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Multiobjective Optimization
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Real-world problems: various demands on problem solution
= multiple conflictive objective functions
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Multiobjective Optimization

Multiobjective Problem
frSCR" = ZCRY  mingern f(x) = (fi(x),..., fa(x))

I
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>

How to relate vectors?
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Pareto Dominance

partial order among vectors in R¢ and thus in R”

f

schlechter (1,1) < (5,5) < (8,8)
)

unver-
besser gleichbar

> 1
a < b, aweakly dominates b : <= Vi€ {1,...,d} : a; <¥;

a<b,adominatesb: <= a<banda=#b,ie,Jie{l,...,d}:a; <b;
allb, a and b are incomparable: <= neithera < b norb < a.
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Aim of Optimization

Pareto front: set of optimal solution vectors in R, i.e.,
PF={xec 7| € Zwithx <x}

Aim of optimization: find Pareto front?
PF maybe infinitively large
PF hard to hit exactly in continuous space
=-too ambitious!

Aim of optimization: approximate Pareto front!

fZ“
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Scalarization

Isn’t there an easier way?

Scalarize objectives to single-objective function:
f SCR"— Z C R? = fscal = wlfl(x) +w2f2(x)

Result: single solution
Specify desired solution by choice of wy, ws

. \ fi
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Scalarization

Previous example: convex Pareto front

Consider concave Pareto front
4 only boundary solutions are optimal
= scalarization by simple weighting is not a good idea
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Classification

a-priori approach
first specify preferences, then optimize

more advanced scalarization techniques (e.g. Tschebyscheff)
allow to access all elements of PF

remaining difficulty:
how to express your desires through parameter values!?

a-posteriori approach
first optimize (approximate Pareto front), then choose solution

=-back to a-posteriori approach
=-state-of-the-art methods: evolutionary algorithms
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Evolutionary Algorithms

Evolutionary Multiobjective Optimization Algorithms (EMOA)
Multiobjective Optimization Evolutionary Algorithms (MOEA)

initialization variation
‘ (recombination/crossover,
mutation)
evaluation of / .\
population
I parent selection evolution evaluation of
for reproduction offspring
\ selection of /
succeeding
population
| termination condition R
» stop
fulfilled?

What to change in case of multiobjective optimization?
Selection!
Remaining operators may work on search space only
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Selection in EMOA

Selection requires sortable population to choose best individuals
How to sort d-dimensional objective vectors?

Primary selection criterion:
use Pareto dominance relation to sort comparable individuals

Secondary selection criterion:
apply additional measure to incomparable individuals to enforce order
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Non-dominated Sorting

Example for primary selection criterion

partition population into sets of mutually incomparable solutions (antichains)

non-dominated set: best elements of set
NDS(M) = {x € M | #x’ € M with x’ < x}

Simple algorithm:

iteratively remove non-dominated set until population empty

fa
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Non-dominated Sorting

Example for primary selection criterion
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NSGA-II

Popular EMOA: Non-dominated Sorting Genetic Algorithm Il

(1 + p)-selection:
€ perform non-dominated sorting on all x + x individuals
@ take best subsets as long as they can be included completely

@ if population size u not reached but next subset does not fit in
completely:
apply secondary selection criterion crowding distance to that subset

@ fill up population with best ones w.r.t. the crowding distance
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NSGA-II

Crowding distance:
1/2 perimeter of empty bounding box around point

value of infinity for boundary points
large values good

h

f
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Difficulties of Selection

imagine point in the middle of the search space
d = 2: 1/4 better, 1/4 worse, 1/2 incomparable
d = 3: 1/8 better, 1/8 worse, 3/4 incomparable
general: fraction 2~9*! comparable, decreases exponentially

=-typical case: all individuals incomparable
=-mainly secondary selection criterion in operation

Drawback of crowding distance:

rewards spreading of points, does not reward approaching the Pareto front
=NSGA-II diverges for large d, difficulties already for d = 3
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Difficulties of Selection

Secondary selection criterion has to be meaningful!
Desired: choose best subset of size i from individuals

How to compare sets of partially incomparable points?
=-use quality indicators for sets

One approach for selection

=-for each point: determine contribution to quality value of set
=-sort points according to contribution
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Hypervolumen (S-metric) as Quality Measure

dominated hypervolume:
size of dominated space bounded by reference point

f2 A

H(M,r) := Leb <igl[v(i),r])

M= {vO, v® . vy
r reference point

to be maximized

Nicola Beume (LS11) Cl2012 25.01.2012 18/28



|
SMS(S-Metric Selection)-EMOA

State-of-the-art EMOA
(u + 1)-selection
€ non-dominated sorting
@ in case of incomparability: contributions to hypervolume of subset

1.4

fi
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SMS(S-Metric Selection)-EMOA

State-of-the-art EMOA
(u + 1)-selection
€ non-dominated sorting
@ in case of incomparability: contributions to hypervolume of subset
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SMS(S-Metric Selection)-EMOA

State-of-the-art EMOA
(u + 1)-selection

€ non-dominated sorting

@ in case of incomparability: contributions to hypervolume of subset
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SMS(S-Metric Selection)-EMOA

State-of-the-art EMOA
(u + 1)-selection

€ non-dominated sorting
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SMS(S-Metric Selection)-EMOA

State-of-the-art EMOA
(1 + 1)-selection

€ non-dominated sorting

@ in case of incomparability: contributions to hypervolume of subset

fa

T
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SMS(S-Metric Selection)-EMOA
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Computational complexity of hypervolume

Lower Bound
Q(mlogm)

Upper Bound
O(md/Z 3 20(log* m))

proof: hypervolume as special case of Klee’s measure problem

fa fa

1]

fi f
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Conclusions on EMOA

NSGA-II
only suitable in case of d=2 objective functions
otherwise no convergence to Pareto front

SMS-EMOA
also effective for d > 2 due to hypervolume
hypervolume calculation time-consuming
=-use approximation of hypervolume
Other state-of-the-art EMOA, e.g.
* MO-CMA-ES: CMA-ES + hypervolume selection
* «-MOEA: objective space partitioned into grid, only 1 point per cell

o MSOPS: selection acc. to ranks of different scalarizations
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Conclusions

real-world problems are often multiobjective

Pareto dominance only a partial order

a priory: parameterization difficult

a posteriori: choose solution after knowing possible compromises
state-of-the-art a posteriori methods: EMOA, MOEA

EMOA require sortable population for selection

use quality measures as secondary selection criterion

hypervolume: excellent quality measure, but computationally intensive

use state-of-the-art EMOA, other may fail completely
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