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Design of Evolutionary Algorithms

Three tasks:

1.
 

Choice of an appropriate problem representation.

2.
 

Choice / design of variation operators acting in problem representation.

3.
 

Choice of strategy parameters (includes initialization).

ad 1)
 

different “schools“:

(a) operate on binary representation and define genotype/phenotype mapping
 + can use standard algorithm

 – mapping may induce unintentional bias in search

(b) no doctrine: use “most natural”
 

representation 
– must design variation operators for specific representation

 + if design done properly then no bias in search 
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Design of Evolutionary Algorithms

ad 1a)
 

genotype-phenotype mapping

original problem  f: X → Rd

scenario: no standard algorithm for search space X available

Bn

X Rdf

g

• standard EA performs variation on binary strings b ∈
 

Bn

• fitness evaluation of individual b via (f ◦
 

g)(b) = f(g(b)) 
where g: Bn

 

→ X is genotype-phenotype mapping

• selection operation independent from representation
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Design of Evolutionary Algorithms

Genotype-Phenotype-Mapping  Bn

 

→ [L, R] 
 

R

● Standard encoding for b 
 

Bn

→ Problem: hamming cliffs

000 001 010 011 100 101 110 111

0 1 2 3 4 5 6 7

L = 0, R = 7

n = 3

1 Bit 2 Bit 1 Bit 3 Bit 1 Bit 2 Bit 1 Bit

Hamming cliff

genotype

phenotype
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Design of Evolutionary Algorithms

● Gray encoding for b 
 

Bn

000 001 011 010 110 111 101 100

0 1 2 3 4 5 6 7

Let a 
 

Bn

 

standard encoded.  Then bi

 

= 
ai

 

, if i = 1

ai-1

 



 
ai

 

, if i > 1


 
= XOR

genotype

phenotype

OK, no hamming cliffs any longer …

 small changes in phenotype „lead to“
 

small changes in genotype

since we consider evolution in terms of Darwin (not Lamarck):

 small changes in genotype lead to small changes in phenotype!

but: 1-Bit-change:  000 → 100  

Genotype-Phenotype-Mapping  Bn

 

→ [L, R] 
 

R
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Design of Evolutionary Algorithms

● e.g. standard encoding for b 
 

Bn

010 101 111 000 110 001 101 100

0 1 2 3 4 5 6 7

genotype

index

Genotype-Phenotype-Mapping  Bn

 

→ Plog(n)

individual:

consider index and associated genotype entry as unit / record / struct;

sort units with respect to genotype value, old indices yield permutation:

000 001 010 100 101 101 110 111

3 5 0 7 1 6 4 2

genotype

old index

(example only)

= permutation
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Design of Evolutionary Algorithms

ad 1a)
 

genotype-phenotype mapping

typically required: strong causality

→ small changes in individual leads to small changes in fitness

→ small changes in genotype should lead to small changes in phenotype

but: how to find a genotype-phenotype mapping with that property?

necessary conditions: 
1) g: Bn

 

→ X can be computed efficiently (otherwise it is senseless)

2) g: Bn

 

→ X is surjective (otherwise we might miss the optimal solution)

3) g: Bn

 

→ X preserves closeness (otherwise strong causality endangered)

Let d(·
 

, ·) be a metric on Bn

 

and dX

 

(·
 

, ·) be a metric on X.

∀x, y, z ∈
 

Bn : d(x, y) ≤
 

d(x, z)  ⇒ dX

 

(g(x), g(y)) ≤
 

dX

 

(g(x), g(z)) 
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Design of Evolutionary Algorithms

ad 1b)
 

use “most natural“
 

representation

but: how to find variation operators with that property?

typically required: strong causality

→ small changes in individual leads to small changes in fitness

→ need variation operators that obey that requirement

⇒ need design guidelines ...
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Design of Evolutionary Algorithms

ad 2)
 

design guidelines for variation operators

a) reachability 
every x ∈

 
X should be reachable from arbitrary x0

 

∈

 
X

 after finite number of repeated variations with positive probability bounded from 0

b) unbiasedness 

unless having gathered knowledge about problem
 variation operator should not favor particular subsets of solutions

 ⇒ formally: maximum entropy principle

c) control 

variation operator should have parameters affecting shape of distributions;
 known from theory: weaken variation strength when approaching optimum
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Design of Evolutionary Algorithms

ad 2)
 

design guidelines for variation operators in practice

binary search space
 

X = Bn

variation by k-point or uniform crossover and subsequent mutation

a) reachability:
 regardless of the output of crossover

 we can move from x ∈
 

Bn

 

to y ∈
 

Bn

 

in 1 step with probability

where H(x,y) is Hamming distance between x and y.

Since min{ p(x,y): x,y ∈
 

Bn

 

} = 
 

> 0 we are done.
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Design of Evolutionary Algorithms

b) unbiasedness

don‘t prefer any direction or subset of points without reason

⇒ use maximum entropy distribution for sampling!

properties:

- distributes probability mass as uniform as possible

-
 

additional knowledge can be included as constraints:
 → under given constraints sample as uniform as possible
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Design of Evolutionary Algorithms

Definition:

Let X be discrete random variable (r.v.) with pk

 

= P{ X = xk

 

} for some index set K.
 The quantity

is called the entropy of the distribution of X. If X is a continuous r.v. with p.d.f. 
fX

 

(·) then the entropy is given by

The distribution of a random variable X for which H(X) is maximal is termed a 
maximum entropy distribution.

 
■

Formally:
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Excursion: Maximum Entropy Distributions

Knowledge available:

Discrete distribution with support { x1

 

, x2

 

, …
 

xn

 

} with x1

 

< x2

 

< …
 

xn

 

< ∞

s.t.

⇒ leads to nonlinear constrained optimization problem:

solution:
 

via Lagrange (find stationary point of Lagrangian function)
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Excursion: Maximum Entropy Distributions

partial derivatives:

⇒

⇒

uniform 
distribution
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Excursion: Maximum Entropy Distributions

Knowledge available:

Discrete distribution with support { 1, 2, …, n } with pk

 

= P { X = k }   and E[ X ] = 

s.t.

⇒ leads to nonlinear constrained optimization problem:

and 

solution:
 

via Lagrange (find stationary point of Lagrangian function)
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Excursion: Maximum Entropy Distributions

partial derivatives:

⇒

⇒

(continued on next slide)

*(    )
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Excursion: Maximum Entropy Distributions

⇒ ⇒

⇒ discrete Boltzmann distribution

⇒ value of q depends on 
 

via third condition: *(    )
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Excursion: Maximum Entropy Distributions

Boltzmann distribution

(n = 9)



 
= 2



 
= 3



 
= 4



 
= 8



 
= 7



 
= 6

 
= 5

specializes to uniform 
distribution if 

 
= 5 

(as expected)
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Excursion: Maximum Entropy Distributions

Knowledge available:

Discrete distribution with support { 1, 2, …, n } with E[ X ] = 
 

and V[ X ] = 2

s.t.

⇒ leads to nonlinear constrained optimization problem:

and and 

solution:
 

in principle, via Lagrange (find stationary point of Lagrangian function)

but very complicated analytically, if possible at all

⇒ consider special cases only
note: constraints 

are linear 
equations in pk
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Excursion: Maximum Entropy Distributions

Special case:  n = 3 and
 

E[ X ] = 2  and
 

V[ X ] = 2

Linear constraints uniquely determine distribution:

I.

II.

III.

II –

 
I:

I –

 
III:

insertion in III.

unimodal uniform bimodal
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Excursion: Maximum Entropy Distributions

Knowledge available:

Discrete distribution with unbounded support { 0, 1, 2, …
 

} and  E[ X ] = 

s.t.

⇒ leads to infinite-dimensional
 

nonlinear constrained optimization problem:

and 

solution:
 

via Lagrange (find stationary point of Lagrangian function)
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Excursion: Maximum Entropy Distributions

⇒

(continued on next slide)

partial derivatives:

*(    )
⇒
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Excursion: Maximum Entropy Distributions

⇒ ⇒

set and insists that ⇒
insert

⇒ geometrical distributionfor

it remains to specify q;   to proceed recall that
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Excursion: Maximum Entropy Distributions

⇒ value of q depends on 
 

via third condition: *(    )

⇒

⇒



Lecture 11

G. Rudolph: Computational Intelligence ▪

 

Winter Term 2011/12
25

Excursion: Maximum Entropy Distributions

geometrical distribution

with E[ x ] = 

pk

 

only shown 
for k = 0, 1, …, 8



 
= 1



 
= 2



 
= 3 

 
= 4 

 
= 5



 
= 6



 
= 7
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Excursion: Maximum Entropy Distributions

Overview:

support { 1, 2, …, n }  discrete uniform distribution

and require E[X] =   Boltzmann distribution

and require V[X] = 2

 

 N.N. (not Binomial distribution)

support N
 



 
not defined!

and require E[X] =   geometrical distribution

and require V[X] = 2

 



 
?

support Z
 



 
not defined!

and require E[|X|] =   bi-geometrical distribution (discrete Laplace distr.)

and require E[|X|2] = 2

 



 
N.N. (discrete Gaussian distr.)
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Excursion: Maximum Entropy Distributions

support [a,b] 
 

R
 
 uniform distribution

support R+  with E[X] =   Exponential distribution

support R
 with E[X] = V[X] = 2

 

 normal / Gaussian distribution N(, 2)

support Rn

 with    E[X] = 
 and Cov[X] = C
 

 multinormal distribution N(, C)

expectation vector ∈

 

Rn covariance matrix ∈

 

Rn,n

positive definite: 
∀x ≠

 

0 : x‘Cx > 0
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Excursion: Maximum Entropy Distributions

for permutation distributions ?

Guideline:

Only if you know something about the problem a priori or

if you have learnt something about the problem during the search

 include that knowledge in search / mutation distribution (via constraints!)

→ uniform distribution on all possible permutations

set v[j] = j for j = 1, 2, ..., n

for i = n to 1 step -1

draw k uniformly at random from { 1, 2, ..., i }

swap v[i] and v[k]

endfor 

generates 
permutation 
uniformly at 
random in 
(n) time
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Excursion: Maximum Entropy Distributions

continuous search space
 

X = Rn

ad 2)
 

design guidelines for variation operators in practice

a)
 

reachability

b)
 

unbiasedness

c)
 

control

leads to CMA-ES


