

Computational Intelligence

Winter Term 2014/15

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

- Organization (Lectures / Tutorials)
- Overview CI
- Introduction to ANN
 - McCulloch Pitts Neuron (MCP)
 - Minsky / Papert Perceptron (MPP)

Who are you?

either

studying "Automation and Robotics" (Master of Science)

Module "Optimization"

or

studying "Informatik"

- BSc-Modul "Einführung in die Computational Intelligence"
- Hauptdiplom-Wahlvorlesung (SPG 6 & 7)

Who am I?

Günter Rudolph

Fakultät für Informatik, LS 11

Guenter.Rudolph@tu-dortmund.de OH-14, R. 232

office hours:

Tuesday, 10:30–11:30am and by appointment

- ← best way to contact me
- ← if you want to see me

Lectures	Wednesday	10:15-11:45	OH12, R. E.003,	weekly
----------	-----------	-------------	-----------------	--------

Tutor Dipl.-Inf. Simon Wessing, LS 11

Information

http://ls11-www.cs.tu-dortmund.de/people/rudolph/teaching/lectures/CI/WS2014-15/lecture.jsp

Slides see web page Literature see web page

Exams

Effective since winter term 2014/15: written exam (not oral)

- Informatik, Diplom: Leistungsnachweis → Übungsschein
- Informatik, Diplom: Fachprüfung → written exam (90 min)
- Informatik, Bachelor: Module
 → written exam (90 min)
- ◆ Automation & Robotics, Master: Module
 → written exam (90 min)

mandatory for registration to written exam: must pass tutorial

Knowledge about

- mathematics,
- programming,
- logic

is helpful.

But what if something is unknown to me?

- covered in the lecture
- pointers to literature

... and don't hesitate to ask!

What is CI?

- ⇒ umbrella term for computational methods inspired by nature
- artifical neural networks
- evolutionary algorithms
- fuzzy systems
- swarm intelligence
- artificial immune systems
- growth processes in trees

• ...

backbone

new developments

- term "computational intelligence" coined by John Bezdek (FL, USA)
- originally intended as a demarcation line
 - ⇒ establish border between artificial and computational intelligence
- nowadays: blurring border

our goals:

- 1. know what CI methods are good for!
- 2. know when refrain from CI methods!
- 3. know why they work at all!
- 4. know how to apply and adjust CI methods to your problem!

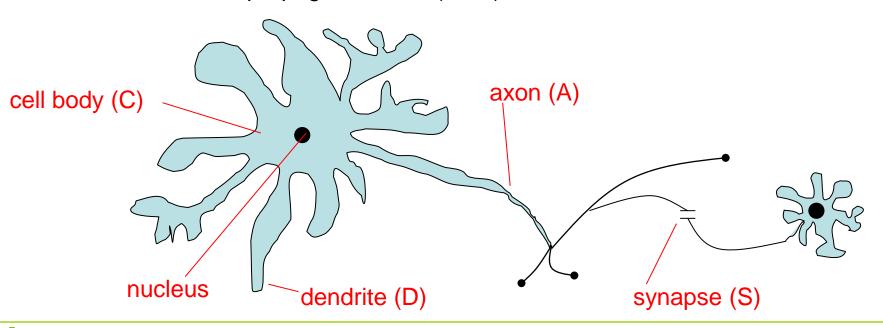
Biological Prototype

- Neuron
 - Information gathering (D)
 - Information processing (C)
 - Information propagation (A / S)

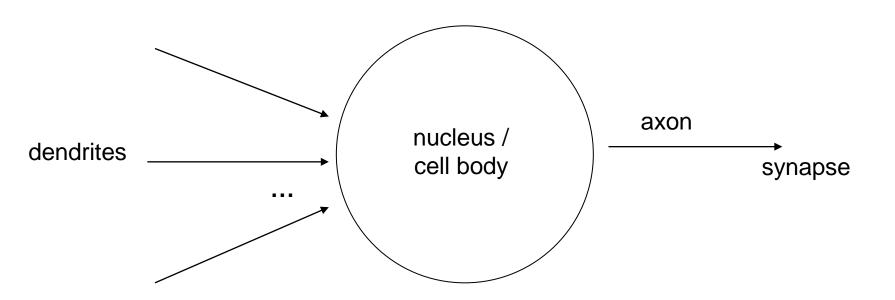
human being: 10¹² neurons

electricity in mV range

speed: 120 m/s



Abstraction

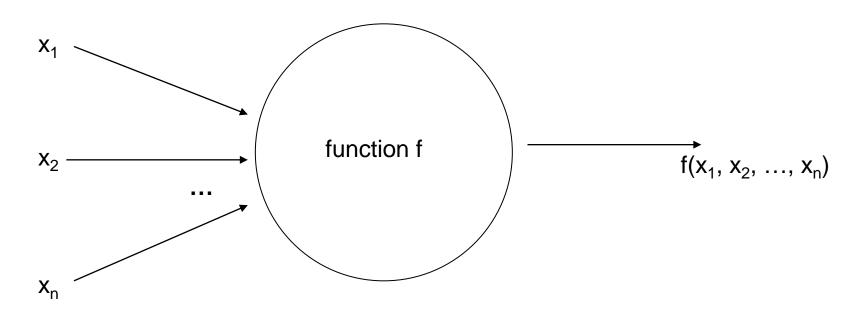


signal input

signal processing

signal output

Model



McCulloch-Pitts-Neuron 1943:

$$x_i \in \{0, 1\} =: \mathbb{B}$$

 $f: \mathbb{B}^n o \mathbb{B}$

1943: Warren McCulloch / Walter Pitts

- description of neurological networks
 - → modell: McCulloch-Pitts-Neuron (MCP)
- basic idea:
 - neuron is either active or inactive
 - skills result from *connecting* neurons
- considered static networks
 (i.e. connections had been constructed and not learnt)

McCulloch-Pitts-Neuron

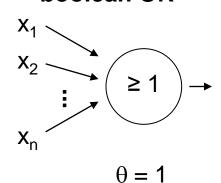
n binary input signals $x_1, ..., x_n$

threshold $\theta > 0$

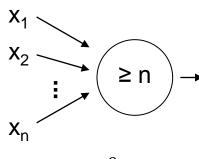
$$f(x_1, \dots, x_n) = \begin{cases} 1 & \text{if } \sum_{i=1}^n x_i \ge \theta \\ 0 & \text{else} \end{cases}$$

boolean OR

 \Rightarrow can be realized:



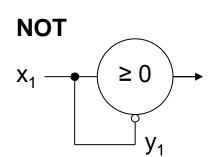
boolean AND



McCulloch-Pitts-Neuron

n binary input signals $x_1, ..., x_n$ threshold $\theta > 0$

in addition: m binary inhibitory signals y₁, ..., y_m

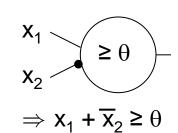


$$\tilde{f}(x_1,\ldots,x_n;y_1,\ldots,y_m) = f(x_1,\ldots,x_n) \cdot \prod_{j=1}^m (1-y_j)$$

- if at least one $y_i = 1$, then output = 0
- otherwise:
 - sum of inputs ≥ threshold, then output = 1 else output = 0

Assumption:

inputs also available in inverted form, i.e. ∃ inverted inputs.

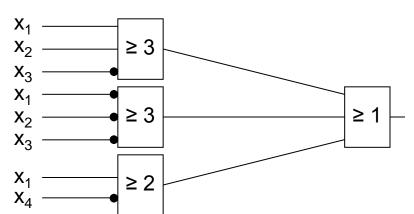


Theorem:

Every logical function $F: \mathbb{B}^n \to \mathbb{B}$ can be simulated with a two-layered McCulloch/Pitts net.

Example:

$$F(x) = x_1 x_2 \bar{x}_3 \vee \bar{x}_1 \bar{x}_2 \bar{x}_3 \vee x_1 \bar{x}_4$$



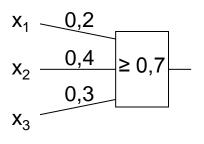
Proof: (by construction)

Every boolean function F can be transformed in disjunctive normal form

- \Rightarrow 2 layers (AND OR)
- 1. Every clause gets a decoding neuron with $\theta = n$ \Rightarrow output = 1 only if clause satisfied (AND gate)
- 2. All outputs of decoding neurons are inputs of a neuron with $\theta = 1$ (OR gate)

q.e.d.

Generalization: inputs with weights



fires 1 if

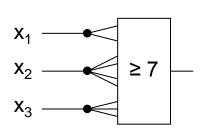
$$0.2 x_1 + 0.4 x_2 + 0.3 x_3 \ge 0.7$$

$$2 x_1 + 4 x_2 + 3 x_3 \ge 7$$

$$\downarrow \downarrow$$

duplicate inputs!

⇒ equivalent!



Theorem:

Weighted and unweighted MCP-nets are equivalent for weights $\in \mathbb{Q}^+$.

Proof:

Let
$$\sum_{i=1}^n \frac{a_i}{b_i} x_i \geq \frac{a_0}{b_0}$$
 with $a_i, b_i \in \mathbb{N}$

Multiplication with $\prod b_i$ yields inequality with coefficients in $\mathbb N$ i=0

Duplicate input x_i , such that we get $a_i b_1 b_2 \cdots b_{i-1} b_{i+1} \cdots b_n$ inputs.

Threshold $\theta = a_0 b_1 \cdots b_n$

Set all weights to 1.

q.e.d.

Conclusion for MCP nets

- + feed-forward: able to compute any Boolean function
- + recursive: able to simulate DFA
- very similar to conventional logical circuits
- difficult to construct
- no good learning algorithm available

Perceptron (Rosenblatt 1958)

- → complex model → reduced by Minsky & Papert to what is "necessary"
- \rightarrow Minsky-Papert perceptron (MPP), 1969 \rightarrow essential difference: $x \in [0,1] \subset \mathbb{R}$

What can a single MPP do?

$$w_1 x_1 + w_2 x_2 \ge \theta$$

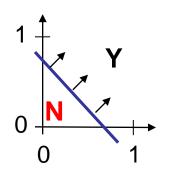
isolation of x₂ yields:

$$x_2 \ge \frac{\theta}{w_2} - \frac{w_1}{w_2} x_1 \qquad \begin{array}{c} & \\ \\ & \\ \\ & \\ \end{array}$$

Example:

$$0,9x_1+0,8x_2 \ge 0,6$$

$$\Leftrightarrow x_2 \ge \frac{3}{4} - \frac{9}{8}x_1$$



separating line

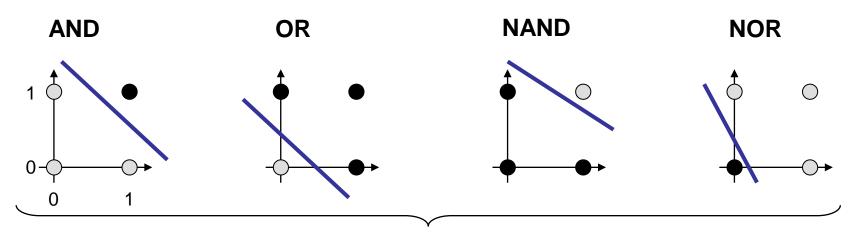
separates \mathbb{R}^2

in 2 classes

Introduction to Artificial Neural Networks

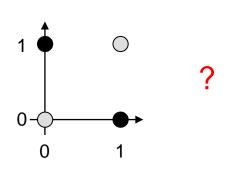
Lecture 01

$$\bigcirc = 0$$
 $\bullet = 1$



→ MPP at least as powerful as MCP neuron!

XOR



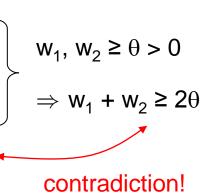
X ₁	X_2	xor
0	0	0
0	1	1
1	0	1
1	1	0

$$\Rightarrow 0 < \theta$$

$$\Rightarrow w_2 \ge \theta$$

$$\Rightarrow w_1 \ge \theta$$

$$\Rightarrow w_1 + w_2 < \theta$$



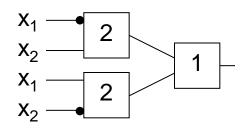
$$W_1 X_1 + W_2 X_2 \ge \theta$$

1969: Marvin Minsky / Seymor Papert

- book Perceptrons → analysis math. properties of perceptrons
- disillusioning result:perceptions fail to solve a number of trivial problems!
 - XOR-Problem
 - Parity-Problem
 - Connectivity-Problem
- "conclusion": All artificial neurons have this kind of weakness!
 - ⇒ research in this field is a scientific dead end!

how to leave the "dead end":

<u>Multilayer</u> Perceptrons:

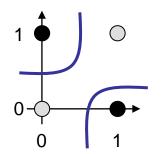


⇒ realizes XOR

2. Nonlinear separating functions:

XOR

$$g(x_1, x_2) = 2x_1 + 2x_2 - 4x_1x_2 - 1$$
 with $\theta = 0$



$$g(0,0) = -1$$

 $g(0,1) = +1$

$$g(0,1) = +1$$

$$g(1,0) = +1$$

$$g(1,1) = -1$$

How to obtain weights w_i and threshold θ ?

as yet: by construction

example: NAND-gate

X ₁	X ₂	NAND
0	0	1
0	1	1
1	0	1
1	1	0

$$\Rightarrow 0 \ge \theta$$

$$\Rightarrow w_2 \ge \theta$$

$$\Rightarrow w_1 \ge \theta$$

$$\Rightarrow w_1 + w_2 < \theta$$

requires solution of a system of linear inequalities (\in P)

(e.g.:
$$w_1 = w_2 = -2$$
, $\theta = -3$)

now: by "learning" / training

Perceptron Learning

Assumption: test examples with correct I/O behavior available

Principle:

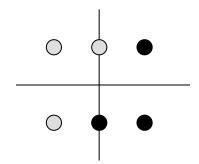
- (1) choose initial weights in arbitrary manner
- (2) feed in test pattern
- (3) if output of perceptron wrong, then change weights
- (4) goto (2) until correct output for all test paterns

graphically:

Introduction to Artificial Neural Networks

Lecture 01

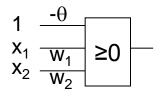
Example



$$P = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \end{pmatrix} \right\} \quad \bullet$$

$$N = \left\{ \begin{pmatrix} -1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \quad \bigcirc$$

threshold as a weight: $w = (\theta, w_1, w_2)$



$$\downarrow \downarrow$$

$$P = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \right\}$$

$$N = \left\{ \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\}$$

suppose initial vector of weights is

$$W^{(0)} = (1, -1, 1)^{\circ}$$

Introduction to Artificial Neural Networks

Lecture 01

Perceptron Learning

P: set of positive examples N: set of negative examples threshold θ integrated in weights

 \rightarrow output 1 \rightarrow output 0

- 1. choose w_0 at random, t = 0
- 2. choose arbitrary $x \in P \cup N$
- 3. if $x \in P$ and w_t 'x > 0 then goto 2 if $x \in N$ and w_t ' $x \le 0$ then goto 2
- 4. if $x \in P$ and w_t ' $x \le 0$ then $W_{t+1} = W_t + X$; t++; goto 2
- 5. if $x \in N$ and w_t 'x > 0 then $W_{t+1} = W_t - X$; t++; goto 2
- 6. stop? If I/O correct for all examples!

I/O correct!

let w'x \leq 0, should be > 0! (w+x)'x = w'x + x'x > w'x

let w'x > 0, should be $\leq 0!$ (w-x)'x = w'x - x'x < w'x

remark: algorithm converges, is finite, worst case: exponential runtime

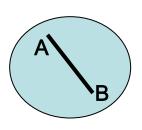
We know what a single MPP can do.

What can be achieved with many MPPs?

Single MPP

⇒ separates plane in two half planes

Many MPPs in 2 layers \Rightarrow can identify convex sets



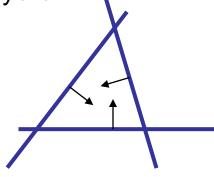
 \Rightarrow 2 layers!

 \forall a,b \in X:

$$\lambda$$
 a + (1- λ) b \in X

for $\lambda \in (0,1)$

2. Convex?



Single MPP ⇒ separates plane in two half planes

Many MPPs in 2 layers \Rightarrow can identify convex sets

Many MPPs in 3 layers \Rightarrow can identify arbitrary sets

Many MPPs in > 3 layers \Rightarrow not really necessary!

arbitrary sets:

- 1. partitioning of nonconvex set in several convex sets
- 2. two-layered subnet for each convex set
- 3. feed outputs of two-layered subnets in OR gate (third layer)