technische universitat
dortmund

Computational Intelligence
Winter Term 2011/12

Prof. Dr. Gunter Rudolph

Lehrstuhl flr Algorithm Engineering (LS 11)
Fakultat fr Informatik

TU Dortmund

Plan for Today Lecture 10

e Evolutionary Algorithms (EA)
e Optimization Basics

e EA Basics

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2011/12
dortmund 2

Optimization Basics

modelling

simulation

optimization

technische universitat
dortmund

1._ 1._

1.0

input

2 -

1.0

-

system output

G. Rudolph: Computational Intelligence = Winter Term 2011/12
3

Optimization Basics

given:
objective function f: X - R

feasible region X (= nonempty set)

objective: find solution with minimal or maximal value!

optimization problem: x* global solution
find x* € X such that f(x*) = min{ f(x) : x € X } f(x*) global optimum
note:

max{ f(x) : x € X} = —min{ —f(x) : x € X }

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2011/12
dortmund 4

Optimization Basics

local solution x* € X : if x* local solution then
VX € N(x*): f(x*) < f(X) f(x*) local optimum / minimum
neighborhood of x* = example: X=R", N (x*)={x e X: || x=X*||, <S¢}

bounded subset of X

remark:

evidently, every global solution / optimum is also local solution / optimum;

the reverse is wrong in general! 4

example:

f: [a,b] — R, global solution at x*

G. Rudolph: Computational Intelligence = Winter Term 2011/12

technische universitat .

dortmund

Optimization Basics

What makes optimization difficult?

Some causes.

* local optima (is it a global optimum or not?)
— e constraints (ill-shaped feasible region)

« non-smoothness (weak causality) » Strong causality needed!

» discontinuities (= nondifferentiability, no gradients)

* lack of knowledge about problem (= black / gray box optimization)

— f(x) =a; x; +... +a, X, — max! with x, € {0,1}, a, € R = x*=1ifa;>0
add constaint g(x) =b; X, +...+b, X, <b = NP-hard
add capacity constraint to TSP = CVRP = still harder
technische universitat G. Rudolph: Computational Intelligence = Winter Term 2011/12

dortmund 6

Optimization Basics

When using which optimization method?

mathematical algorithms randomized search heuristics

 problem explicitly specified problem given by black / gray box

* problem-specific solver available * N0 problem-specific solver available

 problem well understood * problem poorly understood

* ressources for designing « insufficient ressources for designing
algorithm affordable algorithm

* solution with proven quality * solution with satisfactory quality
required sufficient

= don't apply EAs = EAS

technische universitit G. Rudolph: Computational Intelligence = Winter Term 2011/12

dortmund 7

Evolutionary Algorithm Basics

idea: using biological evolution as metaphor and as pool of inspiration

= interpretation of biological evolution as iterative method of improvement

feasible solution x € X=S5; x ... X S, = chromosome of individual
multiset of feasible solutions = population: multiset of individuals
objective function f: X - R = fitness function

often: X =R", X =B"={0,1}", X=P, ={rn : n is permutation of {1,2,...,n} }

also : combinations like X = R" x BP x IPq or non-cartesian sets

= structure of feasible region / search space defines representation of individual

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2011/12
dortmund 8

Evolutionary Algorithm Basics

algorithmic initialize population
skeleton !
evaluation

!

— parent selection

|
variation (yields offspring)

!

evaluation (of offspring)

|

survival selection (yields new population)

|

— stop?
VY

output: best individual found

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2011/12
dortmund 9

Evolutionary Algorithm Basics

Specific example: (1+1)-EA in B"for minimizing some f: B" —» R

population size = 1, number of offspring = 1, selects best from 1+1 individuals

t ot

parent offspring

initialize X© e B" uniformly at random, sett=0

evaluate f(X®)

select parent: Y = X® » no choice, here
variation: flip each bit of Y independently with probability p,, = 1/n

evaluate f(Y)

selection: if f(Y) < f(X®) then Xt =Y else Xt*1) = XO

PRI ORI

if not stopping then t = t+1, continue at (3)

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2011/12
dortmund 10

Evolutionary Algorithm Basics

Specific example: (1+1)-EA in R"for minimizing some f: R" —» R

population size = 1, number of offspring = 1, selects best from 1+1 individuals

t ot

parent offspring

compact set = closed & bounded

/

initialize X© ¢ C c R" uniformly at random, sett=0

evaluate f(X®)

select parent: Y = XO » no choice, here

variation = add random vector: Y =Y +Z, e.g. Z~ N(O, I.)
evaluate f(Y)
selection: if f(Y) < f(X®) then X1 =Y else X1 = X

IR OIS ORI

if not stopping then t = t+1, continue at (3)

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2011/12
dortmund 11

Evolutionary Algorithm Basics

Selection

(a) select parents that generate offspring — selection for reproduction

(b) select individuals that proceed to next generation — selection for survival

necessary requirements:
- selection steps must not favor worse individuals
- one selection step may be neutral (e.g. select uniformly at random)

- at least one selection step must favor better individuals

typically : selection only based on fitness values f(x) of individuals

seldom : additionally based on individuals* chromosomes x (— maintain diversity)

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2011/12
dortmund 12

Evolutionary Algorithm Basics

Selection methods

population P = (x;, X,, ..., X,) with p individuals

two approaches:

1. repeatedly select individuals from population with replacement

2. rank individuals somehow and choose those with best ranks (no replacement)

e uniform / neutral selection
choose index i with probability 1/u

o fithness-proportional selection £(z;)
choose index i with probability s; = > f(x)
xzeP

problems: f(x) > 0 for all x € X required = g(x) =exp(f(x))>0
but already sensitive to additive shifts g(x) = f(x) + ¢

almost deterministic if large differences, almost uniform if small differences

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2011/12
dortmund 13

Evolutionary Algorithm Basics

Selection methods

population P = (x;, X,, ..., X,) with p individuals

e rank-proportional selection
order individuals according to their fitness values
assign ranks o‘,[d
fitness-proportional selection based on ranks a’ed,

=- avoids all problems of fithess-proportional selection
but: best individual has only small selection advantage (can be lost!)

» k-ary tournament selection
draw k individuals uniformly at random (typically with replacement) from P
choose individual with best fitness (break ties at random)

= has all advantages of rank-based selection and 1\ Fr
probability that best individual does not survive: (1 — —) e

7

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2011/12
dortmund 14

Evolutionary Algorithm Basics

Selection methods without replacement
population P = (x;, X,, ..., X,) with p parents and

population Q = (yy, Y,, ..., ¥;) With A offspring

* (u, A)-selection or truncation selection on offspring or comma-selection

rank A offspring according to their fithess
select u offspring with best ranks

= best individual may get lost, A = u required

* (u+A)-selection or truncation selection on parents + offspring or plus-selection
merge A offspring and p parents
rank them according to their fithess
select u individuals with best ranks

= best individual survives for sure

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2011/12
15

dortmund

Evolutionary Algorithm Basics

Selection methods: Elitism

Elitist selection: best parent is not replaced by worse individual.

- Intrinsic elitism: method selects from parent and offspring,
best survives with probability 1

- Forced elitism: if best individual has not survived then re-injection into population,
l.e., replace worst selected individual by previously best parent

method

neutral

fithess proportionate
rank proportionate
k-ary tournament

(L + A

(1, A)

technische universitat
dortmund

P{ select best }

<1
<1
<1
<1
=1
=1

from parents & offspring intrinsic elitism
no no
no no
no no
no no
yes yes
no no
G. Rudolph: Computational Intelligence = Winter Term 2011/12

16

Evolutionary Algorithm Basics

Variation operators: depend on representation

| mutation — alters a single individual

recombination @ — creates single offspring from two or more parents

may be applied

e exclusively (either recombination or mutation) chosen in advance
e exclusively (either recombination or mutation) in probabilistic manner
e sequentially (typically, recombination before mutation); for each offspring

e sequentially (typically, recombination before mutation) with some probability

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2011/12
dortmund 17

Evolutionary Algorithm Basics

Variation in B"

Individuals € {0, 1 }"

e Mutation
a) local — choose index k € { 1, ..., n } uniformly at random,
flip bit k, i.e., x, = 1 — X,
b) global — for each index k € { 1, ..., n }: flip bit k with probability p,, € (0,1)
c) “nonlocal® — choose K indices at random and flip bits with these indices
d) inversion — choose start index k, and end index k, at random
iInvert order of bits between start and and index
1 1 0) — 0 1
0 k=2 1 0) . 0 ke 1
0 0 1 K=2 ¢ 0
1 1 0) — 0 ke O
1 a) 1 b) 1 c) 1 d) 1
technische universitat G. Rudolph: Computational Intelligence = Winter Term 2011/12

dortmund

18

Evolutionary Algorithm Basics

Variation in B" Individuals € { 0, 1 }"
e Recombination (two parents)

a) 1l-point crossover — draw cut-point k € {1,...,n-1} uniformly at random;
choose first k bits from 1st parent,
choose last n-k bits from 2nd parent

b) K-point crossover — draw K distinct cut-points uniformly at random;
choose bits 1 to k, from 1st parent,
choose bits k;+1 to k, from 2nd parent,
choose bits k,+1 to k; from 1st parent, and so forth ...

c) uniform crossover — for each index i: choose bit i with equal probability
from 1st or 2nd parent

1 O 1 1 O 1 1 O 0]

0 1 _ 1 | . o 1 0

0O 1 1 0O 1 0] O 1 0]

a) 1 1 1 b) 1 1 1 c) 1 1 1
technische universitat G. Rudolph: Computational Intelligence = Winter Term 2011/12

dortmund 19

Evolutionary Algorithm Basics

Variation in B" Individuals € { 0, 1 }"
e Recombination (multiparent: p = #parents)

a) diagonal crossover (2 < p<n)

— choose p — 1 distinct cut points, select chunks from diagonals

AAAAAAAAA ABBBCCDDDD) tsoring:
BBBBBBBBB BCCCDDAAAA can generate p Ofspring,
ccacdeece CDDDAABBBR > otherwise choo_se initial ch_unk
DDDDDDDDD DAAABBCCCC at random for single offspring

b) gene pool crossover (p > 2)

— for each gene: choose donating parent uniformly at random

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2011/12
dortmund 20

Evolutionary Algorithm Basics

Variation in P, Individuals X = =(1, ..., n)
e Mutation
a) local — 2-swap / 1-translocation
53241 5 3\2/42 1
54231 52431
b) global — draw number K of 2-swaps, apply 2-swaps K times

K is positive random variable;
its distrinution may be uniform, binomial, geometrical, ...;
E[K] and V[K] may control mutation strength

/ N\

expectation variance

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2011/12
dortmund 21

Evolutionary Algorithm Basics

Variation in P,

e Recombination (two parents)

a) order-based crossover (OB)

b) partially mapped crossover (PMX)

c) cycle crossover (CX)

technische universitat
dortmund

Individuals X = =(1, ..., n)

G. Rudolph: Computational Intelligence = Winter Term 2011/12
22

Evolutionary Algorithm Basics

Variation in P, Individuals X = =(1, ..., n)
e Recombination (multiparent)

a) Xx crossover

b) Xx crossover

C) XX crossover

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2011/12
dortmund 23

Evolutionary Algorithm Basics

Variation in R"

Individuals X € R"

e Mutation
additive: Y=X+Z (Z: n-dimensional random vector)
AR | X
offspring = parent + mutation
a) local — Z with bounded support Definition
Let f,: R"— R* be p.d.f. of r.v. Z.
f; 4 Theset{xeR":f,(xX)>0}Iis
4
fz(@) = 5 (1 - z?) - 1_1y(z) termed the support of Z.
0 I >
0

b) nonlocal — Z with unbounded support)

fZ A

1 72 > most frequently used!
A fale) = <= ex0 (—7)
07 | > g

technische universitat
dortmund

G. Rudolph: Computational Intelligence = Winter Term 2011/12
24

Evolutionary Algorithm Basics

Variation in R" Individuals X € R"

e Recombination (two parents)
a) all crossover variants adapted from B"
b) intermediate z=E-x+(1—=&) -y with £ €0,1]

c) intermediate (per dimension) Vi:z; =¢&; - x; + (1 —&;) - y; with & € [0, 1]

. . . 1
d) discrete Vi:z; = Bi-x; + (1 — B;) - y; with B; ~ B(1, 35)
e) simulated binary crossover (SBX)
technische universitat G. Rudolph: Computational Intelligence = Winter Term 2011/12

dortmund 25

Evolutionary Algorithm Basics

Variation in R" Individuals X € R"

e Recombination (multiparent), p = 3 parents

p p
a) intermediate z = Zf(k) 2 where Zf(k) —1 and £&% >0
k=1 k=1

(all points in convex hull)

P
b) intermediate (per dimension) Vi : z; = Zgg’“) :zzgk)
k=1

Vi:z; € [mén{xgk)}, m]?X{fUEk)}

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2011/12
dortmund 26

Evolutionary Algorithm Basics

Theorem
Let f: R" — R be a strictly quasiconvex function. If f(x) = f(y) for some x # y then

every offspring generated by intermediate recombination is better than its parents.
Proof:
f strictly quasiconvex = f(&-x4+(1—£€)-y) < max{ f(x), f(y) } for0 < £ < 1

since f(z) = f(y) = max{ f(z), f(y)} = min{ f(z), f(y) }
= f(§-24+(1—=¢&)-y) <min{ f(z), f(y) } for 0 <& < 1

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2011/12
dortmund 27

Evolutionary Algorithm Basics

Theorem
Let f: R" — R be a differentiable function and f(x) < f(y) for some x #y.

If (y — X)* VI(x) < 0 then there is a positive probability that an offspring
generated by intermediate recombination is better than both parents.

Proof:

If 'V f(x) < 0 then d € R™ is a direction of descent, i.e.
3§ >0:Vs € (0,8 : f(x+s-d) < f(x).

Here: d =y —x such that P{f((x+ (1 - &)y) < f(z)} >§>0. =

Y Y
Y

Y

sublevel set S, = {zr € R" : f(x) < a}

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2011/12
dortmund 28

Evolutionary Algorithms: Historical Notes

Idea emerged independently several times: about late 1950s / early 1960s.
Three branches / “schools” still active today.

e Evolutionary Programming (EP):
Pioneers: Lawrence Fogel, Alvin Owen, Michael Walsh (New York, USA).

Original goal: Generate intelligent behavior through simulated evolution.

Approach: Evolution of finite state machines predicting symbols.
Later (~1990s) specialized to optimization in R" by David B. Fogel.

e Genetic Algorithms (GA):
Pioneer: John Holland (Ann Arbor, MI, USA).

Original goal: Analysis of adaptive behavior.
Approach: Viewing evolution as adaptation. Simulated evolution of bit strings.
Applied to optimization tasks by PhD students (Kenneth de Jong, 1975; et al.).

e Evolution Strategies (ES):
Pioneers: Ingo Rechenberg, Hans-Paul Schwefel, Peter Bienert (Berlin, Germany).

Original goal: Optimization of complex systems.
Approach: Viewing variation/selection as improvement strategy. First in Z", then R".

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2009/10
29

dortmund

Evolutionary Algorithms: Historical Notes

“Offspring” from GA branch:

e Genetic Programming (GP):
Pioneers: Nichael Lynn Cramer 1985, then: John Koza (Stanford, USA).

Original goal: Evolve programs (parse trees) that must accomplish certain task.
Approach: GA mechanism transfered to parse trees.
Later: Programs as successive statements — Linear GP (e.g. Wolfgang Banzhaf)

Already beqginning early 1990s:
Borders between EP, GA, ES, GP begin to blurr ...

= common term Evolutionary Algorithm embracing all kind of approaches
= broadly accepted name for the field: Evolutionary Computation

scientific journals: Evolutionary Computation (MIT Press) since 1993,
IEEE Transactions on Evolutionary Computation since 1997,
several more specialized journals started since then.

technische universitat G. Rudolph: Computational Intelligence = Winter Term 2009/10
dortmund 30

	Foliennummer 1
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Foliennummer 24
	Foliennummer 25
	Foliennummer 26
	Foliennummer 27
	Foliennummer 28
	Foliennummer 29
	Foliennummer 30

