technische universitat
dortmund

Computational Intelligence
Winter Term 2021/22

Prof. Dr. Gunter Rudolph

Lehrstuhl fur Algorithm Engineering (LS 11)
Fakultat fur Informatik

TU Dortmund

Plan for Today

e Deep Neural Networks
= Model

= Training

e Convolutional Neural Networks
= Model

= Training

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2021/22
dortmund 2

Deep Neural Networks (DNN)

DNN = Neural Network with > 3 layers

we know: L = 3 layers in MLP sufficient to describe arbitrary sets

What can be achieved by more than 3 layers?

information stored in weights of edges of network
— more layers — more neurons — more edges — more information storable

Which additional information storage is useful?

traditionally . handcrafted features fed into 3-layer perceptron

modern viewpoint : let L-k layers learn the feature map, last k layers separate!
_ g _J

advantage:

human expert need not design features manually for each application domain

= no expert needed, only observations!

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2021/22
dortmund 3

Deep Neural Networks (DNN)

example: separate ‘inner ring’ (i.r.) / ‘outer ring’ (o.r.) / ‘outside’

6 6 ‘ ‘ ‘ . ‘ 15
. I e B |
i s - _ o < . | > i.r. o.r.
L» f = > 24 2> 1 0
: e : ik Voo Lo 2 63
X E‘f&: +:*h i X :":J;s . : * i 2 e4
of X t - 3 or t 5 &
e A BRI : 2 6
2 +;¢+;t 2 2 : L ;"*:,:‘ + T ot : >
%™ : x| 2 = e6 > 4 >2 0 1
4 bt 4 i R i = 67
£ RIS R N tile e,
6 4 2 0 2 4 6 gl 4 4 2 0 2 3 4 7I 6
— MLP with 3 layers and 12 neurons
Is there a simpler way?
observations (x,y) € R™ x B feature map F(z) = (Fi(x),..., F,(x)) € R™
feature = measurable property of an observation or
numerical transformation of observed value(s)
= find MLP on transformed data points (F(x), y)
technische universitat G. Rudolph: Computational Intelligence = Winter Term 2021/22

dortmund 4

Deep Neural Networks (DNN)

example: separate ‘inner ring‘ / ‘outer ring’

o feature map F(z) = (v1,72,\/7? + 23) € R?

6

o feature map F'(x)

2D —- 3D

technische universitat
dortmund

(21, 23) € R?

{

1: outer
O: inner

6 4 -2 0 2 4
I_ﬂ T T T T T
x
Xy S T
L xX" % X * % A %
b 4 xx
*
x "‘;‘x %
L + .,ii-# -E*_
5 X6 * g *
EOE T
i ## X
* Biny W
L ox FQHE"'* X X
x %
x § §"‘x
x& % x mx
% x ,,f
fﬁ‘}%ﬂ; .

. Rudolph: Computational Intelligence = Winter Term 2021/22

Deep Neural Networks (DNN)

but: how to find useful features?

— typically designed by experts with domain knowledge

— traditional approach in classification:
1. design & select appropriate features
2. map data to feature space
3. apply classification method to data in feature space

modern approach via DNN: |earn feature map and classification simultaneously!

X —> L — k layers — klayers —— vy
N AN J
g Y
feature map classifier

proven: MLP can approximate any continuous map with aribitrary accuracy

G. Rudolph: Computational Intelligence = Winter Term 2021/22

technische universitat :

dortmund

Deep Multi-Layer Perceptrons

contra: countermeasures:
- danger: overfitting - regularization / dropout

— need larger training set (expensive!) — data augmentation

— optimization needs more time — parallel hardware (multi-core / GPU)
- response landscape changes - not necessarily bad

— more sigmoidal activiations — change activation functions

— gradient vanishes — gradient does not vanish

— small progress in learning weights — progress in learning weights

vanishing gradient: (underlying principle)
forward pass y = f5(fo(F, (6 Wyq); Wyp); wWy) f. = activation function

backward pass (f5(fo(f;(X; W,); W,); W3))* =
f5 (Fo(F (W4 ;W0);w3) = 5 (F, (0w)iws,) - 4 (xswy) chain rule!
— repeated multiplication of values in (0,1) —» 0

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2021/22
dortmund 7

Deep Multi-Layer Perceptrons

e” 1 roon
aw)= =1~ d@) =) (1-a@)

vanishing gradient:

[EY

VeeR: a(x)-(1—a(x)) < - <« (a(az)—§> >0 M

s

= gradient a/(x) € [0, ﬂ N

principally: desired property in learning process!

if weights stabilize such that neuron almost always
either fires [i.e., a(x) = 1] or not fires [i.e., a(x) = 0] 0.4 -
then gradient = 0 and the weights are hardly changed

o
o

= leads to convergence in the learning process!

while learning, updates of weights via partial derivatives:

a .
f(wé::,f)?,z _ QZ a(uly) — 2] - a (dhy) - ugp - o (wha) - @ (L= 2 layers)
1] 1 :
= in general fu,, =0(4"*) > 0as L1 L < 3: effect neglectable; but L > 3

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2021/22
8

dortmund

Deep Neural Networks

non-sigmoid activation functions

0 ifx<O
/11[3,20] () do = { v ifr>0 } = max{0, 2} = ReLU(x)

Threshold(x) |

v

ReLU(x)t

v

X X
6:1?
dr = log(1 + e”) = softplus(x
A / T o g(1+e") plus(z) |
Logistic(x) softplus(x)
=
1f 1
— / >] N
X X

technische universitat
dortmund

G. Rudolph: Computational Intelligence = Winter Term 2021/22
9

Deep Neural Networks

dropout

- applied for regularization (against overfitting)
- can be interpreted as inexpensive approximation of bagging

l

aka: bootstrap aggregating, model averaging, ensemble methods

create k training sets by drawing with replacement
train k models (with own exclusive training set)
combine k outcomes from k models (e.g. majority voting)

- parts of network is effectively switched off
e.g. multiplication of outputs with O,
e.g. use inputs with prob. 0.8 and inner neurons with prob. 0.5

- gradient descent on switching parts of network
— artificial perturbation of greediness during gradient descent

- can reduce computational complexity if implemented sophistically

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2021/22
dortmund 10

Deep Neural Networks

data augmentation (counteracts overfitting)

— extending training set by slightly perturbed true training examples

- best applicable if inputs are images: translate, rotate, add noise, resize, ...

w7

original image rotated resiz noisy oisy + rotated

- if x is real vector then adding e.g. small gaussian noise
— here, utility disputable (artificial sample may cross true separating line)

extra costs for acquiring additional annotated data are inevitable!

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2021/22
dortmund 11

Deep Neural Networks
stochastic gradient descent

- partitioning of training set B into (mini-) batches of size b

traditionally: 2 extreme cases now:

update of weights update of weights

- after each training example b= 1 - after b training examples
- after all training examples b = |B] where 1 <b < |B]|

- search in subspaces — counteracts greediness — better generalization

- accelerates optimization methods (parallelism possible)

choice of batch size b A
blarge = better approximation of gradient

b small = better generalization > ften b= 100 (irically)
often b = empirically

b also depends on available hardware
b too small = multi-cores underemployed Y,

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2021/22
dortmund 12

Deep Neural Networks

cost functions

* regression
N training samples (x;, Y,
insist that f(x;; 0) =y, fori=1,..., N
if f(x; ©) linear in 6 then 6T, =y, fori=1,..., N or X0 =y
— best choice for 6: least square estimator (LSE)
= (X0-y)T(X0-y) —>mein!

in case of MLP: f(x; 0) is nonlinear in 6

= best choice for 6: (nonlinear) least square estimator; aka TSSE

= 2 (f(x; 0) - y)2 — min!

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2021/22
dortmund 13

Deep Neural Networks

cost functions

classification
N training samples (x;, y,) where y, € {1, ..., C}, C = #classes
— want to estimate probability of different outcomes for unknown sample

— decision rule: choose class with highest probability (given the data)

idea: use maximum likelihood estimator (MLE)

= estimate unknown parameter 6 such that likelihood of sample x4, ..., Xy

gets maximal as a function of 0

likelihood function
L(O;xy,....0N) = [x . xy(T1, .00 HfX v 0) — max'

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2021/22
dortmund

14

Deep Neural Networks

here: random variable X € {1, ..., C } with P{ X =i} = q; (true, but unknown)

— we use relative frequencies of training set x,, ..., Xy as estimator of q;
N
] . . -
=~ E 1., = thereare N -¢ samples of class i in training set
j=1

= the neural network should output p as close as possible to ¢! [actually: toq]

likelihood L(p: x;. H P{X;=ua,} = sz " max!
log H A Zlob p; =N Z g; - log p; — max!
—H\(r@-.ﬁ)

= maximizing log L leads to same solution as minimizing cross-entropy H (g, p)

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2021/22
dortmund 15

Deep Neural Networks

in case of classification

A .
EJuj x+b;

C wlz+b,
Z@:l ci ‘

use softmax function P{y = j |z} =

In output layer

— multiclass classification: probability of membershiptoclassj=1, ...,C
— class with maximum excitation w'x+b has maximum probabilty

— decision rule: element x is assigned to class with maximum probability

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2021/22
dortmund 16

Convolutional Neural Networks (CNN)

most often used in graphical applications (2-D input; also possible: k-D tensors)

))
layer of CNN = 3 stages I(x.y) Kij) | 1]-2|-11]-9
1. convolution 111 1
2. nonlinear activation (e.g. ReLU) 211]2]5;
3. pooling

example
1. Convolution
local filter / kernel K(i, j) applied to each cell of image I(x, y)
8)
S(z,y) = (KxD(a,y) = Y > Hz—iy—j) K j)
i=—8 j=—9§
technische universitat G. Rudolph: Computational Intelligence = Winter Term 2021/22

dortmund 17

Convolutional Neural Networks (CNN) Lecture 12

example: edge detection with Sobel kernel

— two convolutions

-1,0, 1 -1, -2, -1

Ke= | -2, 0,2 K,=| 0,0, 0
-1’ O’ 1 1’ 2’ 1 S<$7y) = \/S:r(xay)Q + Sy(aj?y)2
yields S, yields .S,

original image 1(x,y) image S(x,y) after convolution

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2021/22
dortmund 18

Convolutional Neural Networks

filter / kernel

well known in image processing; typically hand-crafted! C 11 1 1)
here: values of filter matrix learnt in CNN ! 1o
11 1
actually: many filters active in CNN Do
g J

e.g. horizontal line detection
stride

= distance between two applications of a filter (horizontal s, / vertical s,)
— leads to smaller images if s, or s, > 1

padding

= treatment of border cells if filter does not fit in image

e “valid” : apply only to cells for which filter fits — leads to smaller images
e “same”: add rows/columns with zero cells; apply filter to all cells (— same size)

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2021/22
dortmund 19

Convolutional Neural Networks

2. nonlinear activation

a(x) = ReLU(x" W + ¢)

3. pooling
in principle: summarizing statistic of nearby outputs

e.g. max-pooling m(i,j) = max(I(i+a, j+b):a,b=-5,...,0,...0)ford>0

- also possible: mean, median, matrix norm, ...

- can be used to reduce matrix / output dimensions

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2021/22
dortmund 20

Convolutional Neural Networks Lecture 12

example: max-pooling 2x2 (iterated), stride = 2

3000 x 4000 1500 x 2000 750 x 1000

93 x 125 46 x 62

375 x 500 187 x 250 32 x 32
pooling
technische universitat G. Rudolph: Computational Intelligence = Winter Term 2021/22

dortmund 21

Convolutional Neural Networks

1 30
Pooling with Stride 1
C,, - columns of input
r, :rows of input
f. :columns of filter
f. :rows of filter "
s - stride for columns How often fits the filter in image horizontally?
S . stride for rows pos, = 1

r
POS, = PoS; + S,

: : = +g = + +g = + 2.
image size : r,, X c,, POSs = POS; * S (pos, +s.) + 'S, = pos, + 2- s,

filter size fr X fC prk = pos, + (k _ 1) -8,
fions: thus, find largest k such that
P pos, + (k—1) - s,+ (f,— 1) < ,
¢ 2 fcin o (k=1)-s.+f, < c,
r- in . — k < (¢,—f,) /s, +1 (integer division!)
padding = valid
Cp—T
= k = L—'”SC CJ +1 = Coy

[analog reasoning for rows!]

G. Rudolph: Computational Intelligence = Winter Term 2021/22

technische universitat s

dortmund

Convolutional Neural Networks

CNN architecture:

- several consecutive convolution layers (also parallel streams); possibly dropouts

- flatten layer (— converts k-D matrix to 1-D matrix required for MLP input layer)

- fully connected MLP

examples:

2-D input layer
v
convolution layer 1
v
convolution layer 2
v
v
convolution layer k
v
flatten layer
v
MLP

technische universitat
dortmund

2-D input layer
v v
convolution layer 1a convolution layer 2a
v v
convolution layer 1b convolution layer 2b
v v

flatten layer flatten layer

N

concatenate
v
MLP

G. Rudolph: Computational Intelligence = Winter Term 2021/22

23

	Foliennummer 1
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23

