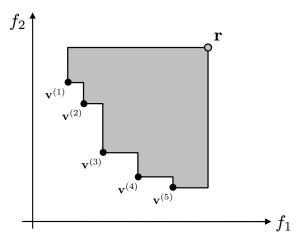
⇒use quality indicators for sets

One approach for selection

- ⇒for each point: determine contribution to quality value of set
- \Rightarrow sort points according to contribution

Nicola Beume (LS11) CI 2012 25.01.2012

Example

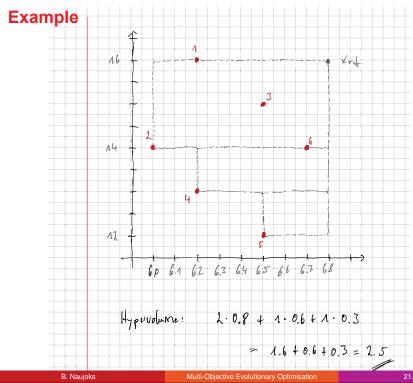

Given the following table

Car	1	2	3	4	6	7
Consumption (I/100 km)	6.2	6.0	6.5	6.2	6.5	6.7
Price (T Euro)	16	14	15	13	12	14

- Draw the cars in objective space
- Calculate the hypervolume of the set wrt reference point (6.8; 16)

Hypervolumen (S-metric) as Quality Measure

dominated hypervolume: size of dominated space bounded by reference point

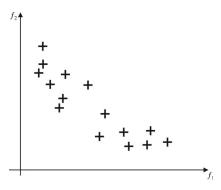

$$H(M,\mathbf{r}) := \mathsf{Leb}\left(igcup_{i=1}^m [\mathbf{v}^{(i)},\mathbf{r}]
ight)$$

$$M = {\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \dots, \mathbf{v}^{(m)}}$$

 $\mathbf{r} \ \text{reference point}$

to be maximized

Nicola Beume (LS11) CI 2012 25.01.2012



SMS(S-Metric Selection)-EMOA

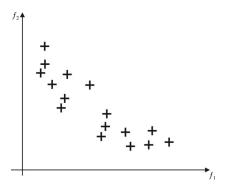
State-of-the-art EMOA

 $(\mu + 1)$ -selection

- non-dominated sorting
- 2 in case of incomparability: contributions to hypervolume of subset

Nicola Beume (LS11)

CI 2012


25.01.2012

SMS(S-Metric Selection)-EMOA

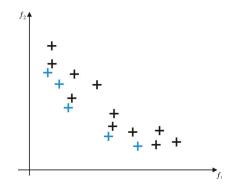
State-of-the-art EMOA

 $(\mu + 1)$ -selection

- 1 non-dominated sorting
- 2 in case of incomparability: contributions to hypervolume of subset

Nicola Beume (LS11)

CI 2012

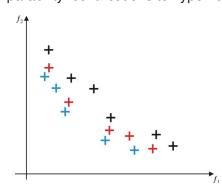

25.01.2012

SMS(S-Metric Selection)-EMOA

State-of-the-art EMOA

 $(\mu + 1)$ -selection

- non-dominated sorting
- 2 in case of incomparability: contributions to hypervolume of subset



SMS(S-Metric Selection)-EMOA

State-of-the-art EMOA

 $(\mu + 1)$ -selection

- non-dominated sorting
- 2 in case of incomparability: contributions to hypervolume of subset

Nicola Beume (LS11) CI 2012 25.01.2012 Nicola Beume (LS11) CI 2012 25.01.2012

SMS(S-Metric Selection)-EMOA

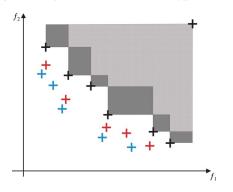
State-of-the-art EMOA

 $(\mu + 1)$ -selection

- non-dominated sorting
- 2 in case of incomparability: contributions to hypervolume of subset

Nicola Beume (LS11)

CI 2012


25.01.2012

SMS(S-Metric Selection)-EMOA

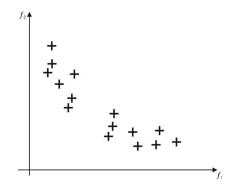
State-of-the-art EMOA

 $(\mu + 1)$ -selection

- 1 non-dominated sorting
- 2 in case of incomparability: contributions to hypervolume of subset

Nicola Beume (LS11)

CI 2012

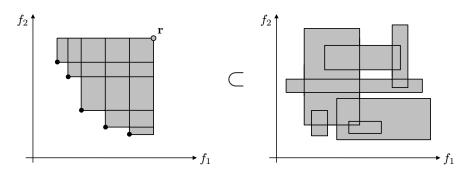

25.01.2012

SMS(S-Metric Selection)-EMOA

State-of-the-art EMOA

 $(\mu + 1)$ -selection

- non-dominated sorting
- 2 in case of incomparability: contributions to hypervolume of subset


Computational complexity of hypervolume

Lower Bound $\Omega(m \log m)$

Upper Bound $O(m^{d/2} \cdot 2^{O(\log^* m)})$

Nicola Beume (LS11)

proof: hypervolume as special case of Klee's measure problem

Nicola Beume (LS11) CI 2012 25.01.2012

CI 2012

25.01.2012

Conclusions on EMOA

NSGA-II

only suitable in case of d=2 objective functions otherwise no convergence to Pareto front

SMS-EMOA

also effective for d>2 due to hypervolume hypervolume calculation time-consuming \Rightarrow use approximation of hypervolume

Other state-of-the-art EMOA, e.g.

- MO-CMA-ES: CMA-ES + hypervolume selection
- ϵ -MOEA: objective space partitioned into grid, only 1 point per cell
- MSOPS: selection acc. to ranks of different scalarizations

Nicola Beume (LS11) CI 2012 25.01.2012

Conclusions

- real-world problems are often multiobjective
- Pareto dominance only a partial order
- a priory: parameterization difficult
- a posteriori: choose solution after knowing possible compromises
- state-of-the-art a posteriori methods: EMOA, MOEA
- EMOA require sortable population for selection
- use quality measures as secondary selection criterion
- hypervolume: excellent quality measure, but computationally intensive
- use state-of-the-art EMOA, other may fail completely

Nicola Beume (LS11) CI 2012 25.01.2012