
Computational Intelligence
Winter Term 2010/11

Prof. Dr. Günter Rudolph

Lehrstuhl für Algorithm Engineering (LS 11)

Fakultät für Informatik

TU Dortmund

Lecture 08

G. Rudolph: Computational Intelligence ▪

Winter Term 2010/11
2

G. Rudolph: Computational Intelligence ▪

Winter Term 2010/11
2

Plan for Today

● Approximate Reasoning

● Fuzzy control

Lecture 08

G. Rudolph: Computational Intelligence ▪

Winter Term 2010/11
3

G. Rudolph: Computational Intelligence ▪

Winter Term 2010/11
3

Approximative Reasoning

So far:

●

p: IF X is A THEN Y is B

→ R(x, y) = Imp(A(x), B(y))

rule as relation; fuzzy implication

●

rule:

IF X is A THEN Y is B
 fact:

X is A‘

 conclusion:

Y is B‘

→ B‘(y) = supxX

t(A‘(x), R(x, y))

composition rule of inference

Thus:

● B‘(y) = supxX

t(A‘(x), Imp(A(x), B(y)))

Lecture 08

G. Rudolph: Computational Intelligence ▪

Winter Term 2010/11
4

x ≠

x0

B‘(y) = supxX

t(A‘(x), Imp(A(x), B(y)))

sup t(0, Imp(A(x), B(y)))

=

t(1, Imp(A(x0

), B(y)))

for x ≠

x0

for x = x0

here:

A‘(x)

=
1 for x = x0

0 otherwise
crisp input!

for x ≠

x0

since t(0, a) = 0

for x = x0

since t(a, 1) = a

0

=

Imp((A(x0

), B(y))

Approximative Reasoning

Lecture 08

G. Rudolph: Computational Intelligence ▪

Winter Term 2010/11
5

Lemma:

a)

t(a, 1) = a

b)

t(a, b) ≤

min { a, b }

c)

t(0, a) = 0

Proof:

ad a) Identical to axiom 1 of t-norms.

ad b) From monotonicity (axiom 2) follows for b ≤

1, that t(a, b)

≤

t(a, 1) = a.
 Commutativity (axiom 3) and monotonicity lead in case of a ≤

1 to

t(a, b) = t(b, a) ≤

t(b, 1) = b. Thus, t(a, b) is less than or
equal to a as well as b, which in turn implies t(a, b) ≤

min{ a, b }.

ad c) From b) follows 0 ≤

t(0, a) ≤

min { 0, a } = 0 and therefore t(0, a) = 0. ■

by a)

Approximative Reasoning

Lecture 08

G. Rudolph: Computational Intelligence ▪

Winter Term 2010/11
6

Multiple rules:

IF X is A1

, THEN Y is B1

IF X is A2

, THEN Y is B2

IF X is A3

, THEN Y is B3

…

 IF X is An

, THEN Y is Bn

X is A‘

Y is B‘

→ R1

(x, y) = Imp1

(A1

(x), B1

(y))
 → R2

(x, y) = Imp2

(A2

(x), B2

(y))
 → R3

(x, y) = Imp3

(A3

(x), B3

(y))
 …

 → Rn

(x, y) = Impn

(An

(x), Bn

(y))

Multiple rules for crisp input: x0

is given

B1

‘(y) = Imp1

(A1

(x0

), B1

(y))
 …

 Bn

‘(y) = Impn

(An

(x0

), Bn

(y))

aggregation of rules or
 local inferences necessary!

aggregate! ⇒

B‘(y) = aggr{ B1

‘(y), …, Bn

‘(y) }, where aggr = min
 max

Approximative Reasoning

Lecture 08

G. Rudolph: Computational Intelligence ▪

Winter Term 2010/11
7

FITA: “First inference, then aggregate!“

1.

Each rule of the form IF X is Ak

THEN Y is Bk

must be transformed by
an appropriate fuzzy implication Impk

(·, ·) to a relation Rk

:
 Rk

(x, y) = Impk

(Ak

(x), Bk

(y)).

2.

Determine Bk

‘(y) = Rk

(x, y) ◦

A‘(x) for all k = 1, …, n (locale inference).

3.

Aggregate to B‘(y) = (B1

‘(y), …, Bn

‘(y)).

FATI: “First aggregate, then inference!“

1.

Each rule of the form IF X ist Ak

THEN Y ist Bk

must be transformed by
an appropriate fuzzy implication Impk

(·, ·) to a relation Rk

:
 Rk

(x, y) = Impk

(Ak

(x), Bk

(y)).

2.

Aggregate R1

, …, Rn

to a superrelation with aggregating function (·):
R(x, y) = (R1

(x, y), …, Rn

(x, y)).

3.

Determine B‘(y) = R(x, y) ◦

A‘(x) w.r.t. superrelation (inference).

Approximative Reasoning

Lecture 08

G. Rudolph: Computational Intelligence ▪

Winter Term 2010/11
8

2. Equivalence of FITA and FATI ?

FITA: B‘(y) = (B1

‘(y), …, Bn

‘(y))

= (R1

(x, y) ◦

A‘(x), …, Rn

(x, y) ◦

A‘(x))

FATI: B‘(y) = R(x, y) ◦

A‘(x)

= (R1

(x, y), …, Rn

(x, y)) ◦

A‘(x)

1. Which principle is better? FITA or FATI?

Approximative Reasoning

Lecture 08

G. Rudolph: Computational Intelligence ▪

Winter Term 2010/11
9

special case:

A‘(x)

=
1 for x = x0

0 otherwise
crisp input!

On the equivalence of FITA and FATI:

FITA: B‘(y) = (B1

‘(y), …, Bn

‘(y))

= (Imp1

(A1

(x0

), B1

(y)), …, Impn

(An

(x0

), Bn

(y)))

FATI: B‘(y) = R(x, y) ◦

A‘(x)

= supxX

t(A‘(x), R(x, y))

(from now: special case)

= R(x0

, y)

= (Imp1

(A1

(x0

), B1

(y)), …, Impn

(An

(x0

), Bn

(y)))

evidently: sup-t-composition with arbitrary t-norm and (·) = (·)

Approximative Reasoning

Lecture 08

G. Rudolph: Computational Intelligence ▪

Winter Term 2010/11
10

●

AND-connected premises

IF X1

= A11

AND X2

= A12

AND …

AND Xm

= A1m

THEN Y = B1

…

 IF Xn

= An1

AND X2

= An2

AND …

AND Xm

= Anm

THEN Y = Bn

 reduce to single premise for each rule k:
 Ak

(x1

,…, xm

) = min { Ak1

(x1

), Ak2

(x2

), …, Akm

(xm

) }

or in general: t-norm

●

OR-connected premises

IF X1

= A11

OR X2

= A12

OR …

OR Xm

= A1m

THEN Y = B1

…

 IF Xn

= An1

OR X2

= An2

OR …

OR Xm

= Anm

THEN Y = Bn

 reduce to single premise for each rule k:
 Ak

(x1

,…, xm

) = max { Ak1

(x1

), Ak2

(x2

), …, Akm

(xm

) }

or in general: s-norm

Approximative Reasoning

Lecture 08

G. Rudolph: Computational Intelligence ▪

Winter Term 2010/11
11

important:

● if rules of the form IF X is A THEN Y is B interpreted as logical

implication

⇒

R(x, y) = Imp(A(x), B(y)) makes sense

● we obtain: B‘(y) = supxX

t(A‘(x), R(x, y))

 the worse the match of premise A‘(x), the larger is the fuzzy set B‘(y)

 follows immediately from axiom 1: a 

b implies Imp(a, z) 

Imp(b, z)

interpretation of output set B‘(y):

● B‘(y) is the set of values that are still possible

● each rule leads to an additional restriction of the values that

are still possible

 resulting fuzzy sets B‘k

(y) obtained from single rules must be mutually intersected!

 aggregation via B‘(y) = min { B1

‘(y), …, Bn

‘(y) }

Approximative Reasoning

Lecture 08

G. Rudolph: Computational Intelligence ▪

Winter Term 2010/11
12

important:

●

if rules of the form IF X is A THEN Y is B are not

interpreted as logical
 implications, then the function Fct(·) in

 R(x, y) = Fct(A(x), B(y))
 can be chosen as required for desired interpretation.

● frequent choice (especially in fuzzy control):

- R(x, y) = min { A(x), B(x) }

Mamdami –

“implication“

- R(x, y) = A(x) ·

B(x)

Larsen –

“implication“



of course, they are no implications but special t-norms!



thus, if relation R(x, y) is given,
then the composition rule of inference

B‘(y) = A‘(x) ◦

R(x, y) = supxX

min { A’(x), R(x, y) }

still can lead to a conclusion via fuzzy logic.

Approximative Reasoning

Lecture 08

G. Rudolph: Computational Intelligence ▪

Winter Term 2010/11
13

example: [JM96, S. 244ff.]

industrial drill machine → control of cooling supply

modelling

linguistic variable

: rotation speed

linguistic terms

: very low, low, medium, high, very high

ground set

:

X

with 0 ≤

x ≤

18000 [rpm]

1000 90005000 13000 17000 rotation
speed

vl l m h vh
1

Approximative Reasoning

Lecture 08

G. Rudolph: Computational Intelligence ▪

Winter Term 2010/11
14

example: (continued)

modelling

linguistic variable

: cooling quantity

linguistic terms

: very small, small, normal, much, very much

ground set

:

Y

with 0 ≤

y ≤

18 [liter / time unit]

1 95 13 17 cooling
quantity

vs s n m vm
1

Approximative Reasoning

industrial drill machine → control of cooling supply

Lecture 08

G. Rudolph: Computational Intelligence ▪

Winter Term 2010/11
15

rule base

IF rotation speed IS very low THEN cooling quantity IS very small

low

medium

high

very high

small

normal

much

very much

Approximative Reasoning

example: (continued)

industrial drill machine → control of cooling supply

sets Svl

, Sl

, Sm

, Sh

, Svh sets Cvs

, Cs

, Cn

, Cm

, Cvm

“rotation speed” “cooling

quantity”

Lecture 08

G. Rudolph: Computational Intelligence ▪

Winter Term 2010/11
16

1. input: crisp value x0

= 10000 min-1

(no

fuzzy set!)
 → fuzzyfication = determine membership for each fuzzy set over X

 → yields S’

= (0, 0, ¾, ¼, 0) via x  (Svl

(x0

), Sl

(x0

), Sm

(x0

), Sh

(x0

), Svh

(x0

))

2.

FITA: locale inference ⇒ since Imp(0,a) = 0 we only need to consider:
 Sm

: C’n

(y) = Imp(¾, Cn

(y))
 Sh

: C’m

(y) = Imp(¼, Cm

(y))

3. aggregation:
 C’(y) = aggr { C’n

(y), C’m

(y) } = max { Imp(¾, Cn

(y)), Imp(¼, Cm

(y)) }

?

?

Approximative Reasoning

example: (continued)

industrial drill machine → control of cooling supply

Lecture 08

G. Rudolph: Computational Intelligence ▪

Winter Term 2010/11
17

C’(y) = max { Imp(¾, Cn

(y)), Imp(¼, Cm

(y)) }

in case of control task

typically no logic-based interpretation:

→ max-aggregation and

→ relation R(x,y) not interpreted as implication.

often: R(x,y) = min(a, b) „Mamdani controller“

thus:

C‘(y) = max { min { ¾, Cn

(y) }, min { ¼, Cm

(y) } }

→ graphical illustration

Approximative Reasoning

example: (continued)

industrial drill machine → control of cooling supply

Lecture 08

G. Rudolph: Computational Intelligence ▪

Winter Term 2010/11
18

C‘(y) = max { min { ¾, Cn

(y) }, min { ¼, Cm

(y) } }, x0

= 10000 [rpm]

1000 90005000 13000 17000

rotation speed

vl l m h vh
1

1 95 13 17

cooling quantity

vs s n m sm
1

Approximative Reasoning

example: (continued)

industrial drill machine → control of cooling supply

Lecture 08

G. Rudolph: Computational Intelligence ▪

Winter Term 2010/11
19

Fuzzy Control

open and closed loop control:
affect the dynamical behavior of a system
in a desired manner

●

open loop control
control is aware of reference values and has a model of the system

  control values can be adjusted,
 such that process value of system is equal to reference value

problem: noise! ⇒ deviation from reference value not detected

●

closed loop control
now: detection of deviations from reference value possible
(by means of measurements / sensors)

 and new control values can take into account the amount of deviation

Lecture 08

G. Rudolph: Computational Intelligence ▪

Winter Term 2010/11
20

open loop control

system
 process

control

w u y

process
value

reference
value

control value

assumption: undisturbed operation 

process value = reference value

Fuzzy Control

Lecture 08

G. Rudolph: Computational Intelligence ▪

Winter Term 2010/11
21

closed loop control

system
 process

control

w u

d

y

noise

process
 value

control value

control deviation = reference value –

process value

Fuzzy Control

reference
value

Lecture 08

G. Rudolph: Computational Intelligence ▪

Winter Term 2010/11
22

required:

model of system / process

→ as differential equations or difference equations (DEs)

→ well developed theory available

so, why fuzzy control?
●

there exists no process model in form of DEs etc.

 (operator/human being has realized control by hand)

● process with high-dimensional nonlinearities → no classic methods available

● control goals are vaguely formulated („soft“

changing gears in cars)

Fuzzy Control

Lecture 08

G. Rudolph: Computational Intelligence ▪

Winter Term 2010/11
23

fuzzy description of control behavior

but fact A‘

is not a fuzzy set but a crisp input

→ actually, it is the current process value

but crisp control value required for the process / system

→ defuzzification (= “condense”

fuzzy set to crisp value)

fuzzy controller executes inference step

→ yields fuzzy output set B‘(y)

IF X is A1

, THEN Y is B1

IF X is A2

, THEN Y is B2

IF X is A3

, THEN Y is B3

…

 IF X is An

, THEN Y is Bn

X is A‘

Y is B‘

similar to approximative reasoning

Fuzzy Control

Lecture 08

G. Rudolph: Computational Intelligence ▪

Winter Term 2010/11
24

defuzzification
● maximum method

- only active rule with largest activation level is taken into account

→ suitable for pattern recognition / classification

→ decision for a single alternative among finitely many alternatives

- selection independent from activation level of rule (0.05 vs. 0.95)

- if used for control: incontinuous curve of output values (leaps)

Def: rule k active ⇔ Ak

(x0

) > 0

0,5

t

0,5

B‘(y)

0,5

B‘(y)

0,5

B‘(y)

Fuzzy Control

Lecture 08

G. Rudolph: Computational Intelligence ▪

Winter Term 2010/11
25

defuzzification
● maximum mean value method

- all active rules with largest activation level are taken into account

→ interpolations possible, but need not be useful

→ obviously, only useful for neighboring rules with max. activation

- selection independent from activation level of rule (0.05 vs. 0.95)

- if used in control: incontinuous curve of output values (leaps)

0,5

B‘(y)

Y* = { y 

Y: B‘(y) = hgt(B‘) }

0,5

B‘(y)

useful solution? →

Fuzzy Control

Lecture 08

G. Rudolph: Computational Intelligence ▪

Winter Term 2010/11
26

defuzzification
● center-of-maxima method (COM)

- only extreme active rules with largest activation level are taken into account

→ interpolations possible, but need not be useful

→ obviously, only useful for neighboring rules with max. activation level

- selection indepependent from activation level of rule (0.05 vs.

0.95)

- in case of control: incontinuous curve of output values (leaps)

0,5

B‘(y)

Y* = { y 

Y: B‘(y) = hgt(B‘) }

0,5

B‘(y)

?0,5

B‘(y)

?

Fuzzy Control

Lecture 08

G. Rudolph: Computational Intelligence ▪

Winter Term 2010/11
27

defuzzification
● Center of Gravity (COG)

- all active rules are taken into account

→ but numerically expensive …

→ borders cannot appear in output (∃

work-around)

- if only single active rule: independent from activation level

- continuous curve for output values

…only valid for HW solution, today!

Fuzzy Control

Lecture 08

G. Rudolph: Computational Intelligence ▪

Winter Term 2010/11
28

Excursion: COG

triangle:

y1 y2 y3

trapezoid:

y1y2 y4y3

y

B‘(y)

1

pendant in
probability theory:

 expectation value

1 3,77...

Fuzzy Control

Lecture 08

G. Rudolph: Computational Intelligence ▪

Winter Term 2010/11
29

y

z=B‘(y)

1

y1 y2 y3 y4 y5 y6 y7

assumption:

fuzzy membership functions piecewise linear

output set B‘(y) represented by sequence of points (y1

, z1

), (y2

, z2

), …, (yn

, zn

)

⇒ area under B‘(y) and weighted area can be determined additively piece by piece

⇒ linear equation z = m y + b ⇒ insert (yi

, zi

) and (yi+1

,zi+1

)

⇒ yields m and b for each of the n-1 linear sections

⇒

⇒

Fuzzy Control

Lecture 08

G. Rudolph: Computational Intelligence ▪

Winter Term 2010/11
30

Defuzzification
● Center of Area (COA)

• developed as an approximation of COG

• let ŷk

be the COGs of the output sets B’k

(y):

Fuzzy Control

	Foliennummer 1
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Foliennummer 24
	Foliennummer 25
	Foliennummer 26
	Foliennummer 27
	Foliennummer 28
	Foliennummer 29
	Foliennummer 30

