
Computational Intelligence
Winter Term 2021/22

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

Lecture 10

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
2

Plan for Today

● Introduction to Artificial Neural Networks

− McCulloch Pitts Neuron (MCP)

− Minsky / Papert Perceptron (MPP)

Lecture 10

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
3

Introduction to Artificial Neural Networks

Biological Prototype

● Neuron

- Information gathering (D)

- Information processing (C)

- Information propagation (A / S)

human being: 1012 neurons

electricity in mV range

speed: 120 m / s

cell body (C)

dendrite (D)nucleus

axon (A)

synapse (S)

Lecture 10

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
4

Abstraction

nucleus /
cell body

…
dendrites

axon

synapse

signal
input

signal
processing

signal
output

Introduction to Artificial Neural Networks

Lecture 10

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
5

Model

…

x1

f(x1, x2, …, xn)x2

xn

function f

McCulloch-Pitts-Neuron 1943:
xi ∈ { 0, 1 } =: B

f: Bn → B

Introduction to Artificial Neural Networks

Lecture 10

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
6

1943: Warren McCulloch / Walter Pitts

● description of neurological networks
→ modell: McCulloch-Pitts-Neuron (MCP)

● basic idea:

- neuron is either active or inactive

- skills result from connecting neurons

● considered static networks
(i.e. connections had been constructed and not learnt)

Introduction to Artificial Neural Networks

Lecture 10

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
7

McCulloch-Pitts-Neuron

n binary input signals x1, …, xn

threshold θ > 0

≥ 1...

x1

x2

xn

θ = 1

boolean OR

≥ n...

x1

x2

xn

θ = n

boolean AND

⇒ can be realized:

Introduction to Artificial Neural Networks

Lecture 10

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
8

McCulloch-Pitts-Neuron

n binary input signals x1, …, xn

threshold θ > 0

in addition: m binary inhibitory signals y1, …, ym

● if at least one yj = 1, then output = 0

● otherwise:

- sum of inputs ≥ threshold, then output = 1
else output = 0

x1

y1

≥ 0

NOT

Introduction to Artificial Neural Networks

Lecture 10

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
9

Theorem:
Every logical function F: Bn → B can be simulated
with a two-layered McCulloch/Pitts net.

Assumption:
inputs also available in inverted form, i.e. ∃ inverted inputs.

Example:
x1
x2
x3
x1
x2
x3

x1
x4

≥ 3

≥ 3

≥ 2

≥ 1

Introduction to Artificial Neural Networks

⇒ x1 + x2 ≥ θ

x1

x2

≥ θ

Lecture 10

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
10

Proof: (by construction)

Every boolean function F can be transformed in disjunctive normal form

⇒ 2 layers (AND - OR)

1. Every clause gets a decoding neuron with θ = n
⇒ output = 1 only if clause satisfied (AND gate)

2. All outputs of decoding neurons
are inputs of a neuron with θ = 1 (OR gate)

q.e.d.

Introduction to Artificial Neural Networks

Lecture 10

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
11

Generalization: inputs with weights

fires 1 if 0,2 x1 + 0,4 x2 + 0,3 x3 ≥ 0,7
≥ 0,7

0,2

0,4
0,3

x1

x2

x3

· 10

2 x1 + 4 x2 + 3 x3 ≥ 7
⇒

duplicate inputs!

≥ 7x2

x3

x1

⇒ equivalent!

Introduction to Artificial Neural Networks

Lecture 10

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
12

Theorem:
Weighted and unweighted MCP-nets are equivalent for weights ∈ Q+.

Proof:

„⇒“ NLet

Multiplication with yields inequality with coefficients in N

Duplicate input xi, such that we get ai b1 b2  bi-1 bi+1  bn inputs.

Threshold θ = a0 b1  bn

„⇐“

Set all weights to 1. q.e.d.

Introduction to Artificial Neural Networks

Lecture 10

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
13

Introduction to Artificial Neural Networks

+ feed-forward: able to compute any Boolean function

+ recursive: able to simulate DFA (deterministic finite automaton)

− very similar to conventional logical circuits

− difficult to construct

− no good learning algorithm available

Conclusion for MCP nets:

Lecture 10

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
14

Perceptron (Rosenblatt 1958)

→ complex model → reduced by Minsky & Papert to what is „necessary“

→ Minsky-Papert perceptron (MPP), 1969 → essential difference: x ∈ [0,1] ⊂ R

isolation of x2 yields:
Y

N 0

1

What can a single MPP do?

Y

N 0

1

Example:

⇔

0 1

1

0

Y

N

separating line

separates R2

in 2 classes

Introduction to Artificial Neural Networks

Lecture 10

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
15

OR NAND NOR

= 0 = 1

AND

0 1

1

0

XOR

0 1

1

0

?

x1 x2 xor
0 0 0
0 1 1
1 0 1
1 1 0

⇒ 0 < θ
⇒ w2 ≥ θ

⇒ w1 ≥ θ
⇒ w1 + w2 < θ

w1, w2 ≥ θ > 0

⇒ w1 + w2 ≥ 2θ

contradiction!
w1 x1 + w2 x2 ≥ θ

Introduction to Artificial Neural Networks

→ MPP at least as powerful as MCP neuron!

Lecture 10

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
16

● book Perceptrons → analysis math. properties of perceptrons

● disillusioning result:
perceptions fail to solve a number of trivial problems!

- XOR Problem

- Parity Problem

- Connectivity Problem

● “conclusion“: all artificial neurons have this kind of weakness!
⇒ research in this field is a scientific dead end!

● consequence: research funding for ANN cut down extremely (~ 15 years)

1969: Marvin Minsky / Seymor Papert

Introduction to Artificial Neural Networks

Lecture 10

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
17

how to leave the „dead end“:

1. Multilayer Perceptrons:

x1
x2

2

x1
x2

2
1 ⇒ realizes XOR

XOR

0 1

1

0

g(x1, x2) = 2x1 + 2x2 – 4x1x2 -1 with θ = 0

g(0,0) = –1
g(0,1) = +1
g(1,0) = +1
g(1,1) = –1

Introduction to Artificial Neural Networks

2. Nonlinear separating functions:

Lecture 10

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
18

How to obtain weights wi and threshold θ ?

as yet: by construction

x1 x2 NAND

0 0 1
0 1 1
1 0 1
1 1 0

example: NAND-gate

⇒ 0 ≥ θ
⇒ w2 ≥ θ
⇒ w1 ≥ θ
⇒ w1 + w2 < θ

requires solution of a system of
linear inequalities (∈ P)

(e.g.: w1 = w2 = -2, θ = -3)

now: by „learning“ / training

Introduction to Artificial Neural Networks

Lecture 10

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
19

Perceptron Learning

Assumption: test examples with correct I/O behavior available

Principle:

(1) choose initial weights in arbitrary manner

(2) feed in test pattern

(3) if output of perceptron wrong, then change weights

(4) goto (2) until correct output for all test patterns

graphically:

→ translation and rotation of separating lines

Introduction to Artificial Neural Networks

Lecture 10

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
20

Example

threshold as a weight: w = (θ, w1, w2)‘

⇒

≥ 0x2

x1

1

w2

w1

-θ

Introduction to Artificial Neural Networks

w1x1+w2x2 ≥ θ ⇔ w1x1+w2x2 - θ ⋅ 1 ≥ 0

 ⇒ separating hyperplane:
H(w) = { x : h(x;w) = 0 }
where
h(x;w) = w‘x = w0x0+w1x1+ … + wnxn

 ⇒ origin 0 ∈ H(w) since h(0;w) = 0

w0 x0

Lecture 10

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
21

Perceptron Learning P: set of positive examples → output 1
N: set of negative examples → output 0

1. choose w0 at random, t = 0

2. choose arbitrary x ∈ P ∪ N

3. if x ∈ P and wt‘x > 0 then goto 2
if x ∈ N and wt‘x ≤ 0 then goto 2

4. if x ∈ P and wt‘x ≤ 0 then
wt+1 = wt + x; t++; goto 2

5. if x ∈ N and wt‘x > 0 then
wt+1 = wt – x; t++; goto 2

6. stop? If I/O correct for all examples!

I/O correct!

let w‘x > 0, should be ≤ 0!
(w–x)‘x = w‘x – x‘x < w‘ x

let w‘x ≤ 0, should be > 0!
(w+x)‘x = w‘x + x‘x > w‘ x

remark: if separating H(w*) exists, then
algorithm converges, is finite (but in worst case: exponential runtime)

Introduction to Artificial Neural Networks

threshold θ integrated in weights

Lecture 10

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
22

Introduction to Artificial Neural Networks

Example

suppose initial vector of
weights is

w(0) = (1, ½, 1)‘

SPL <- function(m,w) {
print(w)
repeat {
OK <- TRUE
for (i in 1:nrow(m)) {
x <- m[i,]
s <- x[1]*w[1]+x[2]*w[2]+x[3]*w[3]
if (s <= 0) {
OK <- FALSE
w <- w + x
print(w) # show every change

}
}
if (OK) break;

}
return(w)

}

m <- matrix(# only positive examples
c(c(1,1,1),c(1,1,-1),c(1,0,-1),
c(-1,1,1),c(-1,1,-1),c(-1,0,-1)),

nrow=6,byrow=TRUE)

> w = SPL(m,c(1,0.5,1))
[1] 1.0 0.5 1.0
[1] 2.0 0.5 0.0
[1] 1.0 1.5 1.0
[1] 0.0 2.5 0.0
[1] -1.0 2.5 -1.0
[1] 0.0 2.5 -2.0








Lecture 10

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
23

Acceleration of Perceptron Learning

If classification incorrect, then w‘x < 0.

Consequently, size of error is just δ = -w‘x > 0.

⇒ wt+1 = wt + (δ + ε) x for ε > 0 (small) corrects error in a single step, since

≥ 0 > 0

w‘t+1x = (wt + (δ + ε) x)‘ x

= w‘t x + (δ + ε) x‘x

= -δ + δ ||x||2 + ε ||x||2

= δ (||x||2 – 1) + ε ||x||2 > 0 

Single-Layer Perceptron (SLP)

Let B = P ∪ { -x : x ∈ N } (only positive examples)

Assumption: x ∈ { 0, 1 }n ⇒ ||x|| ≥ 1 for all x ≠ (0, ..., 0)‘

Lecture 10

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
24

Generalization:

⇒ ||x|| > 0 for all x ≠ (0, ..., 0)‘

as before: wt+1 = wt + (δ + ε) x for ε > 0 (small) and δ = - w‘t x > 0

< 0 possible! > 0

w‘t+1x = δ (||x||2 – 1) + ε ||x||2⇒

Claim: Scaling of data does not alter classification task (if threshold 0)!

Let = min { || x || : x ∈ B } > 0

Set x =^ x ⇒ set of scaled examples B̂

⇒ || x || ≥ 1 ⇒ || x ||2 – 1 ≥ 0 ⇒ w’t+1 x > 0 ^^^

Single-Layer Perceptron (SLP)

Assumption: x ∈ n

Lecture 10

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
25

Single-Layer Perceptron (SLP)

Proof:
Suppose ∃ x ∈ P ∪ N with ||x|| < 1 and let = min{ ||x|| : x ∈ P ∪ N } > 0.

Then holds:

q.e.d.

Theorem:
Let X = P ∪ N with P ∩ N = ∅ be training patterns (P: positive; N: negative examples).
Suppose training patterns are embedded in with threshold 0 and origin 0 ∉ X.

If separating hyperplane H(w) exists,
then scaling of data does not alter classification task!

Lecture 10

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
26

There exist numerous variants of Perceptron Learning Methods.

Theorem: (Duda & Hart 1973)

If rule for correcting weights is wt+1 = wt + γt x (i.e., if w‘t x < 0) and

1. ∀ t ≥ 0 : γt ≥ 0

2.

3.

then wt → w* for t → ∞ with ∀x: x‘w* > 0. ■

e.g.: γt = γ > 0 or γt = γ / (t+1) for γ > 0

Single-Layer Perceptron (SLP)

Lecture 10

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
27

as yet: Online Learning

→ Update of weights after each training pattern (if necessary)

now: Batch Learning

→ Update of weights only after test of all training patterns

wt+1 = wt + γ xΣ
w‘t x < 0
x ∈ B

→ Update rule:

(γ > 0)

vague assessment in literature:

• advantage : „usually faster“

• disadvantage : „needs more memory“ just a single vector!

Single-Layer Perceptron (SLP)

Lecture 10

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
28

find weights by means of optimization

Let F(w) = { x ∈ B : w‘x < 0 } be the set of patterns incorrectly classified by weight w.

Objective function: Σf(w) = – w‘x → min!
x ∈ F(w)

Optimum: f(w) = 0 iff F(w) is empty

Possible approach: gradient method

wt+1 = wt – γ ∇f(wt) (γ > 0)
converges to a local
minimum (dep. on w0)

Single-Layer Perceptron (SLP)

Lecture 10

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
29

Gradient method

wt+1 = wt – γ ∇f(wt)

Gradient

Gradient points in direction of
steepest ascent of function f(⋅)

Caution:
Indices i of wi
here denote
components of
vector w; they are
not the iteration
counters!

Single-Layer Perceptron (SLP)

Lecture 10

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
30

Gradient method

gradient

thus:

gradient method ⇔ batch learning

Single-Layer Perceptron (SLP)

Lecture 10

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
31

How difficult is it

(a) to find a separating hyperplane, provided it exists?

(b) to decide, that there is no separating hyperplane?

Let B = P ∪ { -x : x ∈ N } (only positive examples), wi ∈ R , θ ∈ R , |B| = m

For every example xi ∈ B should hold:

xi1 w1 + xi2 w2 + ... + xin wn ≥ θ → trivial solution wi = θ = 0 to be excluded!

Therefore additionally: η ∈ R
xi1 w1 + xi2 w2 + ... + xin wn – θ – η ≥ 0

Idea: η maximize → if η* > 0, then solution found

Single-Layer Perceptron (SLP)

Lecture 10

G. Rudolph: Computational Intelligence ▪ Winter Term 2021/22
32

Matrix notation:

Linear Programming Problem:

f(z1, z2, ..., zn, zn+1, zn+2) = zn+2 → max!

s.t. Az ≥ 0

calculated by e.g. Kamarkar-
algorithm in polynomial time

If zn+2 = η > 0, then weights and threshold are given by z.

Otherwise separating hyperplane does not exist!

Single-Layer Perceptron (SLP)

	Foliennummer 1
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Foliennummer 24
	Foliennummer 25
	Foliennummer 26
	Foliennummer 27
	Foliennummer 28
	Foliennummer 29
	Foliennummer 30
	Foliennummer 31
	Foliennummer 32

