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Plan for Today

● Approximate Reasoning

● Fuzzy control
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Approximative Reasoning

So far:

●
 

p: IF X is A THEN Y is B
 

→ R(x, y) = Imp( A(x), B(y) )
 

rule as relation; fuzzy implication

●
 

rule:
 

IF X is A THEN Y is B
 fact:

 
X is A‘

 conclusion:
 

Y is B‘
 

→ B‘(y) = supxX

 

t( A‘(x), R(x, y) )
 

composition rule of inference

Thus:

● B‘(y) = supxX

 

t( A‘(x), Imp( A(x), B(y) ) )
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x ≠

 

x0

B‘(y) =            supxX

 

t( A‘(x), Imp( A(x), B(y) ) )

sup t( 0, Imp( A(x), B(y) ) )

=

t( 1, Imp( A(x0

 

), B(y) ) )

for x ≠
 

x0

for x = x0

here:

A‘(x)
 

=    
1 for x = x0

0 otherwise
crisp input!

for x ≠
 

x0

 

since t(0, a) = 0

for x = x0

 

since t(a, 1) = a

0

=

Imp( ( A(x0

 

), B(y) ) 

Approximative Reasoning
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Lemma:

a)
 

t(a, 1) = a

b)
 

t(a, b) ≤
 

min { a, b }

c)
 

t(0, a) = 0

Proof:

ad a) Identical to axiom 1 of t-norms.

ad b) From monotonicity (axiom 2) follows for b ≤
 

1, that t(a, b)
 

≤
 

t(a, 1) = a.
 Commutativity (axiom 3) and monotonicity lead in case of a ≤

 
1 to 

t(a, b) = t(b, a) ≤
 

t(b, 1) = b. Thus, t(a, b) is less than or 
equal to a as well as b, which in turn implies t(a, b) ≤

 
min{ a, b }.

ad c) From b) follows 0 ≤
 

t(0, a) ≤
 

min { 0, a } = 0 and therefore t(0, a) = 0.         ■

by a)

Approximative Reasoning
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Multiple rules:

IF X is A1

 

, THEN Y is B1

 
IF X is A2

 

, THEN Y is B2

 
IF X is A3

 

, THEN Y is B3

 
…

 IF X is An

 

, THEN Y is Bn

 
X is A‘

Y is B‘

→ R1

 

(x, y) = Imp1

 

( A1

 

(x), B1

 

(y) )
 → R2

 

(x, y) = Imp2

 

( A2

 

(x), B2

 

(y) )
 → R3

 

(x, y) = Imp3

 

( A3

 

(x), B3

 

(y) )
 …

 → Rn

 

(x, y) = Impn

 

( An

 

(x), Bn

 

(y) )

Multiple rules for crisp input:    x0

 

is given

B1

 

‘(y) = Imp1

 

(A1

 

(x0

 

), B1

 

(y) )
 …

 Bn

 

‘(y) = Impn

 

(An

 

(x0

 

), Bn

 

(y) )

aggregation of rules or
 local inferences necessary!

aggregate! ⇒
 

B‘(y) = aggr{ B1

 

‘(y), …, Bn

 

‘(y) },  where aggr = min
 max

Approximative Reasoning
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FITA: “First inference, then aggregate!“

1.
 

Each rule of the form IF X is Ak

 

THEN Y is Bk

 

must be transformed by 
an appropriate fuzzy implication Impk

 

(·, ·) to a relation Rk

 

:
 Rk

 

(x, y) = Impk

 

( Ak

 

(x), Bk

 

(y) ).

2.
 

Determine Bk

 

‘(y) = Rk

 

(x, y) ◦
 

A‘(x) for all k = 1, …, n (locale inference).

3.
 

Aggregate to  B‘(y) = ( B1

 

‘(y), …, Bn

 

‘(y) ).

FATI: “First aggregate, then inference!“

1.
 

Each rule of the form IF X ist Ak

 

THEN Y ist Bk

 

must be transformed by     
an appropriate fuzzy implication Impk

 

(·, ·) to a relation Rk

 

:
 Rk

 

(x, y) = Impk

 

( Ak

 

(x), Bk

 

(y) ).

2.
 

Aggregate R1

 

, …, Rn

 

to a superrelation with aggregating function (·): 
R(x, y) = ( R1

 

(x, y), …, Rn

 

(x, y) ).

3.
 

Determine B‘(y) = R(x, y) ◦
 

A‘(x) w.r.t. superrelation (inference).

Approximative Reasoning
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2. Equivalence of FITA and FATI ?

FITA: B‘(y) =  ( B1

 

‘(y), …, Bn

 

‘(y) )

=  ( R1

 

(x, y) ◦
 

A‘(x), …, Rn

 

(x, y) ◦
 

A‘(x) )

FATI: B‘(y) =  R(x, y) ◦
 

A‘(x) 

=  ( R1

 

(x, y), …, Rn

 

(x, y) ) ◦
 

A‘(x)

1. Which principle is better? FITA or FATI?

Approximative Reasoning
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special case:

A‘(x)
 

=    
1 for x = x0

0 otherwise
crisp input!

On the equivalence of FITA and FATI:

FITA: B‘(y) =  ( B1

 

‘(y), …, Bn

 

‘(y) )

=  ( Imp1

 

(A1

 

(x0

 

), B1

 

(y) ), …, Impn

 

(An

 

(x0

 

), Bn

 

(y) ) )

FATI: B‘(y) =  R(x, y) ◦
 

A‘(x)

=  supxX

 

t( A‘(x), R(x, y) )
 

(from now: special case)

=  R(x0

 

, y)

=  ( Imp1

 

( A1

 

(x0

 

), B1

 

(y) ), …, Impn

 

( An

 

(x0

 

), Bn

 

(y) ) )

evidently: sup-t-composition with arbitrary t-norm and (·) = (·)

Approximative Reasoning
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●
 

AND-connected premises 

IF X1

 

= A11

 

AND X2

 

= A12

 

AND …
 

AND Xm

 

= A1m

 

THEN Y = B1

 
…

 IF Xn

 

= An1

 

AND X2

 

= An2

 

AND …
 

AND Xm

 

= Anm

 

THEN Y = Bn

 reduce to single premise for each rule k:
 Ak

 

(x1

 

,…, xm

 

) = min { Ak1

 

(x1

 

), Ak2

 

(x2

 

), …, Akm

 

(xm

 

) }
 

or in general: t-norm

●
 

OR-connected premises 

IF X1

 

= A11

 

OR X2

 

= A12

 

OR …
 

OR Xm

 

= A1m

 

THEN Y = B1

 
…

 IF Xn

 

= An1

 

OR X2

 

= An2

 

OR …
 

OR Xm

 

= Anm

 

THEN Y = Bn

 reduce to single premise for each rule k:
 Ak

 

(x1

 

,…, xm

 

) = max { Ak1

 

(x1

 

), Ak2

 

(x2

 

), …, Akm

 

(xm

 

) }
 

or in general: s-norm

Approximative Reasoning
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important:

● if rules of the form IF X is A THEN Y is B interpreted as logical
 

implication

⇒

 
R(x, y) = Imp( A(x), B(y) ) makes sense

● we obtain:  B‘(y) = supxX

 

t( A‘(x), R(x, y) )

 the worse the match of premise A‘(x), the larger is the fuzzy set B‘(y)

 follows immediately from axiom 1: a 
 

b implies Imp(a, z) 
 

Imp(b, z)

interpretation of output set B‘(y):

● B‘(y) is the set of values that are still possible

● each rule leads to an additional restriction of the values that
 

are still possible

 resulting fuzzy sets B‘k
 

(y) obtained from single rules must be mutually intersected!

 aggregation via    B‘(y) = min { B1

 

‘(y), …, Bn

 

‘(y) }

Approximative Reasoning
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important:

●
 

if rules of the form IF X is A THEN Y is B are not
 

interpreted as logical
 implications, then the function Fct(·) in

 R(x, y) = Fct( A(x), B(y) )
 can be chosen as required for desired interpretation.

● frequent choice (especially in fuzzy control):

- R(x, y) = min { A(x), B(x) }
 

Mamdami –
 

“implication“

- R(x, y) = A(x) ·
 

B(x)
 

Larsen –
 

“implication“



 
of course, they are no implications but special t-norms!



 
thus, if relation R(x, y) is given, 
then the composition rule of inference

B‘(y) = A‘(x) ◦
 

R(x, y) = supxX

 

min { A’(x), R(x, y) }

still can lead to a conclusion via fuzzy logic.

Approximative Reasoning
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example: [JM96, S. 244ff.]

industrial drill machine → control of cooling supply

modelling

linguistic variable
 

: rotation speed

linguistic terms
 

: very low, low, medium, high, very high

ground set
 

:
 

X

 
with 0 ≤

 
x ≤

 
18000 [rpm]

1000 90005000 13000 17000 rotation 
speed

vl l m h vh
1

Approximative Reasoning
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example: (continued)

modelling

linguistic variable
 

: cooling quantity

linguistic terms
 

: very small, small, normal, much, very much

ground set
 

:
 

Y

 
with 0 ≤

 
y ≤

 
18 [liter / time unit]

1 95 13 17 cooling 
quantity

vs s n m vm
1

Approximative Reasoning

industrial drill machine → control of cooling supply
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rule base

IF rotation speed IS very low THEN cooling quantity IS very small

low

medium

high

very high

small

normal

much 

very much

Approximative Reasoning

example: (continued)

industrial drill machine → control of cooling supply

sets Svl

 

, Sl

 

, Sm

 

, Sh

 

, Svh sets Cvs

 

, Cs

 

, Cn

 

, Cm

 

, Cvm

“rotation speed” “cooling
 

quantity”
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1. input: crisp value   x0

 

= 10000 min-1

 

(no
 

fuzzy set!)
 → fuzzyfication = determine membership for each fuzzy set over X

 → yields  S’
 

= (0, 0, ¾, ¼, 0) via x  ( Svl

 

(x0

 

), Sl

 

(x0

 

), Sm

 

(x0

 

), Sh

 

(x0

 

), Svh

 

(x0

 

) )

2.
 

FITA: locale inference ⇒ since Imp(0,a) = 0 we only need to consider:
 Sm

 

: C’n
 

(y) = Imp( ¾, Cn

 

(y) )
 Sh

 

: C’m
 

(y) = Imp( ¼, Cm

 

(y) )

3. aggregation:
 C’(y) =  aggr { C’n

 

(y), C’m
 

(y) } = max { Imp( ¾, Cn

 

(y) ), Imp( ¼, Cm

 

(y) ) }

?

?

Approximative Reasoning

example: (continued)

industrial drill machine → control of cooling supply
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C’(y) = max { Imp( ¾, Cn

 

(y) ), Imp( ¼, Cm

 

(y) ) }

in case of control task
 

typically no logic-based interpretation:

→ max-aggregation and

→ relation R(x,y) not interpreted as implication.

often: R(x,y) = min(a, b)          „Mamdani controller“

thus:

C‘(y) = max { min { ¾, Cn

 

(y) }, min { ¼, Cm

 

(y) } }

→ graphical illustration

Approximative Reasoning

example: (continued)

industrial drill machine → control of cooling supply
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C‘(y) = max { min { ¾, Cn

 

(y) }, min { ¼, Cm

 

(y) } }, x0

 

= 10000 [rpm]

1000 90005000 13000 17000

rotation speed

vl l m h vh
1

1 95 13 17

cooling quantity

vs s n m sm
1

Approximative Reasoning

example: (continued)

industrial drill machine → control of cooling supply
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Fuzzy Control

open and closed loop control:
affect the dynamical behavior of a system 
in a desired manner

●
 

open loop control 
control is aware of reference values and has a model of the system

  control values can be adjusted,
 such that process value of system is equal to reference value

problem: noise! ⇒ deviation from reference value not detected

●
 

closed loop control 
now: detection of deviations from reference value possible 
(by means of measurements / sensors)

 and new control values can take into account the amount of deviation
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open loop control

system
 process

control

w u y

process 
value

reference 
value

control value

assumption: undisturbed operation  
 

process value = reference value

Fuzzy Control
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closed loop control

system
 process

control

w u

d

y

noise

process
 value

control value

control deviation = reference value –
 

process value

Fuzzy Control

reference 
value
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required:

model of system / process

→ as differential equations or difference equations (DEs)

→ well developed theory available

so, why fuzzy control?
●

 
there exists no process model in form of DEs etc.

 (operator/human being has realized control by hand)

● process with high-dimensional nonlinearities → no classic methods available

● control goals are vaguely formulated („soft“
 

changing gears in cars)

Fuzzy Control
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fuzzy description of control behavior

but fact A‘
 

is not a fuzzy set but a crisp input

→ actually, it is the current process value

but crisp control value required for the process / system

→ defuzzification (= “condense”
 

fuzzy set to crisp value)

fuzzy controller executes inference step

→ yields fuzzy output set B‘(y)

IF X is A1

 

, THEN Y is B1

 
IF X is A2

 

, THEN Y is B2

 
IF X is A3

 

, THEN Y is B3

 
…

 IF X is An

 

, THEN Y is Bn

 
X is A‘

Y is B‘

similar to approximative reasoning

Fuzzy Control
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defuzzification
● maximum method

- only active rule with largest activation level is taken into account

→ suitable for pattern recognition / classification

→ decision for a single alternative among finitely many alternatives

- selection independent from activation level of rule (0.05 vs. 0.95)

- if used for control: incontinuous curve of output values (leaps)

Def: rule k active ⇔ Ak

 

(x0

 

) > 0

0,5

t

0,5

B‘(y)

0,5

B‘(y)

0,5

B‘(y)

Fuzzy Control
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defuzzification
● maximum mean value method

- all active rules with largest activation level are taken into account

→ interpolations possible, but need not be useful

→ obviously, only useful for neighboring rules with max. activation

- selection independent from activation level of rule (0.05 vs. 0.95)

- if used in control: incontinuous curve of output values (leaps)

0,5

B‘(y)

Y* = { y 
 

Y: B‘(y) = hgt(B‘) }

0,5

B‘(y)

useful solution?  →

Fuzzy Control
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defuzzification
● center-of-maxima method (COM)

- only extreme active rules with largest activation level are taken into account

→ interpolations possible, but need not be useful

→ obviously, only useful for neighboring rules with max. activation level

- selection indepependent from activation level of rule (0.05 vs.
 

0.95)

- in case of control: incontinuous curve of output values (leaps)

0,5

B‘(y)

Y* = { y 
 

Y: B‘(y) = hgt(B‘) }

0,5

B‘(y)

?0,5

B‘(y)

?

Fuzzy Control
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defuzzification
● Center of Gravity (COG)

- all active rules are taken into account 

→ but numerically expensive …

→ borders cannot appear in output ( ∃
 

work-around )

- if only single active rule: independent from activation level 

- continuous curve for output values

…only valid for HW solution, today!

Fuzzy Control
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Excursion: COG

triangle:

y1 y2 y3

trapezoid:

y1y2 y4y3

y

B‘(y)

1

pendant in 
probability theory:

 expectation value

1 3,77...

Fuzzy Control
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y

z=B‘(y)

1

y1 y2 y3 y4 y5 y6 y7

assumption:
 

fuzzy membership functions piecewise linear

output set B‘(y) represented by sequence of points (y1

 

, z1

 

), (y2

 

, z2

 

), …, (yn

 

, zn

 

) 

⇒ area under B‘(y) and weighted area can be determined additively piece by piece

⇒ linear equation z = m y + b ⇒ insert (yi

 

, zi

 

) and (yi+1

 

,zi+1

 

)

⇒ yields m and b for each of the n-1 linear sections

⇒

⇒

Fuzzy Control
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Defuzzification
● Center of Area (COA)

• developed as an approximation of COG

• let ŷk

 

be the COGs of the output sets B’k
 

(y):

Fuzzy Control
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