
Computational Intelligence
Winter Term 2011/12

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

rudolph
Schreibmaschinentext

rudolph
Schreibmaschinentext

rudolph
Schreibmaschinentext

rudolph
Schreibmaschinentext
Note: The following slides are taken from the lecture notes of Thomas Jansen by permission.

Introduction Fitness-Based Partitions Lower Bounds

Plans for Today

1 Introduction
Motivation

2 Fitness-Based Partitions
Method of Fitness-Based Partitions
Application

3 Lower Bounds
Direct Lower Bounds
Drift Analysis

355

Introduction Fitness-Based Partitions Lower Bounds

Evolutionary Algorithms

We know

• what evolutionary algorithms are and

• how we can design evolutionary algorithms.

What do we want to do now?

What do we do if we design a problem-specific algorithm?

1 prove its correctness

2 analyze its performance: (expected) run time

What does this mean for evolutionary algorithms in the context of
optimization?

1 prove that max. f -value in population converges to global
max. of f for t→∞

2 analyze how long this takes on average: expected optimization
time

356

Introduction Fitness-Based Partitions Lower Bounds

Analysis of Evolutionary Algorithms

What kind of evolutionary algorithms do we want to analyze?

clearly all kinds of evolutionary algorithms

more realistic very simple evolutionary algorithms
at least as starting point

For what kind of problems do we want to do analysis?

clearly all kinds of problems

more realistic very simple problems — “toy problems”
at least as starting point

357

Introduction Fitness-Based Partitions Lower Bounds

On “Toy Problems”

better term example problems

Why should we care?

• support analysis, help to develop analytical tools

• are easy to understand, are clearly structured

• present typical situations in a paradigmatic way

• make important aspects visible

• act as counter examples

• help to discover general properties

• are important tools for further design and analyis

358

Introduction Fitness-Based Partitions Lower Bounds

Upper bounds with f -based partitions
Method of f -based partitions works well with plus-selection.

Definition

Let f : {0, 1}n → R. A partition L0, L1, . . . , Lk of {0, 1}n is called
f -based partition iff the following holds.

1 ∀i, j ∈ {0, . . . , k} : ∀x ∈ Li : ∀y ∈ Lj : (i < j ⇒ f(x) < f(y))

2 Lk = {x ∈ {0, 1}n | f(x) = max {f(y) | y ∈ {0, 1}n}}

Often the trivial f -based parition works well.

k := |{f(x) | x ∈ {0, 1}n}| − 1

{f(x) | x ∈ {0, 1}n} = {f0, f1, . . . , fk} with f0 < f1 < · · · < fk

for i ∈ {0, 1, . . . , k} : Li := {x ∈ {0, 1}n | f(x) = fi}
359

Introduction Fitness-Based Partitions Lower Bounds

Example: (1+1) EA on OneMax

OneMax : {0, 1}n → R with OneMax(x) :=
n
∑

i=1
xi

The (1+1) EA

1. Initialization
Choose x ∈ {0, 1}n uniformaly at random.

2. Mutation
y := mutate(x); (standard bit mutations, pm = 1/n)

3. Selection
If f(y) ≥ f(x), Then x := y.

4. “Stoppping Criterion”
Continue at line 2.

360

Introduction Fitness-Based Partitions Lower Bounds

Method: f -based partitions

Key Observation:
(1+1) EA leaves each fitness layer at most once.

Lower bound on the probability to leave Li:

si := min
x∈Li

k
∑

j=i+1

∑

y∈Lj

p
H(x,y)
m · (1− pm)n−H(x,y)

Upper bound on the expected time needed to leave Li:
E (time to leave Li) ≤ 1/si

Upper bound on the expected optimization time:

E
(

T(1+1) EA,f

)

≤
k−1
∑

i=0
1/si

361

Introduction Fitness-Based Partitions Lower Bounds

Upper Bound: (1+1) EA on OneMax

Use trivial OneMax-based partition.

To leave Li, flip exactly 1 out of n− i 0-bits.

si ≥
(n−i

1

)

· 1
n ·
(

1− 1
n

)n−1
≥ n−ien

E
(

T(1+1) EA,OneMax

)

≤
n−1
∑

i=0

en

n− i
= en ·

n
∑

i=1

1

i

< en ln(n) + en

= O(n log n)

362

Introduction Fitness-Based Partitions Lower Bounds

Linear Functions

Observation OneMax(x) =
n
∑

i=1
x[i]

is of the form f(x) = w0 +
n
∑

i=1
wi · x[i]

Definition f : {0, 1}n → R is called linear

if f is of the form f(x) = w0 +
n
∑

i=1
wi · x[i]

Are all linear functions like OneMax?

Definition different extreme example
BinVal : {0, 1}n → R with

BinVal(x) =
n
∑

i=1
2n−i · x[i]

363

Introduction Fitness-Based Partitions Lower Bounds

Upper bound for E
(

T(1+1) EA,BinVal

)

Consider trivial fitness levels
∀i ∈ {0, 1, . . . , 2n − 1} : Li := {x ∈ {0, 1}n | BinVal(x) = i}

without considering si at best upper bound ≥ 2n − 1 achievable

Observation for good upper bounds number of fitness levels
needs to be small

Try more clever fitness levels
∀i ∈ {0, 1, . . . , n− 1} :

Li :=

{

x ∈ {0, 1}n \

(

i−1
⋃

j=0
Lj

)

| BinVal(x) <
i
∑

j=0
2n−1−j

}

364

Introduction Fitness-Based Partitions Lower Bounds

Upper bound for E
(

T(1+1) EA,BinVal

)

(II)

∀i ∈ {0, 1, . . . , n− 1} :

Li :=

{

x ∈ {0, 1}n \

(

i−1
⋃

j=0
Lj

)

| BinVal(x) <
i
∑

j=0
2n−1−j

}

obvious si ≥
1
n

(

1− 1
n

)n−1
≥ 1
en

Theorem E
(

T(1+1) EA,BinVal

)

≤ en2

365

Introduction Fitness-Based Partitions Lower Bounds

Upper bounds for linear functions

Theorem f linear ⇒ E
(

T(1+1) EA,f

)

= O(n2)

Proof f(x) =
n
∑

i=1
wix[i] mit w1 ≥ w2 ≥ · · · ≥ wn

Definition fitness levels for i ∈ {0, 1, . . . , n− 1}

Li :=

{

x ∈ {0, 1}n \

(

i−1
⋃

j=0
Lj

)

| f(x) <
i+1
∑

j=1
wj

}

Ln := {1n}

Observation in order to leave Li:
sufficient to mutate left-most 0-bit

thus E
(

T(1+1) EA,f

)

≤ en2

366

Introduction Fitness-Based Partitions Lower Bounds

A lower bound for the (1+1) EA on OneMax

The unique global optimum of OneMax is 1n.

Event A: Initially, there are ≥ ⌊n/2⌋ 0-bits.

Total Probability Theorem:

E
(

T(1+1) EA,OneMax

)

≥ Prob (A) · E
(

T(1+1) EA,OneMax | A
)

Prob (A) ≥ 1/2

All these ⌊n/2⌋ bits need to be mutated at least once.

∀t ∈ N : E
(

T(1+1) EA,OneMax | A
)

≥ t · Prob
(

T(1+1) EA,OneMax > t | A
)

Clearly: Prob
(

T(1+1) EA,OneMax > t | A
)

≥ Prob (∃ bit from these ⌊n/2⌋ bits without mutation)

370

Introduction Fitness-Based Partitions Lower Bounds

On mutating bits. . .

Prob (1 specific bit flips) = 1
n

Prob (1 specfic bit does not flip) = 1− 1
n

Prob (1 specific bit does not flip in t steps) =
(

1− 1
n

)t

Prob (1 specific bit flips at least once in t steps) = 1−
(

1− 1
n

)t

Prob (⌊n/2⌋ specific bits all flip at least once in t steps)

=

(

1−
(

1− 1
n

)t
)⌊n/2⌋

Prob (∃ bit out of ⌊n/2⌋ specific bits that never flips in t steps)

= 1−

(

1−
(

1− 1
n

)t
)⌊n/2⌋

371

Introduction Fitness-Based Partitions Lower Bounds

Choosing t appropriately. . .
Prob (∃ bit out of ⌊n/2⌋ specific bits that never flips in t steps)

= 1−

(

1−
(

1− 1
n

)t
)⌊n/2⌋

t := (n− 1) ln n

Prob (· · ·) = 1−

(

1−

(

1−
1

n

)(n−1) lnn
)⌊n/2⌋

≥ 1−

(

1−

(

1

e

)lnn
)⌊n/2⌋

≥ 1−

(

1−
1

n

)⌊n/2⌋

≥ 1−

(

1

e

)1/2

= 1− e−1/2 > 0.39

372

Introduction Fitness-Based Partitions Lower Bounds

Putting things together. . .

Prob
(

T(1+1) EA,OneMax > (n− 1) ln n | A
)

≥ 1− e−1/2

E
(

T(1+1) EA,OneMax | A
)

≥ (n− 1) ln n · Prob
(

T(1+1) EA,OneMax > t | A
)

≥
(

1− e−1/2
)

(n− 1) ln n

E
(

T(1+1) EA,OneMax

)

≥ Prob (A) · E
(

T(1+1) EA,OneMax | A
)

≥ 1
2 ·
(

1− e−1/2
)

(n− 1) ln n

> 0.19(n − 1) ln n = Ω(n log n)

Conclusion: E
(

T(1+1) EA,OneMax

)

= Θ(n log n)

373

Introduction Fitness-Based Partitions Lower Bounds

The Coupon Collector Theorem

Scenario Collect coupons of n different types
unless you have at least one of each type.
Obtain single coupons, each time independently
each type with equal probability.
Let T be the number of coupons obtained at the end.

Theorem

1 E (T) = n lnn+O(n)

2 ∀β ≥ 1: Prob (T > βn ln n) ≤ n−(β−1)

3 ∀c ∈ R : Prob (T > n ln n+ cn) ≤ 1− e−e
−c

374

Introduction Fitness-Based Partitions Lower Bounds

A More Flexibel Proof Method

Observations

• f -based partitions restricted to “well behaving” functions

• direct lower bound often too difficult

How can we find a more flexibel method?

Observation f -based partition measure progress by f(xt+1)− f(xt)

Idea consider a more general measure of progress

Define distance d : Z → R
+
0 , (Z set of all populations)

with d(P) = 0⇔ P contains optimal solution

Caution “Distance” need not be a metric!

375

Introduction Fitness-Based Partitions Lower Bounds

Drift

Define distance d : Z → R
+
0 , (Z set of all populations)

with d(P) = 0⇔ P contains optimal solution

Observation T = min{t | d(Pt) = 0}

Consider maximum distance M := max {d(P) | P ∈ Z},
decrease in distance Dt := d(Pt−1)− d(Pt)

Definition E (Dt | T ≥ t) is called drift.

Pessimistic point of view ∆ := min {E (Dt | T ≥ t) | t ∈ N0}

Drift Theorem (Upper Bound) ∆ > 0⇒ E (T) ≤M/∆

376

Introduction Fitness-Based Partitions Lower Bounds

Upper Bound Drift Theorem

Theorem (Drift Theorem (Upper Bound))

Let A be some evolutionary algorithm, Pt its t-th population, f
some function, Z the set of all possible populations, d : Z → R

+
0

some distance measure with

d(P) = 0⇔ P contains an optimum of f ,
M = max{d(P) | P ∈ Z}, Dt := d(Pt−1)− d(Pt),
∆ := min {E (Dt | T ≥ t) | t ∈ N0}.
∆ > 0⇒ E (TA,f) ≤M/∆

Proof

Observe M ≥ E

(

T
∑

t=1
Dt

)

377

Introduction Fitness-Based Partitions Lower Bounds

Proof of the Drift Theorem (Upper Bound)

M ≥ E

(

T
∑

t=1

Dt

)

=
∞
∑

t=1

Prob (T = t) · E

(

T
∑

i=1

Di | T = t

)

=
∞
∑

t=1

Prob (T = t) ·
t
∑

i=1

E (Di | T = t)

=
∞
∑

t=1

t
∑

i=1

Prob (T = t) · E (Di | T = t)

=
∞
∑

i=1

∞
∑

t=i

Prob (T = t) · E (Di | T = t)

378

Introduction Fitness-Based Partitions Lower Bounds

Proof of the Drift Theorem (Upper Bound) (cont.)

M ≥
∞
∑

i=1

∞
∑

t=i

Prob (T = t) · E (Di | T = t)

=
∞
∑

i=1

∞
∑

t=i

Prob (T ≥ i) · Prob (T = t | T ≥ i) · E (Di | T = t)

=
∞
∑

i=1

Prob (T ≥ i)
∞
∑

t=i

Prob (T = t | T ≥ i) · E (Di | T = t ∧ T ≥ i)

=
∞
∑

i=1

Prob (T ≥ i)
∞
∑

t=1

Prob (T = t | T ≥ i) · E (Di | T = t ∧ T ≥ i)

=
∞
∑

i=1

Prob (T ≥ i) E (Di | T ≥ i) ≥ ∆ ·
∞
∑

i=1

Prob (T ≥ i) = ∆ · E (T)

thus E (T) ≤ M∆

379

Introduction Fitness-Based Partitions Lower Bounds

LeadingOnes Using the Drift Theorem

Remember E
(

T(1+1) EA,LeadingOnes

)

= O(n2)

using f -based partitions

Definition d(x) := n− LeadingOnes(x)

Observe M = max {d(x) | x ∈ {0, 1}n} = n

Observe E (d(xt−1)− d(xt) | T > t) ≥ 1 · 1
n ·
(

1− 1
n

)n−1
≥ 1
en

Thus E (T) ≤ n
1/en = en2

same result Is there no advantage?

Advantage being more general and applicable

Example f -based partitions not applicable
for comma selection

380

Introduction Fitness-Based Partitions Lower Bounds

(1, n) EA and LeadingOnes

Theorem E
(

T(1, n) EA,LeadingOnes

)

= O(n2)

Proof with drift analysis
d(x) := n− LeadingOnes(x) thus M = n

E (d(xt−1)− d(xt) | T > t)

≥ 1 ·

(

1−

(

1−
1

en

)n)

− n ·

(

1−

(

1−
1

n

)n)n

= Ω(1)

thus E (T) = O(n)

thus E
(

T(1, n) EA,LeadingOnes

)

= n · E (T) = O(n2)

381

Introduction Fitness-Based Partitions Lower Bounds

Another Drift Theorem

Remember distance d : Z → R
+
0 with d(P) = 0⇔ P optimal

M := max {d(P) | P ∈ Z}, Dt := d(Pt−1)− d(Pt)
∆ := min {E (Dt | T ≥ t) | t ∈ N0}
∆ > 0⇒ E (T) ≤ M∆

Observe M can be replaced by E (d(P0))

In addition

Theorem Let d : Z → N0 be distance, rest as before.

∃c ∈ R
+ : ∀Pt−1 : E (d(Pt−1)− d(Pt) | Pt) ≥

d(Pt−1)
c

⇒ E (T) ≤ c · E
(

Hd(P0)

)

Proof idea Apply drift theorem to d′ := Hd.
382

Introduction Fitness-Based Partitions Lower Bounds

Proving the Logarithmic Drift Theorem

Theorem Let d : Z → N0 be distance, rest as before.

∃c ∈ R
+ : ∀Pt−1 : E (d(Pt−1)− d(Pt) | Pt) ≥

d(Pt−1)
c

⇒ E (T) ≤ c · E
(

Hd(P0)

)

Proof Observe Hd(P) = 0⇔ d(P) = 0

Compute Hk −Hl =
k
∑

i=1

1
i −

l
∑

i=1

1
i

=
k
∑

i=l+1

1
i ≥

k−l
k

thus E
(

Hd(Pt−1) −Hd(Pt) | Pt−1

)

≥ E
(

d(Pt−1)−d(Pt)
d(Pt−1) | Pt−1

)

= E(d(Pt−1)−d(Pt)|Pt−1)
d(Pt−1) ≥ 1

c

thus E (T) ≤ c · E
(

Hd(P0)

)

383

	lec12.pdf
	lec12-a
	Introduction
	Motivation

	Fitness-Based Partitions
	Method of Fitness-Based Partitions
	Application

	Lower Bounds
	Direct Lower Bounds
	Drift Analysis

