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Plan for Today 

●  Fuzzy sets 

 Axioms of fuzzy complement, t- and s-norms 

 Generators  

 Dual tripels 
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Fuzzy Sets 

Considered so far:  

Standard fuzzy operators 

●  Ac(x) = 1 – A(x) 

●  (A Å B)(x) = min { A(x), B(x) } 

●  (A [ B)(x) = max { A(x), B(x) }  

) Compatible with operators for crisp sets  

     with membership functions with values in B = { 0, 1 } 

9 Non-standard operators? ) Yes! Innumerable many! 

●  Defined via axioms. 

●  Creation via generators.  
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Fuzzy Complement: Axioms 

Definition 

A function c: [0,1] → [0,1] is a fuzzy complement  iff 

(A1) c(0) = 1 and c(1) = 0. 

(A2) 8 a, b 2 [0,1]: a ≤ b  )  c(a) ≥ c(b). monotone decreasing 

(A3) c(¢) is continuous. 

(A4) 8 a 2 [0,1]: c(c(a)) = a 

“nice to have”: 

involutive 

Examples: 

a) standard fuzzy complement c(a) = 1 – a  

ad (A1): c(0) = 1 – 0 = 1 and c(1) = 1 – 1 = 0 
ad (A2): c‘(a) = –1 < 0 (monotone decreasing) 

ad (A3):  
ad (A4): 1 – (1 – a) = a  
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Fuzzy Complement: Examples 

b)  c(a) =  
1   if a ≤ t 
0   otherwise 

for some t 2 (0, 1) 

ad (A1):   c(0) = 1 since 0 < t   and  c(1) = 0 since t < 1. 

ad (A2):   monotone (actually: constant) from 0 to t and t to 1, decreasing at t 

1 

0 
t 1 

 

ad (A3):   not valid → discontinuity at t 

ad (A4):   not valid → counter example 

  c(c(¼)) = c(1) = 0  ≠  ¼  for t = ½ 
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Fuzzy Complement: Examples 

c)  c(a) =  

ad (A1):   c(0) = 1 and  c(1) = 0 

ad (A2):   c‘(a) = –½ π sin(π a)  < 0   since sin(π a) > 0 for a 2 (0,1) 
 

ad (A3):   is continuous as a composition of continuous functions 

ad (A4):   not valid → counter example 
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Fuzzy Complement: Examples 

ad (A1):   c(0) = 1 and  c(1) = 0 

ad (A2): 
 

ad (A3):   is continuous as a composition of continuous functions 

ad (A4): 

d)  c(a) =  for Sugeno class 

 
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Fuzzy Complement: Examples 

ad (A1):   c(0) = 1 and  c(1) = 0 

ad (A2):  

ad (A3):   is continuous as a composition of continuous functions 

ad (A4): 

e)  c(a) = ( 1 – aw )1/w   for w > 0 Yager class 

 

(1 – aw)1/w ≥ (1 – bw)1/w  ,  1 – aw ≥ 1 – bw   , 

aw ≤ bw   ,  a ≤ b  
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Fuzzy Complement: Fixed Points 

Theorem 

If function c:[0,1] → [0,1] satisfies axioms (A1) and (A2) of fuzzy complement 
then it has at most one fixed point a* with c(a*) = a*. 

Proof: 

no fixed point →  see example (b) → no intersection with bisectrix 
1 

0 
t 1 

one fixed point →  see example (a) → intersection with bisectrix 
1 

0 
1/2 1 

assume 9 n > 1 fixed points, for example a* and b* with a* < b* 
) c(a*) = a* and c(b*) = b*   (fixed points) 

) c(a*) < c(b*) with a* < b* impossible if c(¢) is monotone decreasing 

) contradiction to axiom (A2)                  ■ 
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Fuzzy Complement: Fixed Points 

Theorem 

If function c:[0,1] → [0,1] satisfies axioms (A1) – (A3) of fuzzy complement then 
it has exactly one fixed point a* with c(a*) = a*. 

Proof: 
Intermediate value theorem →  

If c(¢) continuous  (A3) and c(0) ≥ c(1)  (A1/A2)   

then 8 v 2 [c(1), c(0)] = [0,1]: 9 a 2 [0,1]: c(a) = v. 

) there must be an intersection with bisectrix 

) a fixed point exists and by previous theorem there are no other fixed points!   ■ 

Examples: 
(a)  c(a) = 1 – a   ) a = 1 – a   ) a* = ½ 

(b)  c(a) = (1 – aw)1/w ) a = (1 – aw)1/w  ) a* = (½)1/w 
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Fuzzy Complement: 1st Characterization 

Theorem 

c: [0,1] → [0,1] is involutive fuzzy complement iff  

9 continuous function g: [0,1] → R with 

• g(0) = 0 

• strictly monotone increasing 

• 8 a 2 [0,1]: c(a) = g(-1)( g(1) – g(a) ).        ■ 

defines an  
increasing generator 

g(-1)(x) pseudo-inverse 

Examples 

a)  g(x) = x ) g-1(x) = x ) c(a) = 1 – a   (Standard) 

b)  g(x) = xw ) g-1(x) = x1/w ) c(a) = (1 – aw)1/w (Yager class, w > 0) 

c)  g(x) = log(x+1) ) g-1(x) = ex – 1  ) c(a) = exp( log(2) – log(a+1) ) – 1  
1 – a  
1 + a = (Sugeno class. λ = 1) 
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Fuzzy Complement: 1st Characterization 

Examples 

d) 

•   

•  strictly monotone increasing since 

•  inverse function on [0,1] is , thus 
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Fuzzy Complement: 2nd Characterization 

Theorem 

c: [0,1] → [0,1] is involutive fuzzy complement iff  

9 continuous function f: [0,1] → R with 

• f(1) = 0 

• strictly monotone decreasing 

• 8 a 2 [0,1]: c(a) = f(-1)( f(0) – f(a) ).         ■ 

defines a  
decreasing generator 

f(-1)(x) pseudo-inverse 

Examples 

a) f(x) = k – k ¢ x  (k > 0)   f(-1)(x) = 1 – x/k   c(a) =   

b) f(x) = 1 – xw             f(-1)(x) = (1 – x)1/´w   c(a) = f-1(aw) = (1 – aw)1/w (Yager) 
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Fuzzy Intersection: t-norm 

Definition 

A function t:[0,1] £ [0,1] → [0,1] is a fuzzy intersection or t-norm iff 

(A1)  t(a, 1) = a 

(A2)  b ≤ d  ) t(a, b) ≤ t(a, d)   (monotonicity) 

(A3)  t(a,b) = t(b, a)    (commutative) 

(A4)  t(a, t(b, d)) = t(t(a, b), d)   (associative)  ■ 

“nice to have” 

(A5)  t(a, b) is continuous    (continuity) 

(A6)  t(a, a) < a     (subidempotent) 

(A7)  a1 < a2 and b1 ≤ b2   )   t(a1, b1) < t(a2, b2) (strict monotonicity) 

Note: the only idempotent t-norm is the standard fuzzy intersection 
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Fuzzy Intersection: t-norm 

(a) Standard  t(a, b) = min { a, b }  

(b) Algebraic Product t(a, b) = a ¢ b 

(c) Bounded Difference t(a, b) = max { 0, a + b – 1 } 

      a  if b = 1 

(d) Drastic Product t(a, b) =   b  if a = 1 

      0  otherwise 

Name   Function 

Examples: 

Is algebraic product a t-norm?  Check the 4 axioms! 

ad (A1): t(a, 1) = a ¢ 1 = a        

ad (A2): a ¢ b ≤ a ¢ d , b ≤ d     

ad (A3): t(a, b) = a ¢ b = b ¢ a = t(b, a)     

ad (A4): a ¢ (b ¢ d) = (a ¢ b) ¢ d                  

(a) (b) 

(c) (d) 
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Fuzzy Intersection: Characterization 

Theorem 

Function t: [0,1] £ [0,1] → [0,1] is a t-norm , 

9 decreasing generator f:[0,1] → R with  t(a, b) = f(-1)( f(a) + f(b) ).  ■ 

Example: 

f(x) = 1/x – 1 is decreasing generator since 

•  f(x) is continuous    

•  f(1) = 1/1 – 1 = 0    

•  f‘(x) = –1/x2 < 0 (monotone decreasing)  

) t(a, b)  =   

inverse function is f-1(x) =  
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Fuzzy Union: s-norm 

Definition 

A function s:[0,1] £ [0,1] → [0,1] is a fuzzy union or s-norm or t-conorm iff 

(A1)  s(a, 0) = a 

(A2)  b ≤ d  ) s(a, b) ≤ s(a, d)   (monotonicity) 

(A3)  s(a, b) = s(b, a)    (commutative) 

(A4)  s(a, s(b, d)) = s(s(a, b), d)   (associative)  ■ 

“nice to have” 

(A5)  s(a, b) is continuous    (continuity) 

(A6)  s(a, a) > a     (superidempotent) 

(A7)  a1 < a2 and b1 ≤ b2   )   s(a1, b1) < s(a2, b2) (strict monotonicity) 

Note: the only idempotent s-norm is the standard fuzzy union 
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Fuzzy Union: s-norm 

Standard  s(a, b) = max { a, b }  

Algebraic Sum  s(a, b) = a + b – a ¢ b 

Bounded Sum  s(a, b) = min { 1, a + b } 

      a  if b = 0 

Drastic Union  s(a, b) =   b  if a = 0 

      1  otherwise 

Name   Function 

Examples: 

Is algebraic sum a t-norm?  Check the 4 axioms! 

ad (A1): s(a, 0) = a + 0 – a ¢ 0 = a    

ad (A2): a + b – a ¢ b ≤ a + d – a ¢ d , b (1 – a) ≤ d (1 – a) , b ≤ d   
ad (A3):  
ad (A4):  

(a) (b) 

(c) (d) 
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Fuzzy Union: Characterization 

Theorem 

Function s: [0,1] £ [0,1] → [0,1] is a s-norm , 

9 increasing generator g:[0,1] → R with  s(a, b) = g(-1)( g(a) + g(b) ).  ■ 

Example: 

g(x) = –log(1 – x) is increasing generator since 

•  g(x) is continuous    

•  g(0) = –log(1 – 0) = 0    

•  g‘(x) = 1/(1 – x) > 0 (monotone increasing)  

) s(a, b)    

inverse function is g-1(x) = 1 – exp(–x)   

(algebraic sum) 
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Combination of Fuzzy Operations: Dual Triples 

Definition 

A pair of t-norm t(¢, ¢) and s-norm s(¢, ¢) is said to be  
dual with regard to the fuzzy complement c(¢) iff 

• c( t(a, b) )  =  s( c(a), c(b) ) 

• c( s(a, b) ) =   t( c(a), c(b) ) 

for all a, b 2 [0,1].              ■ 

Background from classical set theory: 

Å and [ operations are dual w.r.t. complement since they obey DeMorgan‘s laws 

Definition 

Let (c, s, t) be a tripel  
of fuzzy complement c(¢),  
s- and t-norm.  

If t and s are dual to c 
then the tripel (c,s, t) is 
called a dual tripel.        ■ 

Examples of dual tripels 

t-norm   s-norm   complement 

min { a, b }  max { a, b }  1 – a  
a ¢ b   a + b – a ¢ b  1 – a  
max { 0, a + b – 1 } min { 1, a + b }  1 – a  
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Dual Triples vs. Non-Dual Triples 

c( t( a, b ) ) s( c( a ), c( b ) ) 

Dual Triple: 

- bounded difference 

- bounded sum 

- standard complement 

Non-Dual Triple: 

- algebraic product 

- bounded sum 

- standard complement 

) left image ≠ right image 

) left image = right image 
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Dual Triples vs. Non-Dual Triples 

Why are dual triples so important? 

) allow equivalence transformations of fuzzy set expressions 

) required to transform into some equivalent normal form (standardized input) 

) e.g. two stages: intersection of unions 

or union of intersections 

Example: 

←  not in normal form 

←  equivalent if DeMorgan‘s law valid (dual triples!) 

←  equivalent (distributive lattice!) 
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