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Introduction Fitness-Based Partitions Lower Bounds

Evolutionary Algorithms

We know

• what evolutionary algorithms are and

• how we can design evolutionary algorithms.

What do we want to do now?

What do we do if we design a problem-specific algorithm?

1 prove its correctness

2 analyze its performance: (expected) run time

What does this mean for evolutionary algorithms in the context of
optimization?

1 prove that max. f -value in population converges to global
max. of f for t→∞

2 analyze how long this takes on average: expected optimization
time
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Introduction Fitness-Based Partitions Lower Bounds

Analysis of Evolutionary Algorithms

What kind of evolutionary algorithms do we want to analyze?

clearly all kinds of evolutionary algorithms

more realistic very simple evolutionary algorithms
at least as starting point

For what kind of problems do we want to do analysis?

clearly all kinds of problems

more realistic very simple problems — “toy problems”
at least as starting point
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Introduction Fitness-Based Partitions Lower Bounds

On “Toy Problems”

better term example problems

Why should we care?

• support analysis, help to develop analytical tools

• are easy to understand, are clearly structured

• present typical situations in a paradigmatic way

• make important aspects visible

• act as counter examples

• help to discover general properties

• are important tools for further design and analyis
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Introduction Fitness-Based Partitions Lower Bounds

Upper bounds with f -based partitions
Method of f -based partitions works well with plus-selection.

Definition

Let f : {0, 1}n → R. A partition L0, L1, . . . , Lk of {0, 1}n is called
f -based partition iff the following holds.

1 ∀i, j ∈ {0, . . . , k} : ∀x ∈ Li : ∀y ∈ Lj : (i < j ⇒ f(x) < f(y))

2 Lk = {x ∈ {0, 1}n | f(x) = max {f(y) | y ∈ {0, 1}n}}

Often the trivial f -based parition works well.

k := |{f(x) | x ∈ {0, 1}n}| − 1

{f(x) | x ∈ {0, 1}n} = {f0, f1, . . . , fk} with f0 < f1 < · · · < fk

for i ∈ {0, 1, . . . , k} : Li := {x ∈ {0, 1}n | f(x) = fi}
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Introduction Fitness-Based Partitions Lower Bounds

Example: (1+1) EA on OneMax

OneMax : {0, 1}n → R with OneMax(x) :=
n
∑

i=1
xi

The (1+1) EA

1. Initialization
Choose x ∈ {0, 1}n uniformaly at random.

2. Mutation
y := mutate(x); (standard bit mutations, pm = 1/n)

3. Selection
If f(y) ≥ f(x), Then x := y.

4. “Stoppping Criterion”
Continue at line 2.
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Introduction Fitness-Based Partitions Lower Bounds

Method: f -based partitions

Key Observation:
(1+1) EA leaves each fitness layer at most once.

Lower bound on the probability to leave Li:

si := min
x∈Li

k
∑

j=i+1

∑

y∈Lj

p
H(x,y)
m · (1− pm)n−H(x,y)

Upper bound on the expected time needed to leave Li:
E (time to leave Li) ≤ 1/si

Upper bound on the expected optimization time:

E
(

T(1+1) EA,f

)

≤
k−1
∑

i=0
1/si
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Introduction Fitness-Based Partitions Lower Bounds

Upper Bound: (1+1) EA on OneMax

Use trivial OneMax-based partition.

To leave Li, flip exactly 1 out of n− i 0-bits.

si ≥
(n−i

1

)

· 1
n ·
(

1− 1
n

)n−1
≥ n−ien

E
(

T(1+1) EA,OneMax

)

≤
n−1
∑

i=0

en

n− i
= en ·

n
∑

i=1

1

i

< en ln(n) + en

= O(n log n)
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Introduction Fitness-Based Partitions Lower Bounds

Linear Functions

Observation OneMax(x) =
n
∑

i=1
x[i]

is of the form f(x) = w0 +
n
∑

i=1
wi · x[i]

Definition f : {0, 1}n → R is called linear

if f is of the form f(x) = w0 +
n
∑

i=1
wi · x[i]

Are all linear functions like OneMax?

Definition different extreme example
BinVal : {0, 1}n → R with

BinVal(x) =
n
∑

i=1
2n−i · x[i]
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Introduction Fitness-Based Partitions Lower Bounds

Upper bound for E
(

T(1+1) EA,BinVal

)

Consider trivial fitness levels
∀i ∈ {0, 1, . . . , 2n − 1} : Li := {x ∈ {0, 1}n | BinVal(x) = i}

without considering si at best upper bound ≥ 2n − 1 achievable

Observation for good upper bounds number of fitness levels
needs to be small

Try more clever fitness levels
∀i ∈ {0, 1, . . . , n− 1} :

Li :=

{

x ∈ {0, 1}n \

(

i−1
⋃

j=0
Lj

)

| BinVal(x) <
i
∑

j=0
2n−1−j

}
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Introduction Fitness-Based Partitions Lower Bounds

Upper bound for E
(

T(1+1) EA,BinVal

)

(II)

∀i ∈ {0, 1, . . . , n− 1} :

Li :=

{

x ∈ {0, 1}n \

(

i−1
⋃

j=0
Lj

)

| BinVal(x) <
i
∑

j=0
2n−1−j

}

obvious si ≥
1
n

(

1− 1
n

)n−1
≥ 1
en

Theorem E
(

T(1+1) EA,BinVal

)

≤ en2
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Introduction Fitness-Based Partitions Lower Bounds

Upper bounds for linear functions

Theorem f linear ⇒ E
(

T(1+1) EA,f

)

= O(n2)

Proof f(x) =
n
∑

i=1
wix[i] mit w1 ≥ w2 ≥ · · · ≥ wn

Definition fitness levels for i ∈ {0, 1, . . . , n− 1}

Li :=

{

x ∈ {0, 1}n \

(

i−1
⋃

j=0
Lj

)

| f(x) <
i+1
∑

j=1
wj

}

Ln := {1n}

Observation in order to leave Li:
sufficient to mutate left-most 0-bit

thus E
(

T(1+1) EA,f

)

≤ en2
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Introduction Fitness-Based Partitions Lower Bounds

A lower bound for the (1+1) EA on OneMax

The unique global optimum of OneMax is 1n.

Event A: Initially, there are ≥ ⌊n/2⌋ 0-bits.

Total Probability Theorem:

E
(

T(1+1) EA,OneMax

)

≥ Prob (A) · E
(

T(1+1) EA,OneMax | A
)

Prob (A) ≥ 1/2

All these ⌊n/2⌋ bits need to be mutated at least once.

∀t ∈ N : E
(

T(1+1) EA,OneMax | A
)

≥ t · Prob
(

T(1+1) EA,OneMax > t | A
)

Clearly: Prob
(

T(1+1) EA,OneMax > t | A
)

≥ Prob (∃ bit from these ⌊n/2⌋ bits without mutation)
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Introduction Fitness-Based Partitions Lower Bounds

On mutating bits. . .

Prob (1 specific bit flips) = 1
n

Prob (1 specfic bit does not flip) = 1− 1
n

Prob (1 specific bit does not flip in t steps) =
(

1− 1
n

)t

Prob (1 specific bit flips at least once in t steps) = 1−
(

1− 1
n

)t

Prob (⌊n/2⌋ specific bits all flip at least once in t steps)

=

(

1−
(

1− 1
n

)t
)⌊n/2⌋

Prob (∃ bit out of ⌊n/2⌋ specific bits that never flips in t steps)

= 1−

(

1−
(

1− 1
n

)t
)⌊n/2⌋
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Introduction Fitness-Based Partitions Lower Bounds

Choosing t appropriately. . .
Prob (∃ bit out of ⌊n/2⌋ specific bits that never flips in t steps)

= 1−

(

1−
(

1− 1
n

)t
)⌊n/2⌋

t := (n− 1) ln n

Prob (· · · ) = 1−

(

1−

(

1−
1

n

)(n−1) lnn
)⌊n/2⌋

≥ 1−

(

1−

(

1

e

)lnn
)⌊n/2⌋

≥ 1−

(

1−
1

n

)⌊n/2⌋

≥ 1−

(

1

e

)1/2

= 1− e−1/2 > 0.39
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Introduction Fitness-Based Partitions Lower Bounds

Putting things together. . .

Prob
(

T(1+1) EA,OneMax > (n− 1) ln n | A
)

≥ 1− e−1/2

E
(

T(1+1) EA,OneMax | A
)

≥ (n− 1) ln n · Prob
(

T(1+1) EA,OneMax > t | A
)

≥
(

1− e−1/2
)

(n− 1) ln n

E
(

T(1+1) EA,OneMax

)

≥ Prob (A) · E
(

T(1+1) EA,OneMax | A
)

≥ 1
2 ·
(

1− e−1/2
)

(n− 1) ln n

> 0.19(n − 1) ln n = Ω(n log n)

Conclusion: E
(

T(1+1) EA,OneMax

)

= Θ(n log n)
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Introduction Fitness-Based Partitions Lower Bounds

The Coupon Collector Theorem

Scenario Collect coupons of n different types
unless you have at least one of each type.
Obtain single coupons, each time independently
each type with equal probability.
Let T be the number of coupons obtained at the end.

Theorem

1 E (T ) = n lnn+O(n)

2 ∀β ≥ 1: Prob (T > βn ln n) ≤ n−(β−1)

3 ∀c ∈ R : Prob (T > n ln n+ cn) ≤ 1− e−e
−c
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Introduction Fitness-Based Partitions Lower Bounds

A More Flexibel Proof Method

Observations

• f -based partitions restricted to “well behaving” functions

• direct lower bound often too difficult

How can we find a more flexibel method?

Observation f -based partition measure progress by f(xt+1)− f(xt)

Idea consider a more general measure of progress

Define distance d : Z → R
+
0 , (Z set of all populations)

with d(P ) = 0⇔ P contains optimal solution

Caution “Distance” need not be a metric!
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Introduction Fitness-Based Partitions Lower Bounds

Drift

Define distance d : Z → R
+
0 , (Z set of all populations)

with d(P ) = 0⇔ P contains optimal solution

Observation T = min{t | d(Pt) = 0}

Consider maximum distance M := max {d(P ) | P ∈ Z},
decrease in distance Dt := d(Pt−1)− d(Pt)

Definition E (Dt | T ≥ t) is called drift.

Pessimistic point of view ∆ := min {E (Dt | T ≥ t) | t ∈ N0}

Drift Theorem (Upper Bound) ∆ > 0⇒ E (T ) ≤M/∆
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Introduction Fitness-Based Partitions Lower Bounds

Upper Bound Drift Theorem

Theorem (Drift Theorem (Upper Bound))

Let A be some evolutionary algorithm, Pt its t-th population, f
some function, Z the set of all possible populations, d : Z → R

+
0

some distance measure with

d(P ) = 0⇔ P contains an optimum of f ,
M = max{d(P ) | P ∈ Z}, Dt := d(Pt−1)− d(Pt),
∆ := min {E (Dt | T ≥ t) | t ∈ N0}.
∆ > 0⇒ E (TA,f ) ≤M/∆

Proof

Observe M ≥ E

(

T
∑

t=1
Dt

)
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Introduction Fitness-Based Partitions Lower Bounds

Proof of the Drift Theorem (Upper Bound)

M ≥ E

(

T
∑

t=1

Dt

)

=
∞
∑

t=1

Prob (T = t) · E

(

T
∑

i=1

Di | T = t

)

=
∞
∑

t=1

Prob (T = t) ·
t
∑

i=1

E (Di | T = t)

=
∞
∑

t=1

t
∑

i=1

Prob (T = t) · E (Di | T = t)

=
∞
∑

i=1

∞
∑

t=i

Prob (T = t) · E (Di | T = t)
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Introduction Fitness-Based Partitions Lower Bounds

Proof of the Drift Theorem (Upper Bound) (cont.)

M ≥
∞
∑

i=1

∞
∑

t=i

Prob (T = t) · E (Di | T = t)

=
∞
∑

i=1

∞
∑

t=i

Prob (T ≥ i) · Prob (T = t | T ≥ i) · E (Di | T = t)

=
∞
∑

i=1

Prob (T ≥ i)
∞
∑

t=i

Prob (T = t | T ≥ i) · E (Di | T = t ∧ T ≥ i)

=
∞
∑

i=1

Prob (T ≥ i)
∞
∑

t=1

Prob (T = t | T ≥ i) · E (Di | T = t ∧ T ≥ i)

=
∞
∑

i=1

Prob (T ≥ i) E (Di | T ≥ i) ≥ ∆ ·
∞
∑

i=1

Prob (T ≥ i) = ∆ · E (T )

thus E (T ) ≤ M∆
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Introduction Fitness-Based Partitions Lower Bounds

LeadingOnes Using the Drift Theorem

Remember E
(

T(1+1) EA,LeadingOnes

)

= O(n2)

using f -based partitions

Definition d(x) := n− LeadingOnes(x)

Observe M = max {d(x) | x ∈ {0, 1}n} = n

Observe E (d(xt−1)− d(xt) | T > t) ≥ 1 · 1
n ·
(

1− 1
n

)n−1
≥ 1
en

Thus E (T ) ≤ n
1/en = en2

same result Is there no advantage?

Advantage being more general and applicable

Example f -based partitions not applicable
for comma selection
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Introduction Fitness-Based Partitions Lower Bounds

(1, n) EA and LeadingOnes

Theorem E
(

T(1, n) EA,LeadingOnes

)

= O(n2)

Proof with drift analysis
d(x) := n− LeadingOnes(x) thus M = n

E (d(xt−1)− d(xt) | T > t)

≥ 1 ·

(

1−

(

1−
1

en

)n)

− n ·

(

1−

(

1−
1

n

)n)n

= Ω(1)

thus E (T ) = O(n)

thus E
(

T(1, n) EA,LeadingOnes

)

= n · E (T ) = O(n2)
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Introduction Fitness-Based Partitions Lower Bounds

Another Drift Theorem

Remember distance d : Z → R
+
0 with d(P ) = 0⇔ P optimal

M := max {d(P ) | P ∈ Z}, Dt := d(Pt−1)− d(Pt)
∆ := min {E (Dt | T ≥ t) | t ∈ N0}
∆ > 0⇒ E (T ) ≤ M∆

Observe M can be replaced by E (d(P0))

In addition

Theorem Let d : Z → N0 be distance, rest as before.

∃c ∈ R
+ : ∀Pt−1 : E (d(Pt−1)− d(Pt) | Pt) ≥

d(Pt−1)
c

⇒ E (T ) ≤ c · E
(

Hd(P0)

)

Proof idea Apply drift theorem to d′ := Hd.
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Introduction Fitness-Based Partitions Lower Bounds

Proving the Logarithmic Drift Theorem

Theorem Let d : Z → N0 be distance, rest as before.

∃c ∈ R
+ : ∀Pt−1 : E (d(Pt−1)− d(Pt) | Pt) ≥

d(Pt−1)
c

⇒ E (T ) ≤ c · E
(

Hd(P0)

)

Proof Observe Hd(P ) = 0⇔ d(P ) = 0

Compute Hk −Hl =
k
∑

i=1

1
i −

l
∑

i=1

1
i

=
k
∑

i=l+1

1
i ≥

k−l
k

thus E
(

Hd(Pt−1) −Hd(Pt) | Pt−1

)

≥ E
(

d(Pt−1)−d(Pt)
d(Pt−1) | Pt−1

)

= E(d(Pt−1)−d(Pt)|Pt−1)
d(Pt−1) ≥ 1

c

thus E (T ) ≤ c · E
(

Hd(P0)

)
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