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Design of Evolutionary Algorithms

Three tasks:

1.
 

Choice of an appropriate problem representation.

2.
 

Choice / design of variation operators acting in problem representation.

3.
 

Choice of strategy parameters (includes initialization).

ad 1)
 

different “schools“:

(a) operate on binary representation and define genotype/phenotype mapping
 + can use standard algorithm

 – mapping may induce unintentional bias in search

(b) no doctrine: use “most natural”
 

representation 
– must design variation operators for specific representation

 + if design done properly then no bias in search 
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Design of Evolutionary Algorithms

ad 1a)
 

genotype-phenotype mapping

original problem  f: X → Rd

scenario: no standard algorithm for search space X available

Bn

X Rdf

g

• standard EA performs variation on binary strings b ∈
 

Bn

• fitness evaluation of individual b via (f ◦
 

g)(b) = f(g(b)) 
where g: Bn

 

→ X is genotype-phenotype mapping

• selection operation independent from representation
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Design of Evolutionary Algorithms

Genotype-Phenotype-Mapping  Bn

 

→ [L, R] 
 

R

● Standard encoding for b 
 

Bn

→ Problem: hamming cliffs

000 001 010 011 100 101 110 111

0 1 2 3 4 5 6 7

L = 0, R = 7

n = 3

1 Bit 2 Bit 1 Bit 3 Bit 1 Bit 2 Bit 1 Bit

Hamming cliff

genotype

phenotype
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Design of Evolutionary Algorithms

● Gray encoding for b 
 

Bn

000 001 011 010 110 111 101 100

0 1 2 3 4 5 6 7

Let a 
 

Bn

 

standard encoded.  Then bi

 

= 
ai

 

, if i = 1

ai-1

 



 
ai

 

, if i > 1


 
= XOR

genotype

phenotype

OK, no hamming cliffs any longer …

 small changes in phenotype „lead to“
 

small changes in genotype

since we consider evolution in terms of Darwin (not Lamarck):

 small changes in genotype lead to small changes in phenotype!

but: 1-Bit-change:  000 → 100  

Genotype-Phenotype-Mapping  Bn

 

→ [L, R] 
 

R
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Design of Evolutionary Algorithms

● e.g. standard encoding for b 
 

Bn

010 101 111 000 110 001 101 100

0 1 2 3 4 5 6 7

genotype

index

Genotype-Phenotype-Mapping  Bn

 

→ Plog(n)

individual:

consider index and associated genotype entry as unit / record / struct;

sort units with respect to genotype value, old indices yield permutation:

000 001 010 100 101 101 110 111

3 5 0 7 1 6 4 2

genotype

old index

(example only)

= permutation
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Design of Evolutionary Algorithms

ad 1a)
 

genotype-phenotype mapping

typically required: strong causality

→ small changes in individual leads to small changes in fitness

→ small changes in genotype should lead to small changes in phenotype

but: how to find a genotype-phenotype mapping with that property?

necessary conditions: 
1) g: Bn

 

→ X can be computed efficiently (otherwise it is senseless)

2) g: Bn

 

→ X is surjective (otherwise we might miss the optimal solution)

3) g: Bn

 

→ X preserves closeness (otherwise strong causality endangered)

Let d(·
 

, ·) be a metric on Bn

 

and dX

 

(·
 

, ·) be a metric on X.

∀x, y, z ∈
 

Bn : d(x, y) ≤
 

d(x, z)  ⇒ dX

 

(g(x), g(y)) ≤
 

dX

 

(g(x), g(z)) 
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Design of Evolutionary Algorithms

ad 1b)
 

use “most natural“
 

representation

but: how to find variation operators with that property?

typically required: strong causality

→ small changes in individual leads to small changes in fitness

→ need variation operators that obey that requirement

⇒ need design guidelines ...
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Design of Evolutionary Algorithms

ad 2)
 

design guidelines for variation operators

a) reachability 
every x ∈

 
X should be reachable from arbitrary x0

 

∈

 
X

 after finite number of repeated variations with positive probability bounded from 0

b) unbiasedness 

unless having gathered knowledge about problem
 variation operator should not favor particular subsets of solutions

 ⇒ formally: maximum entropy principle

c) control 

variation operator should have parameters affecting shape of distributions;
 known from theory: weaken variation strength when approaching optimum
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Design of Evolutionary Algorithms

ad 2)
 

design guidelines for variation operators in practice

binary search space
 

X = Bn

variation by k-point or uniform crossover and subsequent mutation

a) reachability:
 regardless of the output of crossover

 we can move from x ∈
 

Bn

 

to y ∈
 

Bn

 

in 1 step with probability

where H(x,y) is Hamming distance between x and y.

Since min{ p(x,y): x,y ∈
 

Bn

 

} = 
 

> 0 we are done.
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Design of Evolutionary Algorithms

b) unbiasedness

don‘t prefer any direction or subset of points without reason

⇒ use maximum entropy distribution for sampling!

properties:

- distributes probability mass as uniform as possible

-
 

additional knowledge can be included as constraints:
 → under given constraints sample as uniform as possible
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Design of Evolutionary Algorithms

Definition:

Let X be discrete random variable (r.v.) with pk

 

= P{ X = xk

 

} for some index set K.
 The quantity

is called the entropy of the distribution of X. If X is a continuous r.v. with p.d.f. 
fX

 

(·) then the entropy is given by

The distribution of a random variable X for which H(X) is maximal is termed a 
maximum entropy distribution.

 
■

Formally:
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Excursion: Maximum Entropy Distributions

Knowledge available:

Discrete distribution with support { x1

 

, x2

 

, …
 

xn

 

} with x1

 

< x2

 

< …
 

xn

 

< ∞

s.t.

⇒ leads to nonlinear constrained optimization problem:

solution:
 

via Lagrange (find stationary point of Lagrangian function)
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Excursion: Maximum Entropy Distributions

partial derivatives:

⇒

⇒

uniform 
distribution
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Excursion: Maximum Entropy Distributions

Knowledge available:

Discrete distribution with support { 1, 2, …, n } with pk

 

= P { X = k }   and E[ X ] = 

s.t.

⇒ leads to nonlinear constrained optimization problem:

and 

solution:
 

via Lagrange (find stationary point of Lagrangian function)
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Excursion: Maximum Entropy Distributions

partial derivatives:

⇒

⇒

(continued on next slide)

*(    )
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Excursion: Maximum Entropy Distributions

⇒ ⇒

⇒ discrete Boltzmann distribution

⇒ value of q depends on 
 

via third condition: *(    )
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Excursion: Maximum Entropy Distributions

Boltzmann distribution

(n = 9)



 
= 2



 
= 3



 
= 4



 
= 8



 
= 7



 
= 6

 
= 5

specializes to uniform 
distribution if 

 
= 5 

(as expected)
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Excursion: Maximum Entropy Distributions

Knowledge available:

Discrete distribution with support { 1, 2, …, n } with E[ X ] = 
 

and V[ X ] = 2

s.t.

⇒ leads to nonlinear constrained optimization problem:

and and 

solution:
 

in principle, via Lagrange (find stationary point of Lagrangian function)

but very complicated analytically, if possible at all

⇒ consider special cases only
note: constraints 

are linear 
equations in pk
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Excursion: Maximum Entropy Distributions

Special case:  n = 3 and
 

E[ X ] = 2  and
 

V[ X ] = 2

Linear constraints uniquely determine distribution:

I.

II.

III.

II –

 
I:

I –

 
III:

insertion in III.

unimodal uniform bimodal
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Excursion: Maximum Entropy Distributions

Knowledge available:

Discrete distribution with unbounded support { 0, 1, 2, …
 

} and  E[ X ] = 

s.t.

⇒ leads to infinite-dimensional
 

nonlinear constrained optimization problem:

and 

solution:
 

via Lagrange (find stationary point of Lagrangian function)
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Excursion: Maximum Entropy Distributions

⇒

(continued on next slide)

partial derivatives:

*(    )
⇒
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Excursion: Maximum Entropy Distributions

⇒ ⇒

set and insists that ⇒
insert

⇒ geometrical distributionfor

it remains to specify q;   to proceed recall that
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Excursion: Maximum Entropy Distributions

⇒ value of q depends on 
 

via third condition: *(    )

⇒

⇒
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Excursion: Maximum Entropy Distributions

geometrical distribution

with E[ x ] = 

pk

 

only shown 
for k = 0, 1, …, 8



 
= 1



 
= 2



 
= 3 

 
= 4 

 
= 5



 
= 6



 
= 7
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Excursion: Maximum Entropy Distributions

Overview:

support { 1, 2, …, n }  discrete uniform distribution

and require E[X] =   Boltzmann distribution

and require V[X] = 2

 

 N.N. (not Binomial distribution)

support N
 



 
not defined!

and require E[X] =   geometrical distribution

and require V[X] = 2

 



 
?

support Z
 



 
not defined!

and require E[|X|] =   bi-geometrical distribution (discrete Laplace distr.)

and require E[|X|2] = 2

 



 
N.N. (discrete Gaussian distr.)
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Excursion: Maximum Entropy Distributions

support [a,b] 
 

R
 
 uniform distribution

support R+  with E[X] =   Exponential distribution

support R
 with E[X] = V[X] = 2

 

 normal / Gaussian distribution N(, 2)

support Rn

 with    E[X] = 
 and Cov[X] = C
 

 multinormal distribution N(, C)

expectation vector ∈

 

Rn covariance matrix ∈

 

Rn,n

positive definite: 
∀x ≠

 

0 : x‘Cx > 0
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Excursion: Maximum Entropy Distributions

for permutation distributions ?

Guideline:

Only if you know something about the problem a priori or

if you have learnt something about the problem during the search

 include that knowledge in search / mutation distribution (via constraints!)

→ uniform distribution on all possible permutations

set v[j] = j for j = 1, 2, ..., n

for i = n to 1 step -1

draw k uniformly at random from { 1, 2, ..., i }

swap v[i] and v[k]

endfor 

generates 
permutation 
uniformly at 
random in 
(n) time
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Design of Evolutionary Algorithms

integer search space
 

X = Zn

ad 2)
 

design guidelines for variation operators in practice

a)
 

reachability

b)
 

unbiasedness

c)
 

control

ad a) support of mutation should be Zn

ad b) need maximum entropy distribution over support Zn

ad c) control variability by parameter

→ formulate as constraint of maximum entropy distribution

-
 

every recombination results
 in some z ∈

 
Zn

 -
 

mutation of z may then lead
 to any z* ∈

 
Zn

 

with positive
 probability in one step
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X = Znad 2)
 

design guidelines for variation operators in practice

task: find (symmetric) maximum entropy distribution over Z
 

with E[ | Z | ] = 
 

> 0 

⇒ need
 

analytic solution of a ∞-dimensional, nonlinear optimization problem 
with constraints!

s.t.

max!

(symmetry w.r.t. 0)

(normalization)

(control “spread“)

(nonnegativity)

Z
 

,

Z
 

.

Design of Evolutionary Algorithms
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Design of Evolutionary Algorithms

result:
a random variable Z with support Z

 
and probability distribution

Z

symmetric w.r.t. 0, unimodal, spread manageable by q and has max. entropy     ■

generation of pseudo random numbers: Z = G1

 

– G2

where

stochastic 
independent!
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Design of Evolutionary Algorithms

probability distributions for different mean step sizes E|Z| = 



Lecture 10

G. Rudolph: Computational Intelligence ▪

 

Winter Term 2012/13
33

Design of Evolutionary Algorithms

probability distributions for different mean step sizes E|Z| = 
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Design of Evolutionary Algorithms

How to control the spread?

make mean step size
 

adjustable!

→ 
 

adjustable by mutative self adaptation

∈

 
R+ ∈

 
(0,1)

→ get q from 

We must be able to adapt q ∈
 

(0,1) for generating Z with variable E|Z| = 
 

!

self-adaptation of q in open interval (0,1) ?

like mutative step size size control 
of 

 
in EA with search space Rn

 

!
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Design of Evolutionary Algorithms

n - dimensional generalization

n = 2

random vector Z = (Z1

 

, Z2

 

, ... Zn

 

)

with Zi

 

= G1,i

 

– G2,i   (stoch. indep.);

parameter q for all G1i

 

, G2i

 

equal
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Design of Evolutionary Algorithms

n - dimensional generalization

⇒ n-dimensional distribution is symmetric w.r.t.   1
 

norm!

⇒ all random vectors with same step length have same probability!
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Design of Evolutionary Algorithms

How to control E[ || Z ||1 ] ?

by def. linearity of E[·] identical distributions for Zi


self-adaptation calculate from 
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Design of Evolutionary Algorithms

(Rudolph, PPSN 1994)

Algorithm:

Zn ×

 
R+
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Excursion: Maximum Entropy Distributions

continuous search space
 

X = Rn

ad 2)
 

design guidelines for variation operators in practice

a)
 

reachability

b)
 

unbiasedness

c)
 

control

leads to CMA-ES


