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Towards CMA-ES 

mutation:   Y = X + Z Z ~ N(0, C) multinormal distribution 

maximum entropy distribution for 
support Rn, given expectation 
vector and covariance matrix 

how should we choose covariance matrix C? 

unless we have not learned something about the problem during search 

⇒ don‘t prefer any direction! 

⇒ covariance matrix C = In  (unit matrix) 
x x 

C = In 

x 

C = diag(s1,...,sn) C orthogonal 
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Towards CMA-ES 

claim: mutations should be aligned to isolines of problem  (Schwefel 1981) 

if true then covariance matrix should 
be inverse of Hessian matrix! 

⇒ assume f(x) ≈ ½ x‘Ax + b‘x + c       ⇒ H = A 

Z ~ N(0, C) with density  

since then many proposals how to adapt the covariance matrix 

⇒   extreme case: use n+1 pairs (x, f(x)),  

      apply multiple linear regression to obtain estimators for A, b, c 

      invert estimated matrix A!     OK, but: O(n6)!  (Rudolph 1992) 
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Towards CMA-ES 

doubts: are equi-aligned isolines really optimal?   

most (effective) algorithms behave like this: 

run roughly into negative gradient direction, 
sooner or later we approach longest main principal axis of Hessian, 

now negative gradient direction coincidences with direction to optimum,  
which is parallel to longest main principal axis of Hessian,  
which is parallel to the longest main principal axis of the inverse covariance matrix  
                  (Schwefel OK in this situation)  

principal axis  

should point into 
negative gradient 
direction! 
(proof next slide) 
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Towards CMA-ES 

  

 

Z = rQu, A = B‘B, B = Q-1 

if Qu were deterministic ... 

⇒ set Qu = -∇f(x)        (direction of steepest descent) 
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Apart from (inefficient) regression, how can we get matrix elements of Q? 

Towards CMA-ES 

⇒ iteratively:  C(k+1) = update( C(k), Population(k) ) 

basic constraint:  C(k) must be positive definite (p.d.) and symmetric for all k ≥ 0, 

  otherwise Cholesky decomposition impossible: C = Q‘Q 

Lemma 

Let A and B be quadratic matrices and α, β > 0. 

a) A, B symmetric ⇒ α A + β B symmetric. 

b) A positive definite and B positive semidefinite ⇒ α A + β B positive definite 

Proof: 
ad a) C = α A + β B symmetric, since cij = α aij + β bij = α aji + β bji = cji  

ad b) ∀x ∈ Rn \ {0}:  x‘(αA + β B) x = α x‘Ax + β x‘Bx 

> 0 ≥ 0 

> 0 
■ 
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Theorem 

A quadratic matrix C(k) is symmetric and positive definite for all k ≥ 0, 

if it is built via the iterative formula   C(k+1) = αk C(k) + βk vk v‘k 

where C(0) = In, vk ≠ 0, αk > 0 and liminf βk > 0. 

Proof: 

If v ≠ 0, then matrix V = vv‘ is symmetric and positive semidefinite, since 

• as per definition of the dyadic product   vij = vi ⋅ vj = vj ⋅ vi = vji for all i, j and 

• for all x ∈ Rn : x‘ (vv‘) x = (x‘v) ⋅ (v‘x) = (x‘v)2 ≥ 0. 
Thus, the sequence of matrices vkv‘k  is symmetric and p.s.d. for k ≥ 0. 
Owing to the previous lemma matrix C(k+1) is symmetric and p.d., if 

C(k) is symmetric as well as p.d. and matrix vkv‘k is symmetric and p.s.d. 

Since C(0) = In symmetric and p.d. it follows that C(1) is symmetric and p.d. 

Repetition of these arguments leads to the statement of the theorem.           ■ 
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Idea: Don‘t estimate matrix C in each iteration! Instead, approximate iteratively! 
(Hansen, Ostermeier et al. 1996ff.) 

→ Covariance Matrix Adaptation Evolutionary Algorithm (CMA-EA) 

Set initial covariance matrix to C(0) = In 

C(t+1) = (1-η) C(t) + η      wi (xi:λ – m(t)) (xi:λ – m(t))‘ 
η : “learning rate“ ∈ (0,1) 

wi :  weights; mostly 1/µ 

sorting: f(x1:λ) ≤ f(x2:λ) ≤ ... ≤ f(xλ:λ)  

m =         mean of all selected parents complexity:  
O(µn2 + n3) 

CMA-ES 
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Caution: must use mean m(t) of “old“ selected parents; not „new“ mean m(t+1) !  
⇒ Seeking covariance matrix of fictitious distribution pointing in gradient direction! 
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State-of-the-art:  CMA-EA  (currently many variants) 

→ many successful applications in practice 

available in WWW: 

•  http://www.lri.fr/~hansen/cmaes_inmatlab.html   

•  http://shark-project.sourceforge.net/        (EAlib, C++) 

•  … 

CMA-ES 

C, C++, Java 
Fortran, Python, 
Matlab, R, Scilab 

G. Rudolph: Computational Intelligence ▪ Winter Term 2017/18 
9 

advice: 
 

before designing your own new method  
or grabbing another method with some fancy name ... 
try CMA-ES − it is available in most software libraries and often does the job! 


