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Lecture 12Design of Evolutionary Algorithms

Three
 

tasks:

1.
 

Choice
 

of an appropriate
 

problem
 

representation.

2.
 

Choice
 

/ design
 

of variation
 

operators
 

acting
 

in problem
 

representation.

3.
 

Choice
 

of strategy
 

parameters
 

(includes
 

initialization).

ad 1)
 

different “schools“:

(a) operate on binary representation and define genotype/phenotype mapping
 + can use standard algorithm

 – mapping may induce unintentional bias in search

(b) no doctrine: use “most natural”
 

representation 
– must design variation operators for specific representation

 + if design done properly then no bias in search 



G. Rudolph: Computational Intelligence ▪ Winter Term 2009/10
3

Lecture 12Design of Evolutionary Algorithms

ad 2)
 

design guidelines for variation operators

a) reachability 
every

 
x ∈

 
X should

 
be

 
reachable

 
from

 
arbitrary

 
x0

 

∈

 
X

 after
 

finite number
 

of repeated
 

variations
 

with
 

positive probability
 

bounded
 

from
 

0

b) unbiasedness 

unless
 

having
 

gathered
 

knowledge
 

about
 

problem
 variation

 
operator

 
should

 
not

 
favor

 
particular

 
subsets

 
of solutions

 ⇒ formally: maximum
 

entropy
 

principle

c) control 

variation
 

operator
 

should
 

have
 

parameters
 

affecting
 

shape
 

of distributions;
 known

 
from

 
theory: weaken

 
variation

 
strength

 
when

 
approaching

 
optimum
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Lecture 12Design of Evolutionary Algorithms

ad 2)
 

design guidelines for variation operators in practice

binary
 

search space
 

X = Bn

variation
 

by
 

k-point
 

or
 

uniform crossover
 

and subsequent
 

mutation

a) reachability:
 regardless

 
of the

 
output

 
of crossover

 we can move from x ∈
 

Bn

 

to y ∈
 

Bn

 

in 1 step
 

with
 

probability

where
 

H(x,y) is
 

Hamming
 

distance between
 

x and y.

Since
 

min{ p(x,y): x,y
 

∈

 
Bn

 

} = 
 

> 0 we
 

are
 

done.
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Lecture 12Design of Evolutionary Algorithms

b) unbiasedness

don‘t
 

prefer
 

any
 

direction
 

or
 

subset
 

of points
 

without
 

reason

⇒ use
 

maximum
 

entropy
 

distribution
 

for
 

sampling!

properties:

- distributes
 

probability
 

mass
 

as uniform as possible

-
 

additional knowledge
 

can
 

be
 

included
 

as constraints:
 → under

 
given

 
constraints

 
sample

 
as uniform as possible
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Lecture 12Design of Evolutionary Algorithms

Definition:

Let
 

X be
 

discrete
 

random variable (r.v.) with
 

pk

 

= P{ X = xk

 

} for
 

some
 

index
 

set
 

K.
 The

 
quantity

is
 

called
 

the
 

entropy of the distribution of X. If
 

X is
 

a continuous
 

r.v. with
 

p.d.f. 
fX

 

(·) then
 

the
 

entropy
 

is
 

given
 

by

The
 

distribution
 

of a random variable X for
 

which
 

H(X) is
 

maximal is
 

termed
 

a 
maximum entropy distribution.

 
■

Formally:
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Lecture 12Excursion: Maximum Entropy Distributions

Knowledge available:

Discrete
 

distribution
 

with
 

support
 

{ x1

 

, x2

 

, …
 

xn

 

} with
 

x1

 

< x2

 

< …
 

xn

 

< ∞

s.t.

⇒ leads
 

to nonlinear
 

constrained
 

optimization
 

problem:

solution:
 

via Lagrange
 

(find stationary
 

point of Lagrangian
 

function)
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Lecture 12Excursion: Maximum Entropy Distributions

partial derivatives:

⇒

⇒

uniform 
distribution
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Lecture 12Excursion: Maximum Entropy Distributions

Knowledge available:

Discrete
 

distribution
 

with
 

support
 

{ 1, 2, …, n } with
 

pk

 

= P { X = k }   and E[ X ] = 

s.t.

⇒ leads
 

to nonlinear
 

constrained
 

optimization
 

problem:

and 

solution:
 

via Lagrange
 

(find stationary
 

point of Lagrangian
 

function)
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Lecture 12Excursion: Maximum Entropy Distributions

partial derivatives:

⇒

⇒

(continued

 

on next

 

slide)

*(    )
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Lecture 12Excursion: Maximum Entropy Distributions

⇒ ⇒

⇒ discrete Boltzmann distribution

⇒ value
 

of q depends
 

on 
 

via third
 

condition: *(    )
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Lecture 12Excursion: Maximum Entropy Distributions

Boltzmann distribution

(n = 9)



 
= 2



 
= 3



 
= 4



 
= 8



 
= 7



 
= 6

 
= 5

specializes
 

to uniform 
distribution

 
if

 


 
= 5 

(as expected)
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Lecture 12Excursion: Maximum Entropy Distributions

Knowledge available:

Discrete
 

distribution
 

with
 

support
 

{ 1, 2, …, n } with
 

E[ X ] = 
 

and V[ X ] = 2

s.t.

⇒ leads
 

to nonlinear
 

constrained
 

optimization
 

problem:

and and 

solution:
 

in principle, via Lagrange
 

(find stationary
 

point of Lagrangian
 

function)

but
 

very
 

complicated
 

analytically, if
 

possible
 

at all

⇒ consider
 

special
 

cases
 

only
note: constraints

 are
 

linear 
equations

 
in pk
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Lecture 12Excursion: Maximum Entropy Distributions

Special case:  n = 3 and
 

E[ X ] = 2  and
 

V[ X ] = 2

Linear constraints
 

uniquely
 

determine
 

distribution:

I.

II.

III.

II –

 
I:

I –

 
III:

insertion

 

in III.

unimodal uniform bimodal
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Lecture 12Excursion: Maximum Entropy Distributions

Knowledge available:

Discrete
 

distribution
 

with
 

unbounded
 

support
 

{ 0, 1, 2, …
 

} and  E[ X ] = 

s.t.

⇒ leads
 

to infinite-dimensional
 

nonlinear
 

constrained
 

optimization
 

problem:

and 

solution:
 

via Lagrange
 

(find stationary
 

point of Lagrangian
 

function)
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Lecture 12Excursion: Maximum Entropy Distributions

⇒

(continued

 

on next

 

slide)

partial derivatives:

*(    )
⇒
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Lecture 12Excursion: Maximum Entropy Distributions

⇒ ⇒

set and insists
 

that ⇒
insert

⇒ geometrical distributionfor

it
 

remains
 

to specify
 

q;   to proceed
 

recall
 

that
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Lecture 12Excursion: Maximum Entropy Distributions

⇒ value
 

of q depends
 

on 
 

via third
 

condition: *(    )

⇒

⇒
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Lecture 12Excursion: Maximum Entropy Distributions

geometrical distribution

with
 

E[ x ] = 

pk

 

only
 

shown
 for

 
k = 0, 1, …, 8



 
= 1



 
= 2



 
= 3 

 
= 4 

 
= 5



 
= 6



 
= 7
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