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1. Evolutionary Algorithms have been developed heuristically. 
2. No proofs of convergence have been derived for them.
3. Sometimes the rate of convergence can be very slow.

Evolutionary Algorithms: State of the art in 1970

main arguments against EA in Rn :

what can be done?     ⇒ disable arguments!

ad 1) not really an argument against EAs …

EAs use principles of biological evolution as pool of inspiration purposely:

-
 

to overcome traditional lines of thought
 -

 
to get new classes of optimization algorithms

⇒ the new ideas may be bad or good …
 ⇒ necessity to analyze them!
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stochastic convergence ≠
 

“empirical convergence“

On the notion of “convergence“ (I)

frequent observation:

N runs on some test problem / averaging / comparison

⇒ this proves nothing!

-
 

no guarantee that behavior stable in the limit!

- N lucky runs possible

- etc.
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Dk

 

= | f(Xk

 

) –
 

f* |  ≥
 

0        is a random variable

we shall consider the stochastic sequence D0

 

, D1

 

, D2

 

, …

On the notion of “convergence“ (II)

Does the stochastic sequence (Dk

 

)k≥0

 

converge to 0?

If so, then evidently „convergence to optimum“!

But: there are many modes of stochastic convergence!

→ therefore here only the most frequently used ...

notation: P(t)

 

= population at time step t ≥
 

0,  fb
 

(P(t)) = min{ f(x): x ∈
 

P(t) }

formal approach necessary:
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Definition
Let Dt

 

= |fb
 

(P(t)) –
 

f*| ≥
 

0. We say: The EA

(a) converges completely to the optimum, if ∀
 



 
> 0 

(b) converges almost surely or with probability 1 (w.p. 1) to the optimum, if

(c) converges in probability to the optimum, if ∀
 



 
> 0 

(a) converges in mean to the optimum, if ∀
 



 
> 0 

■

On the notion of “convergence“ (III) Lecture 12
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Lemma
● (a) ⇒ (b) ⇒ (c).

● (d) ⇒ (c).

● If ∃
 

K < ∞ : ∀
 

t ≥
 

0 : Dt

 

≤
 

K, then (d) ⇔ (c).

● If (Dt

 

)t≥0

 

stochastically independent sequence, then (a) ⇔ (b). ■

Typical modus operandi:

1.
 

Show convergence in probablity (c). Easy! (in most cases)

2.
 

Show that convergence fast enough (a). This also implies (b).

3.
 

Sequence bounded from above? This implies (d).

Relationships between modes of convergence
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Let (Xk

 

)k≥1

 

be sequence of independent random variables.

distribution:

1.

⇒ convergence in probability (c)

2.

⇒ convergence too slow! Consequently, no
 

complete convergence!

3. Note: Hence: sequence bounded with K = 1.

since convergence in prob. (c) and bounded ⇒ convergence in mean (d)

Examples (I) Lecture 12
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let (Xk

 

)k≥1

 

be sequence of independent random variables.

distribution: (a)
 

(c)
 

(d)

(–)
 

(+)
 

(+)

(+)
 

(+)
 

(+)

(–)
 

(+)
 

(–)

(+)
 

(+)
 

(+)

(–)
 

(+)
 

(–)

(+)
 

(+)
 

(–)

Examples (II)
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ad 2) no convergence proofs!

timeline of theoretical work on convergence 

1971 –
 

1975
 

Rechenberg / Schwefel
 

convergence rates
 for simple problems

1976 –
 

1980
 

Born
 

convergence proof
 for EA with genetic load

1981 –
 

1985
 

Rappl
 

convergence proof
 for (1+1)-EA in Rn

1986 –
 

1989
 

Beyer
 

convergence rates
 for simple problems

all publications in German
 

and for EAs in Rn

⇒ results only known to German-speaking EA nerds!
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ad 2) no convergence proofs!

timeline of theoretical work on convergence 

1989
 

Eiben
 

a.s. convergence for elitist GA

1992
 

Nix/Vose
 
Markov chain model of simple GA

1993
 

Fogel
 

a.s. convergence of EP (Markov chain based)

1994
 

Rudolph
 
a.s. convergence of elitist GA

 non-convergence of simple GA (MC based)

1994
 

Rudolph
 
a.s. convergence of non-elitist ES

 (based on supermartingales) 

1996
 

Rudolph
 
conditions for convergence

⇒ convergence proofs are no issue any longer!
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A simple proof of convergence (I)

Theorem:

Let Dk

 

= | f(xk

 

) –
 

f* | with k 
 

0 be generated by (1+1)-EA,

S* = { x* 
 

S : f(x*) = f* } is set of optimal solutions and

Pm

 

(x, S*) is probability to get from x 
 

S to S* by a single mutation operation. 

If for each x 
 

S \
 

S* holds Pm

 

(x, S*)   > 0, then Dk

 

→ 0 completely and in mean.

Remark:

The proofs become simpler and simpler.

Born‘s proof (1978) took about 10 pages.

Eiben‘s proof (1989) took about 2 pages.

Rudolph‘s proof (1996) takes about 1 slide …
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Proof:

For the (1+1)-EA holds: P(x, S*) = 1 for x 
 

S* due to elitist selection.

Thus, it is sufficient to show that the EA reaches S* with probability 1:

Success in 1st iteration: Pm

 

(x, S*)  . 

No success in 1st iteration: 
 

1 -
 

.

No success in kth iteration: 
 

(1-
 

)k. 

 at least one success in k iterations: 
 

1 -
 

(1-
 

)k

 

→ 1 as k → .

Since P{ Dk

 

> 
 

} 
 

(1-
 

)k → 0 we have convergence in probablity and 

since                                   we actually have complete convergence.

■
Moreover: ∀

 
k ≥

 
0: 0 ≤

 
Dk

 

≤
 

D0

 

< ∞ , implies convergence in mean.

A simple proof of convergence (II)
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ad 3) Speed of Convergence

Observation:

Sometimes EAs have been very slow …

Questions:

Why is this the case?

Can we do something against this?

⇒ no speculations, instead: formal analysis!

first hint in Schwefel‘s masters thesis (1965): 
observed that step size adaptation in R2

 

useful!
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convergence speed without „step size adaptation“ (pure random search)

f(x) = || x ||2
 

= x‘x → min!  where x 
 

Sn

 

(r) = { x 
 

Rn

 

: || x || 
 

r }

Zk

 

is uniformly distributed in Sn

 

(r)

Xk+1

 

= Zk

 

if f(Zk

 

) < f(Xk

 

), else Xk+1

 

= Xk

 Vk

 

= min { f(Z1

 

), f(Z2

 

), …, f(Zk

 

) }    best objective function value until iteration k

P{ || Z || 
 

z }  =  P{ Z 
 

Sn

 

(z) }  =  Vol( Sn

 

(z) ) / Vol( Sn

 

(r) )  =  ( z / r )n

 

,  0 
 

z 
 

r

P{ || Z ||2
 



 
z }  = P{ || Z || 

 
z1/2

 

} =  zn/2

 

/ rn

 

,  0 
 

z 
 

r2

P{ Vk

 



 
v }  =  1 -

 
( 1 -

 
P{ || Z ||2

 



 
v } )k   =  1 –

 
( 1 –

 
vn/2

 

/ rn)k

E[ Vk

 

] →
 

r2

 

(1 + 2/n ) k-2/n    for large k

ad 3) Speed of Convergence

no adaptation:

Dk

 

=
 

(k-2/n)
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convergence speed without „step size adaptation“ (local uniformly distr.)

f(x) = || x ||2
 

= x‘x → min!  where x 
 

Sn

 

(r) = { x 
 

Rn

 

: || x || 
 

r }

Zk

 

uniformly distributed in [-r, r], n = 1

Xk+1

 

= Xk

 

+ Zk

 

if f(Xk

 

+ Zk

 

) < f(Xk

 

), else Xk+1

 

= Xk

0

r0

from now on:
 resembling pure 

random search!

no adaptation:

Dk

 

= (k-2/n)

ad 3) Speed of Convergence Lecture 12
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(1, 
 

)-EA mit f(x) = || x ||2

|| Yk

 

||2
 

= || Xk

 

+ rk

 

Uk

 

||2
 

=  (Xk

 

+ rk

 

Uk

 

)‘
 

(Xk

 

+ rk

 

Uk

 

)

= X‘k
 

Xk

 

+ 2rk

 

X‘k
 

Uk

 

+rk
2U‘k

 

Uk

= ||Xk

 

||2
 

+ 2rk

 

X‘k
 

Uk

 

+ rk
2

 

||Uk

 

||2
 

= ||Xk

 

||2
 

+ 2X‘k
 

Uk

 

+ rk
2

= 1

note: random scalar product x‘U has same distribution like ||x|| B,

where r.v. B beta-distributed with parameters (n-1)/2 on [-1, 1].  It follows, that

|| Yk ||2
 

= || Xk ||2
 

+ 2rk || Xk || B + rk
2

 

.

Since (1,)-EA selects best value out of 
 

trials in total, we obtain
|| Xk+1

 

||2
 

= || Xk

 

||2
 

+ 2rk || Xk

 

|| B1:

 

+ rk
2

ad 3) Speed of Convergence

convergence speed with „step size adaptation“ (uniform distribution on Sn

 

(1))
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|| Xk+1

 

||2
 

= || Xk

 

||2
 

+ 2rk || Xk

 

|| B1:

 

+ rk
2

conditional expection on both sides

E|| Xk+1

 

||2
 

= || Xk

 

||2
 

+ 2rk || Xk

 

|| E[ B1:

 



 
+ rk

2

assume: rk

 

= 
 

|| Xk

 

||

E|| Xk+1

 

||2
 

= || Xk

 

||2
 

+ 2 
 

|| Xk

 

||2
 

E[ B1:

 



 
+ 2

 

|| Xk

 

||2

symmetry of B implies E[B1:

 

] = -
 

E[B:

 

] < 0

E|| Xk+1

 

||2
 

= || Xk

 

||2
 

- 2 
 

|| Xk

 

||2
 

E[ B:

 



 
+ 2

 

|| Xk

 

||2

=  || Xk

 

||2
 

(1 –
 

2
 

E[B:

 

] + 2)

minimum at * = E[B:

 

], thus E|| Xk+1

 

||2
 

= || Xk

 

||2
 

( 1 –
 

E[B:

 

]2 )

with adaptation:

Dk

 

∼

 
O(ck), c ∈

 
(0,1)

ad 3) Speed of Convergence Lecture 12
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problem in practice:

how do we get || Xk

 

|| for rk

 

= || Xk

 

|| ·
 

E[ B:

 

] ?

We know from analysis: E|| Xk+1

 

||2
 

= || Xk

 

||2
 

( 1 –
 

E[B:

 

]2 )

assume:
 

rk

 

was optimally adjusted

⇒ rk+1

 

= || Xk+1

 

||  E[ B:

 

] ≈
 

|| Xk

 

|| (1 –
 

E[ B: 

 

]2)1/2

 

E[ B:

 

] 

constant!

⇒ multiply rk

 

with constant: rk+1

 

= c ·
 

rk

but:
 

how do we get r0

 

or || X0

 

|| ?

r0

 

too large
r0

 

almost optimal
r0

 

too small

ad 3) Speed of Convergence
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(1+1)-EA with step-size adaptation (1/5 success rule, Rechenberg 1973)

Idea:

• If many successful mutation, then step size too small.

• If few successful mutations, then step size too large.

approach:

• count successful mutations in certain time interval

•
 

if fraction larger than some threshold (z. B. 1/5), 
then increase step size by factor > 1,

 else decrease step size by factor < 1.

for infinitesimal 
small radius: 
success rate = 1/2

ad 3) Speed of Convergence Lecture 12
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ad 3) Speed of Convergence

empirically known since 1973:

step size adaptation increases convergence speed dramatically!

about 1993 EP adopted multiplicative step size adaptation
 (was additive)

no proof of convergence!

1999
 

Rudolph
 

no a.s. convergence for all continuous functions

2003
 

Jägersküppers
 

shows a.s. convergence for convex problems
 and linear convergence speed

⇒ same order of local convergence speed like gradient method!
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Towards CMA-ES

mutation:   Y = X + Z Z ∼
 

N(0, C) multinormal distribution

maximum entropy distribution for 
support Rn, given expectation 
vector and covariance matrix

how should we choose covariance matrix C?

unless we have not learned something about the problem during search

⇒ don‘t prefer any direction!

⇒ covariance matrix C = In  (unit matrix)
xx

C = In

x

C = diag(s1

 

,...,sn

 

) C orthogonal
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Towards CMA-ES

claim: mutations should be aligned to isolines of problem  (Schwefel 1981)

if true then covariance matrix should 
be inverse of Hessian matrix!

⇒ assume f(x) ≈
 

½
 

x‘Ax + b‘x + c       ⇒ H = A

Z ∼
 

N(0, C) with density 

since then many proposals how to adapt the covariance matrix

⇒ extreme case: use n+1 pairs (x, f(x)), 

apply multiple linear regression
 

to obtain estimators for A, b, c

invert estimated matrix A!     OK, but: O(n6)!  (Rudolph 1992)
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Towards CMA-ES

doubts: are equi-aligned isolines really optimal?  

most (effective) algorithms behave like this:

run roughly into negative gradient direction,
 sooner or later we approach longest main principal axis of Hessian,

now negative gradient direction coincidences with direction to optimum, 
which is parallel to longest main principal axis of Hessian, 
which is parallel to the longest main principal axis of the inverse covariance matrix  

(Schwefel OK in this situation)

principal axis 

should point into 
negative gradient 
direction!
(proof next slide)
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Towards CMA-ES

Z = rQu, A = B‘B, B = Q-1

if Qu were deterministic ...

⇒ set Qu = -∇f(x)        (direction of steepest descent)
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Apart from (inefficient) regression, how can we get matrix elements of Q?

Towards CMA-ES

⇒ iteratively: C(k+1)

 

= update( C(k), Population(k)

 

)

basic constraint: C(k)

 

must be positive definite (p.d.) and symmetric for
 

all k ≥
 

0,

otherwise Cholesky decomposition impossible: C = Q‘Q

Lemma

Let A and B be quadratic matrices and , 
 

> 0.

a)
 

A, B symmetric ⇒ 

 
A + 

 
B symmetric.

b)
 

A positive definite and B positive semidefinite ⇒ 

 
A + 

 
B positive definite

Proof: 
ad a) C = 

 
A + 

 
B symmetric, since cij

 

= 
 

aij

 

+ 
 

bij

 

= 
 

aji

 

+ 
 

bji

 

= cji

ad b) ∀x ∈
 

Rn

 

\

 
{0}:  x‘(A + 

 
B) x = 

 
x‘Ax + 

 
x‘Bx

> 0 ≥

 

0

> 0
■
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Theorem

A quadratic matrix C(k)

 

is symmetric and positive definite for all k ≥
 

0,

if it is built via the iterative formula   C(k+1) = k C(k) + k vk v‘k
where C(0)

 

= In
 

, vk

 

≠
 

0, liminf k

 

> 0 and liminf k

 

> 0.

Proof:

If v ≠
 

0, then matrix V = vv‘
 

is symmetric and positive semidefinite, since

• as per definition of the dyadic product   vij

 

= vi

 

·

 
vj

 

= vj

 

·

 
vi

 

= vji

 

for all i, j and

• for all x ∈
 

Rn

 

: x‘
 

(vv‘) x = (x‘v) ·
 

(v‘x) = (x‘v)2

 

≥
 

0.

Thus, the sequence of matrices vk

 

v‘k is symmetric and p.s.d. for k ≥
 

0.

Owing to the previous lemma matrix C(k+1)

 

is symmetric and p.d., if

C(k)

 

is symmetric as well as p.d. and matrix vk

 

v‘k
 

is symmetric and p.s.d.

Since C(0)

 

= In
 

symmetric and p.d. it follows that C(1)

 

is symmetric and p.d.

Repetition of these arguments leads to the statement of the theorem.
 
■

Towards CMA-ES
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Idea: Don‘t estimate matrix C
 

in each iteration! Instead, approximate iteratively!
(Hansen, Ostermeier et al. 1996ff.)

→ Covariance Matrix Adaptation Evolutionary Algorithm (CMA-EA)

dyadic product: dd‘
 

=

Set initial covariance matrix to C(0)

 

= In

C(t+1)

 

= (1-) C(t)

 

+ 
 

wi

 

di

 

di

 

‘ 

 
: “learning rate“

 
∈

 
(0,1)

di

 

= (xi:

 

–
 

m) /  sorting: f(x1:

 

) ≤
 

f(x2:

 

) ≤
 

... ≤
 

f(x:

 

) 

m =        mean of all selected
 

parents

is positive semidefinite 
dispersion matrix

complexity: 
O(n2 + n3)

CMA-ES
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m =        mean of all selected
 

parents

variant:

p(t+1)

 

= (1 -
 

) p(t)

 

+ (
 

(2 -
 

) eff

 

)1/2

 

(m(t)

 

– m(t-1)

 

) / (t) “Evolution path“



 
∈

 
(0,1)p(0)

 

= 0

C(0)

 

= In
C(t+1)

 

= (1 -
 

) C(t)

 

+ 
 

p(t)

 

(p(t))‘
complexity: O(n2)

→ Cholesky decomposition: O(n3)  für C(t)

CMA-ES
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State-of-the-art:  CMA-EA  (currently many variants)

→ successful applications in practice

available in WWW:

• http://www.lri.fr/~hansen/cmaes_inmatlab.html

• http://shark-project.sourceforge.net/
 

(EAlib, C++)

• …

CMA-ES

C, C++, Java 
Fortran, Python, 
Matlab, R, Scilab
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