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Approximative Reasoning

So far:
e p:IFXiISATHEN Y isB

— R(x, y) = Imp(A(X), B(y) ) rule as relation; fuzzy implication

e rule: IFXisATHENY is B
fact: X is A’
conclusion: Y is B

— B(y) = sup,x t(A'(X), R(X, ¥) ) composition rule of inference

Thus: given  :fuzzy rule
® B'(y) = Sup,x t(A'(x), Imp( A(X), B(y) ) ) input~: fuzzy set A"
output : fuzzy set B
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Approximative Reasoning

here:

1 forx=x, | a—
‘ - crisp input!
A 0 otherwise
B(y) = sup,cx t(A'(X), Imp(A(x), B(y) ) )

sup t( 0, Imp(A(x), B(Y) ))

for X # X,
X # Xg

t( 1, Imp(A(xo), B(Y) ) ) for x = x,

0 for X # X, sincet(0,a) =0

Imp( A(Xp), B(y)) for x = x, since t(a, 1) = a
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Approximative Reasoning

Lemma:

a) ta,1)=a

b) t(a,b)<min{a,b}

c) t10,a)=0

Proof: by a)
ad a) Identical to axiom 1 of t-norms. /

ad b) From monotonicity (axiom 2) follows for b < 1, that t(a, b) < t(a, 1) = a.
Commutativity (axiom 3) and monotonicity lead in case of a< 1 to
t(a, b) =t(b, @) <t(b, 1) = b. Thus, t(a, b) is less than or
equal to a as well as b, which in turn implies t(a, b) < min{ a, b }.

Approximative Reasoning

Multiple rules:

IF X isA,, THEN Y is B,
IF X is A,, THEN Y is B,
IF X is A;, THEN Y is B,

IF X isA, THEN Y is B,
Xis A’

Y is B!

— Ry(X,y) = Imp;(A(X), B4(Y) )
— Ry(X, y) = Imp,( Ax(X), By(Y))
— R3(x, y) = Imp,( Az(X), Bs(y))

N R, (X, y) = Imp,(A,(X), B,(Y))

Multiple rules for crisp input: X, is given

B1'(Y) = Impy(A;(Xo), By(Y))

B,(Y) = IMpy(An(o). BA(Y))

aggregation of rules or
local inferences necessary!

ad c) From b) follows 0 < t(0, a) < min {0, a } = 0 and therefore t(0, a) = 0. n
aggregate! = B'(y) = aggr{ B,(y), ..., B,(¥) }, where aggr = { e
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Approximative Reasoning Approximative Reasoning
FITA: “First inference, then aggregate!"
1. Which principle is better? FITA or FATI?

1. Each rule of the form IF X is A, THEN Y is B, must be transformed by

an appropriate fuzzy implication Imp,(-,-) to a relation R, : 2. Equivalence of FITA and FATI ?

Ri(X, y) = Imp, (A(X), B(y) )
2. Determine B,'(y) = R (X, y) e A'(x) for all k = 1, ..., n (local inference). FITA: BY) = B(B/O). - B))

‘ . . = Ri(X, y) e A'(X), ..., R(X, y) e A'(X
3. Aggregate to B'(y) = B(B,'(y), ..., By'(Y) ). PRib Y = A9 YA
FATI: B'ly) = R(x,y)°A'(X)
. b H H '“ .

FATI: “First agaregate, then inference! = a( Ry(X, Y), ... R(X, y) ) o AY(X)
1. Each rule of the form IF X ist A, THEN Y ist B, must be transformed by

an appropriate fuzzy implication Imp,(-, -) to a relation R, :

Ri(X, y) = Imp,(A(X), B(Y) ).
2. Aggregate Ry, ..., R, to a superrelation with aggregating function a.(:):

R(X’ y) = (1.( Rl(X1 y)v T Rn(X, y) )
3. Determine B‘(y) = R(X, y) o A'(X) w.r.t. superrelation (inference).
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Approximative Reasoning

special case:
AK) =

1 forx=x
0 crisp input!

0 otherwise

On the equivalence of FITA and FATI:

FITA: B'(y) = B(B(Y), -, By'(Y))
= B(IMpy(AL(Xp), B1(Y) ), ..., IMpL(A,(X0), Ba(Y) ))
FATI: B'(y) = R(X,y)°A(X)

= sup,.x t(A(X), R(X, y)) (from now: special case)
R(Xo, Y)

a( Impy(Ay(%e), Ba(y) ), ---s IMpr(An(Xo), Bn(y) ) )

evidently: sup-t-composition with arbitrary t-norm and a(-) = B(*)
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Approximative Reasoning

e AND-connected premises
IFX; =A;; AND X, =A,, AND ... AND X,, =A,;,, THENY =B,
IF X,=A,; AND X, =A,AND ... AND X, =A,, THEN Y =B,
reduce to single premise for each rule k:

AKXy, ey X)) = MIN {AG (%), Aa(X0), + s An(Xim) 3 or in general: t-norm

e OR-connected premises
IFX;=A; ORX,=A;,0R ... ORX,,=A;, THENY =B,

IFX,=A,;ORX,=A,0R ... ORX,=A,, THENY =B,
reduce to single premise for each rule k:

A X,y X)) = MaxX { A (X1), Aa(Xa), oy Agn(Xen) or in general: s-norm
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Approximative Reasoning

important:

e if rules of the form IF X is A THEN Y is B interpreted as logical implication
= R(X, y) = Imp(A(X), B(y) ) makes sense

e we obtain: B'(y) = sup,.x t(A'(X), R(X, y))

= the worse the match of premise A'(x), the larger is the fuzzy set B'(y)

= follows immediately from axiom 1: a < b implies Imp(a, z) > Imp(b, z)

interpretation of output set B‘(y):

e B'(y) is the set of values that are still possible

e each rule leads to an additional restriction of the values that are still possible

= resulting fuzzy sets B',(y) obtained from single rules must be mutually intersected!
= aggregation via B‘(y) = min { B,(y), ..., B,/(¥) }
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Approximative Reasoning

important:

e if rules of the form IF X is A THEN Y is B are not interpreted as logical
implications, then the function Fct(-) in

R(x, y) = Fct(A(x), B(y) )
can be chosen as required for desired interpretation.
e frequent choice (especially in fuzzy control):
- R(x, y) = min { A(x), B(x) }
-R(X, y) =AKX) - B(x)

= of course, they are no implications but specific t-norms!

“

Mamdani — “implication

Larsen — “implication*

= thus, if relation R(x, y) is given,
then the composition rule of inference

| B(Y) =A() ° R(x, y) = sup,x min {A(x), R, )} |

still can lead to a conclusion via fuzzy logic.

G. Rudolph: Computational Intelligence = Winter Term 2018/19

technische universitat 1

dortmund




Approximative Reasoning

example: [IM96, S. 244ff.]
industrial drill machine — control of cooling supply

modelling
linguistic variable : rotation speed

linguistic terms :very low, low, medium, high, very high
ground set : X with 0 < x < 18000 [rpm]

1

1000 5000 9000 13000 17000 rotation

speed
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Approximative Reasoning

example: (continued)

industrial drill machine — control of cooling supply

modelling

linguistic variable : cooling quantity
linguistic terms :very small, small, normal, much, very much
ground set - Y with 0 <y < 18 [liter / time unit]

1

1 5 9 13 17 cooling

quantity
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Approximative Reasoning

example: (continued)

industrial drill machine — control of cooling supply

rule base

IF rotation speed 1S very low THEN cooling quantity 1S very small

low small
medium normal
high much
very high very much

T T

sets Sy, S;, S Spr Sun sets Cys, Cs, Cpy Cins Cum

“rotation speed” “cooling quantity”
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Approximative Reasoning

example: (continued)

industrial drill machine — control of cooling supply

1. input: crisp value x,=10000 min? (not a fuzzy set!)
— fuzzyfication = determine membership for each fuzzy set over X

— yields S'= (0, 0, %, %, 0) via X a. ( Sy(Xo). Si(¥6): Sm(¥0): S(Xo): Sn(Xo) )

2. FITA: locale inference = since Imp(0,a) = 0 we only need to consider:

Sm: Claly) =1mp( ¥, Cy(y) )
Sp: Clu(y) = Imp( ¥4, Cr(y) )

3. aggregation: ?

C'y) = aggr { C'y(y), C(y) } MaR{(mp( %, C,(y) ), (MpY ¥, Cpn(y) ) }

technische universitat
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Approximative Reasoning Lecture 08

example: (continued)

industrial drill machine — control of cooling supply

C'(y) = max { Imp( %, C,(y) ), Imp( ¥4, C,(y) ) }

in case of control task typically no logic-based interpretation:
— max-aggregation and

— relation R(x,y) not interpreted as implication.

often: R(X,y) = min(a, b) .Mamdani controller”

thus:

C'(y) = max {min { %, C(y) }, min { ¥4, C;(y) } }

— graphical illustration

Approximative Reasoning Lecture (0]}

example: (continued)

industrial drill machine — control of cooling supply

C'(y) = max { min { %, C,(y) }, min { ¥4, C.,(y) } }, X, = 10000 [rpm]

sm

AL AL

/

17000 1 5 9 13 17

1000

5000 9000 13000

rotation speed cooling quantity
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Lecture 08

Fuzzy Control

open and closed loop control:

affect the dynamical behavior of a system
in a desired manner

e open loop control

control is aware of reference values and has a model of the system
= control values can be adjusted,

such that process value of system is equal to reference value

problem: noise! = deviation from reference value not detected

e closed loop control

now: detection of deviations from reference value possible
(by means of measurements / sensors)
and new control values can take into account the amount of deviation

Fuzzy Control

Lecture 08

open loop control

Q
0,
),
(7 ,
L7
%

w u y
—_— —_— _—
reference process

value value
control system
process

assumption: undisturbed operation = process value = reference value
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Fuzzy Control

closed loop control

noise
o)
7,
(N , d
Y
%

w u y
—_— —_— B e
reference — process
value value
control system

process

control deviation = reference value — process value
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Fuzzy Control

required:

model of system / process
— as differential equations or difference equations (DEs)

— well developed theory available

so, why fuzzy control?

e there exists no process model in form of DES etc.
(operator/human being has realized control by hand)

e process with high-dimensional nonlinearities — no classic methods available

e control goals are vaguely formulated (,soft* changing gears in cars)
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Fuzzy Control

fuzzy description of control behavior

IF XisA;,, THEN Y is B,
IF XisA,, THEN Y is B,
IF Xis A;, THEN Y is B,
> similar to approximative reasoning
IF XisA,, THEN Y is B,
Xis A'

Y is B

but fact A" is not a fuzzy set but a crisp input

— actually, it is the current process value

fuzzy controller executes inference step

— yields fuzzy output set B‘(y)

but crisp control value required for the process / system
— defuzzification (= “condense” fuzzy set to crisp value)
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Fuzzy Control

defuzzification Def: rule k active < A, (Xy) >0

e maximum method

- only active rule with largest activation level is taken into account

— suitable for pattern recognition / classification

— decision for a single alternative among finitely many alternatives
- selection independent from activation level of rule (0.05 vs. 0.95)

- if used for control: incontinuous curve of output values (leaps)

g = argmax B'(y)

B'(Y) B'(Y) B'(Y)

0,5 /\/\ 0,5
T

0,5 i

e -
LI =
@

G. Rudolph: Computational Intelligence = Winter Term 2018/19
24

technische universitat
dortmund




Fuzzy Control

defuzzification Y*={y e Y: B‘(y) = hgt(B) }

e maximum mean value method

- all active rules with largest activation level are taken into account

— interpolations possible, but need not be useful

— obviously, only useful for neighboring rules with max. activation
- selection independent from activation level of rule (0.05 vs. 0.95)

- if used in control: incontinuous curve of output values (leaps)

_ 1 «
Yy = Y| E Y
7 useful solution? — 7
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Fuzzy Control

defuzzification Y*={y e Y: B(y) = hgt(B) }

e center-of-maxima method (COM)

- only extreme active rules with largest activation level are taken into account
— interpolations possible, but need not be useful
— obviously, only useful for neighboring rules with max. activation level

- selection indepependent from activation level of rule (0.05 vs. 0.95)

- in case of control: incontinuous curve of output values (leaps)

infY*+supY*

B'(Y)

0,5

y
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Fuzzy Control

defuzzification
e Center of Gravity (COG)
- all active rules are taken into account
— but numerically expensive ... ...only valid for HW solution, today!
— borders cannot appear in output ( 3 work-around )
- if only single active rule: independent from activation level

- continuous curve for output values

/
= Jy-B'(y)dy
- /
I B'(y) dy
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Fuzzy Control

/
e cursion: COG 37_fy-B(y)dy
xcursion: =
/' B'(y) dy
BY) pendar!t' in
probability theory:
1 expectation value
i é,77... y
triangle: trapezoid:
j= vyt j= Yatvi—vs—vitusua—wive
3 3(ya+y3—y2—v1)
Y1 Y2 Y3 Yi¥2 Y3 Ya
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Fuzzy Control

=B'(y) :
e ~_Jy-B'(y)dy
1 Y J B'(y) dy

N T T T T T

Y1 Y2 Y3 Ya Ys Ye Y7 y

assumption: fuzzy membership functions piecewise linear

output set B'(y) represented by sequence of points (y,, z,), (Yo, Z3), -y Yn Zp)
= area under B‘(y) and weighted area can be determined additively piece by piece
= linear equation z=my + b = insert (y;, z) and (Y,1,Zi+1)
= yields m and b for each of the n-1 linear sections
Yi+1 m
= F = / (my+b) dy = E(yiz+1_y¢2)+b(yi+l_yz’) > G

Yi ~ _ 1
y_

X F;

7

Yi+1 m b
G = /y Ty myb) dy = TR D)5 2 —vD)
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Fuzzy Control

Defuzzification
e Center of Area (COA)
« developed as an approximation of COG
* let §, be the COGs of the output sets B’/ (y):

>k Ag(zo) - Uk
>k Ar(zo)

g:

how to:
assume that fuzzy sets A,(x) and B,(x) are triangles or trapezoids
let x, be the crisp input value
for each fuzzy rule “IF A, is X THEN B, is Y*
determine B, (y) = R( A(Xo), Bk(Y) ), where R(.,.) is the relation
find y, as center of gravity of B',(y)
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